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Foreword

In the Séminaire Bourbaki, between 1957 and 1962, we gave eight talks on the foundations of
algebraic geometry. With the exception of the first, these talks are expressed in the language of
schemes. All of the stated results will find their place in Jean Dieudonné and Alexander Grothendieck’s
“Éléments de Géométrie Algébrique”. However, none of the essence of any of these talks is currently
found in any of the chapters (neither published nor still in preparation) of the EGA, nor in any
other book or article, and this will probably remain the case for a few more years still. This is the
main reason that persuaded us to combine these talks, giving readers access to a number of ideas
and key results of the theory of schemes whilst awaiting a well-written summary. Also, reading these
chapters will allow the reader to quickly familiarise themselves with the aforementioned results and
ideas, without being bothered by the necessarily cumbersome details of a systematic treatment, and
also endow them with vital motivations for the study of such a treatment.

For the sake of the reader, we have assembled here some comments and errata, grouped by
section, that, most notably, show the progress accomplished since the editing of this text, as well as
indicating some supplementary references. [Trans.] Rather than translating the comments and errata
here, we have inserted them throughout the text in the relevant places; we preface them with “[Comp.]” (for
“Complément”) except for minor corrections, which we have inserted silently.

Many of the results appearing in these articles have been discussed in detail in the Séminaire
de Géométrie Algébrique du Bois Marie, as well as in the two subsequent seminars at Harvard, in
1961–62 (the first by myself, and the second by Mumford–Tate), the notes for which are currently
in preparation by Lichtenbaum. [Trans.] These Mumford–Tate notes are referenced again multiple times
throughout these talks, but they do not actually exist: they were never finished, and no draft of them was ever
published (see MO: 452230/ 73622 ).
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1. Ext of sheaves of modules

FGA 1

Duality theorems for coherent algebraic sheaves

A. Grothendieck. “Théorème de dualité pour les faisceaux algébriques cohérents”. Séminaire Bourbaki
9 (1956–57), Talk no. 149. http://www.numdam.org/book-part/SB_1956-1958__4__169_0/

The results that follow, inspired by Serre’s “theorem of algebraic duality”, were discovered in the
winter of 1955 and the winter of 1956. They can be established very simply, thanks to reasonably
elementary results on the cohomology of projective spaces [Ser1955]. and an intensive use of
Cartan–Eilenberg’s homological algebra, in the form given in [Gro1957].

1. Ext of sheaves of modules

(cf. [Gro1957, Chapters 3 and 4])
Let X be a topological space endowed with a sheaf O of unital (but not necessarily commutative)

rings. We consider the abelian category CO of sheaves of O-modules, which are also referred to as O-
modules. We know that every object of this category admits an injective resolution, which allows us to
define the Ext functors that have the well-known formal properties. More precisely, to avoid confusion,
we denote by HomO(X;A ,B), or simply Hom(X;A ,B), the abelian groups of O-homomorphisms
from A to B, whereas HomO(A ,B) denotes the sheaf of germs of homomorphisms from A to B
(where A ,B ∈ CO). We define, for fixed A ∈ CO, functors hA and hA , with values in the category
C of abelian groups and the category CZ of abelian sheaves on X (respectively), by the formulas:

hA (B) = HomO(X;A ,B)

hA (B) = HomO(A ,B).
(1.1)

The functors hA and hA are left exact and covariant, and so we consider their right-derived
functors, denoted by ExtpO(X;A ,B) and ExtpO(A ,B) (respectively). We then have, by definition,

ExtpO(X;A ,B) = (Rp hA )(B) = Hp(HomO(X;A , C(B)))

ExtpO(A ,B) = (Rp hA )(B) = Hp(HomO(A , C(B)))
(1.2)

where Rp denotes the passage to right-derived functors, and where C(B) denotes an arbitrary
injective resolution of B in CO. We denote by Γ: CZ → C the “sections” functor; recall that its
right-derived functors are denoted by B 7→ Hp(X,B):

Hp(X,B) = (Rp Γ)(B) = Hp(Γ(C(B))). (1.3)

We evidently have hA = ΓhA ; we can also show that hA sends injective objects to Γ-acyclic
objects. From this, it is a well-known result that:
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1. Ext of sheaves of modules

Proposition 1. For every O-module A , there exists a cohomological spectral functor on CO that abuts to the
graded functor (Ext•O(X;A ,B)), and whose initial page is

Ep,q
2 (A ,B) = Hp(X,ExtqO(A ,B)). (1.4)

From this, we obtain “boundary homomorphisms”, as well as a short exact sequence, which we will
not write.

Corollary 1. If A is locally isomorphic to On, then we have canonical isomorphisms

ExtpO(X;A ,B)
∼←− Hp(x,HomO(A ,B)) (1.5)

(given by the boundary homomorphisms of the spectral sequence). In particular, we have a canonical
isomorphism

ExtpO(X;O,B) = Hp(X,B). (1.6)

To use these results, we need to know how to explicitly describe the ExtpO(A ,B). They are
functors that we calculate locally, i.e. if U is an open subset of X, then

ExtpO(A ,B)|U = Extp
O|U (A |U,B|U)

as follows from the fact that the restriction to U of an injective O-module is an injective (O|U)-module.
Furthermore, for fixed x ∈ X, we have functorial homomorphisms

HomO(A ,B)x → HomOx(Ax,Bx) (1.7)

that uniquely extend to homomorphisms of cohomological functors (in B):

ExtpO(A ,B)x → ExtpOx
(Ax,Bx). (1.8)

Proposition 2. If A is isomorphic, in a neighbourhood of x, to the cokernel of some homomorphism
Om → On, then Equation 1.7 is an isomorphism for all p. This is the case, in particular, if A is a coherent
O-module [Ser1955].

Proposition 3. Let L• = (Li) be a left resolution of the O-module A by O-modules that are all
locally isomorphic to some On. Then ExtO(A ,B) can be identified with H•(HomO(L•,B)), and
ExtO(X;A ,B) can be identified with the hypercohomology ofX with respect to the complex HomO(L•,B).

Proof. The proof is standard: we consider the bicomplex HomO(L•, C(B)), where C(B) is an injec-
tive resolution of B, as well as the natural homomorphisms into this bicomplex from HomO(L•,B)
and HomO(A , C(B)).

To finish, we note that the two Ext functors introduced in Equation 1.2 are not only cohomological
functors in B, but in fact cohomological bifunctors, covariant in B, and contravariant in A .
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2. The composition law in Ext

The results of this section are due, independently, to Cartier and Yoneda; see a talk by Cartier
[Car1957] for more details. Let C be an abelian category, and let K and L be two graded objects
of C. We denote by Hom(K,L) the graded abelian group whose degree-n component consists of
homogeneous homomorphisms of degree n from K to L (i.e. systems (ui) of homomorphisms
Ki → Li+n). If K and L are complexes (with differentials of degree +1, to fix conventions), then
we endow Hom(K,L) with the differential operator given by

δ(u) = du+ (−1)n+1ud where n = deg(u) (2.1)

which makes it a complex with a differential of degree +1. The cycles of degree n are the maps of
degree n that anticommute with u (as homogeneous maps). We can then consider H•(Hom(K,L)),
which is an invariant of the homotopy types of K and L, and which we sometimes denote by
H•(K,L). If we have a third complex M , then the composition of homomorphisms defines a pairing
Hom(K,L)×Hom(L,M)→ Hom(K,M) which is compatible with the differential maps, whence,
by passing to the cohomology of pairings,

H•(K,L)×H•(L,M)→ H•(K,M) (2.2)

which we write as (u, v) 7→ vu. These pairings satisfy an evident associativity property; in
particular, H•(K,K) is an associative graded unital ring, and H•(K,L) (resp. H•(L,K)) is a
graded right (resp. left) module over this ring, etc. In dimension 0, Equation 2.2 reduces to the
composition of permissible homomorphisms of complexes. Finally, an exact sequence of complexes
0→ K ′ → K → K ′′ → 0 such that, for all i, K ′i can be identified with a direct factor of Ki, gives
rise to an exact sequence of complexes of groups Hom(K ′′, L), etc., whence a coboundary map
Hi(K ′, L)→ Hi+1(K ′′, L). We similarly define the boundary maps relative to an exact sequence in
L. The pairings in Equation 2.2 are compatible, in the usual sense, with these coboundary maps.

Now suppose that C is a category such that every element A of C admits an injective resolution
C(A). We then note that, using one of the many variants of the theorem of bicomplexes,

H•(C(A), C(B)) = H•(Hom(C(A), C(B)))

is canonically isomorphic to

H•(Hom(A,C(B))) = Ext•(A,B).

The coboundary maps described above give coboundary maps of the Ext. Furthermore, the pairings
in Equation 2.2 give associative pairings here:

Ext•(A,B)× Ext•(B,C)→ Ext•(A,C) (2.3)

and these are compatible with the coboundary maps. In particular, Ext•(A,A) is an associative
graded unital ring, etc. (We can show in an analogous manner that the Ext functors behave like
derived functors of an arbitrary functor; we do not make use of this fact here).

In the case where the category in question is the category CO of O-modules on X, we then
obtain pairings

ExtpO(X;A ,B)× ExtqO(X;B,C )→ Extp+q
O (X;A ,C ) (2.4)
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that can be calculated as already described. The same method, but replacing the category of
abelian groups with the category of abelian sheaves on X, and the Hom functors by the Hom
functors, again defines pairings, having the same formal properties, and of a “local nature” this
time:

ExtpO(A ,B)× ExtqO(B,C )→ Extp+q
O (A ,C ). (2.5)

These can be understood by noting that the homomorphisms in Equation 1.8 are compatible
with the pairings between the Ext.

Finally, recall that we also have a multiplicative structure between functors Hp(X,A), namely
the cup product. We note then that the spectral sequences of Proposition 1 are compatible with the
multiplicative structures; more precisely, we have a pairing from the spectral sequence E(A,B) with
the spectral sequence E(B,C) to the spectral sequence E(A,C) that abuts to the pairing between
the global Ext, and whose initial page comes from the cup product and the local Ext pairings in the
right-hand side of Equation 1.4. It then follows, in particular, that the “boundary homomorphisms”

ExtnO(X;A ,B)→ H0(X;ExtnO(A ,B)) (2.6)

Hn(X,HomO(A ,B))→ ExtnO(X;A ,B) (2.7)

are compatible with the multiplicative structures. So, if we restrict to sheaves that are locally
isomorphic to some Om, then this completely explains the composition of the global Ext by means
of the cup product, taking into account the isomorphisms of Equation 1.5.

3. Results concerning local cohomology

Let A be a unital commutative ring endowed with an ideal J. We will define, for any A-module
M , functorial homomorphisms

ExtpA(A/J,M)→ HomA(∧pJ/J2,M ⊗A/J)
TorAp (A/J,M)← (∧pJ/J2)⊗HomA(A/J,M)

(3.1)

where the tensor and exterior products are taken over the ring A; note also that J/J2 is in fact
an A/J-module, and that its exterior powers as an A-module agree with its exterior powers as an
A/J-module. The definition of the homomorphisms in Equation 3.1 come from the definition, for
every system x = (x1, . . . , xp) of points of J, of homomorphisms φx given by

φx : ExtpA(A/J,M)→M ⊗A/J
φx : HomA(A/J,M)→ TorAp (A/J,M)

(3.2)

such that the following conditions are satisfied:

i. φx1,...,xp
depends on the system of the xi ∈ J in an alternating A-multilinear way;

ii. φx1,...,xp
is zero when any of the xi is in J2.
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In fact, (ii) follows from (i), since aφx = 0 for a ∈ J, as we see by noting that all the modules in
Equation 3.2 are annihilated by J.

To define the φx, we consider the complex Kx whose underlying A-modules are the ∧Ap, and
whose differential is the interior product ix by x, considered as a linear form on Ap with components
x1, . . . , xp. The differential is of degree −1, the degrees of the complex are positive, and the
cohomology of this complex in dimension 0 is A/(x1A+ . . .+xpA). Since the xi are in J, we obtain
an augmentation Kx,0 → A/J. Thus Kx is a free augmented complex, with augmentation module
A/J. We thus obtain known homomorphisms

Ext•A(H0(Kx),M)→ H•(HomA(Kx,M))

TorA• (H0(Kx),M)← H•(Kx ⊗M)

whence, by composing with the homomorphisms to the Ext and the Tor induced by the augmentation
homomorphism H0(Kx)→ A/J, we obtain homomorphisms

ψx : Ext•A(A/J,M)→ H•(HomA(Kx,M))

ψx : TorA• (A/J,M)← H•(Kx ⊗M).
(3.3)

But we immediately note that, in the maximal dimension p, the cohomology of the right-hand
side is M(x1M + . . .+ xpM) (resp. the set of elements of M that are annihilated by each of the
xi). Since the xi are in J, we thus obtain homomorphisms

Hp(HomA(Kx,M))→M ⊗A/J
Hp(Kx ⊗M)← HomA(A/J,M).

(3.4)

By composing the homomorphisms in Equation 3.3 and Equation 3.4 we obtain the homomor-
phisms in Equation 3.2 that we wanted to define. The verification of (i) is tedious, but does not
present any difficulties.

Proposition 4. Let A be a commutative unital ring, and let (x1, . . . , xp) be a sequence of elements of A
such that, for 1 ⩽ i ⩽ p, the image of xi in the quotient of A by the ideal generated by (x1, . . . , xi−1) is
not a zero divisor. Let J be the ideal generated by the xi. Then J/J2 is a free (A/J)-module, with basis
given by the canonical images of the xi; the complex Kx is a free resolution of A/J; and, for every A-modules
M , the homomorphisms in Equation 3.1 in dimension p are bijective. The same is true for the analogous
homomorphisms defined for arbitrary degree i as long as J ·M = 0.

(The essential point in Proposition 4, from which all others follow, is the acyclicity of Kx, which
is a well-known fact, under the conditions given).

Corollary 1. With A and J as in Proposition 4, suppose further that A is a regular affine algebra of dimn
over a perfect field k, and that A/J is a regular affine algebra. Denote by Ωi(A) and Ωi(A/J) the modules
of Kähler differentials. Then we have a canonical isomorphism

ExtpA(Ω
n−p(A/J),Ωn(A)) = A/J. (3.5)

which is compatible with localisation.

Proof. Indeed, Ωn−p(A/J) is a free (A/J)-module of rank 1, and, similarly, Ωn(A) is a free A-module
of rank n, and so the left-hand side is equal to

ExtpA(A/J, A)⊗ Ωn−p(A/J)′ ⊗ Ωn(A)
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(where the ′ notation denotes the dual (A/J)-module). The tensor product of these last two factors
can be identified with ∧p(J/J2), and so the whole thing can be identified with ExtpA(A/J,∧p(J/J2)),
and thus, by Proposition 4, with

HomA(∧pJ/J2,∧pJ/J2)

i.e. to A/J.

In particular, there is a distinguished element in ExtpA(Ω
n−p(A/J),Ωn(A)), corresponding to

the unit of A/J, called the fundamental class of the ideal J in A. (In fact, it can be defined under
rather more general conditions). We can write Corollary 1 in a more geometric and global form:

Corollary 2. Let X be a non-singular variety over an algebraically-closed field k, Y a closed non-singular
subvariety of X , OX the structure sheaf of X , and OY the structure sheaf of Y , considered as a quotient sheaf
of OX . Let n be the dimension of X , and n− p the dimension of Y . Let ΩX (resp. ΩY ) be the sheaf of germs
of regular differential forms on X (resp. Y ). Then we have canonical isomorphisms

ExtpOX
(Ωn−p

Y ,Ωn
X) = OY (3.6)

as well as

ExtpOX
(OY ,Ω

n
X) = Ωn−p

Y . (3.6 bis)

Equation 3.6 bis can serve as the definition of Ωn−p
Y when Y is a singular variety. More precisely:

Proposition 5. Let X be a non-singular algebraic variety of dimension n, and let Y be an algebraic subset
of dimension q = n− p of X . Let F be a coherent algebraic sheaf on X with support contained in Y , and
let L be a locally-free algebraic sheaf on X . Then the sheaves Ext iOX

(F ,L ) are zero for i < p, and, when
i = p, there is a canonical isomorphism

ExtpOX
(F ,L ) = HomOX

(F ,Extp(OX/J,L )) (3.7)

where J denotes an arbitrary sheaf of ideals on X that annihilates F and has Y as its set of zeros. In
particular, if F is a coherent algebraic sheaf on Y , then

ExtpOX
(F ,L ) = HomOY

(F ,Extp(OY ,L )). (3.7 bis)

Finally, with F still a coherent algebraic sheaf on Y , the sheaves E i = Extp+i
OX

(F ,Ωn
X) do not depend

on the choice of immersion of the algebraic space Y into the non-singular algebraic variety X .

Proof. Since the question is local, we can assume that X is affine and that L = OX . This then
reduces to a problem of commutative algebra, and, more specifically, of local algebra: if A is a
regular locality, and M an A-module whose support is of dimension ⩽ q = n − p, then we have
to prove that ExtiA(M,A) = 0 for i < p and that ExtpA(M,A) = HomA(M,Extp(A/J, A)), where
J is an arbitrary ideal of “dimension” ⩽ q that annihilates M . For the first claim, we proceed by
induction on q: an immediate dévissage leads to the case where M is of the form A/J, and thus leads,
by replacing J with a smaller ideal and using the induction hypothesis, as well as the exact sequence
of the Ext, to the case where J is generated by a “system of parameters”, as in Proposition 4,
where the result is immediate. The previous result implies that, if J is a fixed ideal of “dimension”
⩽ q, then the contravariant functor E(M) = ExtpA(M,A) to the category of (A/J)-modules is
left exact; furthermore, it sends direct sums to direct products, from which it easily follows that
E(M) = HomA(M,E(A)). Finally, the last claim of Proposition 5 is more subtle, and follows
from an intrinsic characterisation of the Ei(F ) via a local duality theorem which cannot be stated
here.
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Corollary. Denote by ωq
Y the sheaf ExtpOX

(OY ,Ω
n
X). Then there is a functorial isomorphism for coherent

algebraic sheaves F on Y :

ExtpOX
(F ,Ωn

X) = HomOX
(F , ωq

Y ). (3.8)

4. Cohomology class associated to a subvariety

In all that follows, X denotes an algebraic set of dimension n, defined over a field k which we
assume, for simplicity, to be algebraically closed. Except for in Chapter 6, we assume that X is
non-singular. We denote by OX the structure sheaf of X, and by Ω•X =

⋃
p Ω

p
X the sheaf of germs

of differential forms on X . If Y is a closed subset of X , then we identify coherent algebraic sheaves
on Y with coherent algebraic sheaves on X that are zero outside of Y ; we do this, in particular,
with OY and ΩY .

Lemma 1. Let F be a coherent algebraic sheaf on X whose support is of dimension ⩽ n− p, and let L be
a coherent algebraic sheaf on X that is locally free. Then Ext iOX

(X;F ,L ) is zero for i < p, and there is a
canonical isomorphism

ExtpO(X;F ,L ) = H0(X,ExtpO(F ,L )). (4.1)

If F is a coherent algebraic sheaf on a closed subset W of X of dimension ⩽ n − p, then we have a
canonical isomorphism

ExtpOX
(F ,L ) = HomOX

(F ⊗L ′ ⊗ Ωn
X , ω

n−p
Y ) (4.1 bis)

where ωn−p
Y is the sheaf on Y defined in the corollary to Proposition 5 (which can be identified with

Ωn−p
Y if Y is non-singular).

Proof. The formula in Equation 4.1 is an immediate consequence of the spectral sequence from
Proposition 1, as well as Proposition 5; by the formula in Equation 3.8, we can write

ExtpOX
(F ,L ) = L ⊗ (Ωn

X)′ ⊗ ExtOX
(F ,Ωn

X)

= L ⊗ (Ωn
X)′ ⊗HomOX

(F , ωq
Y )

= HomOX
(F ⊗L ′ ⊗ Ωn

X , ω
q
Y )

where q = n− p, whence the formula in Equation 4.1 bis.

Setting, in particular, F = OY and L = Ωp
X , we obtain (taking into account the fact that

Ωn
X ⊗ (Ωp

X)′ = Ωn−p
X ) a canonical isomorphism

ExtpOX
(X;OY ,Ω

p
X) = HomOX

(X; Ωn−p
X , ωn−p

Y ). (4.2)

Now suppose, for simplicity, that Y is non-singular, so that ωn−p
Y = Ωn−p

Y . There is a natural
homomorphism from Ωn−p

X to Ωn−p
Y , whence a canonical section sY of the sheaf ExtpOX

(OY ,Ω
p
X),

that we call, if all the components of Y are of dimension n− p, the fundamental section of the sheaf
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ExtpOX
(OY ,Ω

p
X). By Equation 4.1, this section defines an element of ExtpOX

(X;OY ,Ω
p
X). But the

natural homomorphism OX → OY defines a homomorphism

ExtpOX
(X;OY ,Ω

p
X)→ ExtpOX

(X;OX ,Ω
p
X) = Hp(X,Ωp

X).

We thus obtain an element of Hp(X,Ωp
X), denoted by PX(Y ), that we call the cohomology class of Y in

X ; it is induced by the section sY of ExtpOX
(OY ,Ω

p
X) by the following diagram of homomorphisms:

ExtpOX
(X;OY ,Ω

p
X)

∼−−−−→ H0(X,ExtpOX
(OY ,Ω

p
X))y

ExtpOX
(X;OX ,Ω

y
X)

= Hp(X,Ωp
X)

(4.3)

We define a non-singular cycle of dimension n− p to be any element of the free abelian group
generated by the non-singular irreducible subvarieties of dimension n− p in X . Then the function
Y 7→ P (Y ) can be extended to a homomorphism from the group of non-singular cycles of dimension
n− p on X to the group Hp(X,Ωp

X).
Let Zn−p and Z ′n−p

′
be non-singular cycles of dimension n− p and n− p′ (respectively); we say

that they intersect transversally if every component of Z intersects transversally with every component
of Z ′. Then the cycle Z · Z ′ is defined, and is a non-singular cycle of dimension n− p− p′. With
this, we have:

Theorem 1. If Zn−p and Z ′n−p
′

are non-singular cycles that intersect transversally, then

PX(Z · Z ′) = PX(Z) · PX(Z ′) (4.4)

where the product on the right-hand side is the cup product:

Hp(X,Ωp
X)×Hp′

(X,Ωp′

X)→ Hp+p′
(X,Ωp+p′

X ).

(We assume that X is isomorphic to a locally closed subset of a projective space).

Proof. To prove Theorem 1, we can assume that Z and Z ′ are irreducible non-singular subvarieties
Y and Y ′ that intersect transversally. Let L• be a left resolution of OY by locally-free sheaves; then,
by Proposition 3, the diagram of homomorphisms in Equation 4.3 can be identified with the diagram

(RpΓ)
(
HomOX

(L•,Ω
p
X)
) β−−−−→ Γ

(
Hp
(
HomOX

(L•,Ω
p
X)
))

α

y .

(Rp Γ)(Ωp
X)

where β is an isomorphism, and where Γ is the “group of sections” functor on the category of abelian
sheaves on X, RpΓ is its hypercohomology in dimension p, and Rp Γ is its p-th derived functor.
For simplicity, we assume that L0 = OX , and that the augmentation L0 → OY is the natural
homomorphism (which we can indeed safely assume); then α is induced by the homomorphism of
complexes OX → L (with OX being thought of as a complex concentrated in degree 0), taking into
account the fact that RpΓ(K ) = Rp Γ(K0) if K is a complex of sheaves concentrated in degree 0.
The homomorphism β is a well-known “boundary map”. Consider an analogous diagram, relative
to a locally-free resolution L ′• of OY , and consider the commutative diagram of pairings:

9
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Rp Γ(Ωp
X) ←−−−−−− RpΓ

(
HomOX

(L•,Ω
p
X)

) ∼−−−−−−→ Γ
(
Hp

(
HomOX

(L•,Ω
p
X)

))

× × ×

Rp′ Γ(Ωp′
X ) ←−−−−−− Rp′Γ

(
HomOX

(L ′
•,Ω

p′
X )

) ∼−−−−−−→ Γ
(
Hp′ (HomOX

(L ′
•,Ω

p′
X )

))
y y y

Rp+p′ Γ(Ωp+p′
X ) ←−−−−−− Rp+p′Γ

(
HomOX

(L• ⊗L ′
•,Ω

p+p′
X )

) ∼−−−−−−→ Γ
(
Hp+p′ (HomOX

(L• ⊗L ′
•,Ω

p+p′
X )

))

(4.5)

The pairings in the two columns on the right are induced by the pairing of complexes of sheaves

HomOX
(L•,Ω

p
X)×HomOX

(L ′•,Ω
p′

X)→HomOX
(L• ⊗L ′,Ωp+p′

X )

that we define by using the exterior product Ωp
X × Ωp′

X → Ωp+p′

X ; the pairing in the first column
is the cup product (relative to the exterior product). I claim that the last line of Equation 4.5 can
be identified with the diagram of isomorphisms analogous to Equation 4.3, where Y is replaced
by Y ∩ Y ′ and p by p + p′. For this, it suffices to show that L ⊗ L ′ is a resolution (evidently
locally-free) of OY ∩Y ′ . But then

H0(L ⊗L ′) = OY ⊗OY ′ = OY ∩Y ′

and

Hi(L ⊗L ′) = TorOX
i (OY ,OY ′) = 0

for i > 0, from the fact that Y and Y ′ intersect transversally. Then Theorem 1 follows from the
formula:

sY · sY ′ = sY ·Y ′ (4.6)

(where the product on the left-hand side is that from the last column of Equation 4.5). This
formula in Equation 4.6, which is of a purely local nature, can easily be proven by taking L• and
L ′• to be the resolutions described in Proposition 4. We can similarly prove (even more easily) that
Z 7→ PX(Z) is compatible with the cartesian product:

PX×X′(Z × Z ′) = PX(Z)⊗ PX′(Z ′) (4.7)

(a formula which holds true if Z (resp. Z ′) is a non-singular cycle on the non-singular variety X
(resp. X ′), with Z × Z ′ being thought of as a non-singular cycle on X ×X ′). From Equation 4.4
and Equation 4.7, it follows that PX(Z) is also compatible with the operation given by taking the
“inverse image” under a morphism f : X → X ′ of non-singular varieties:

PX(f−1(Z ′)) = f∗(PX′(Z)) (4.8)

a formula which holds true if Z is a non-singular cycle on X ′ such that f is “transversal” to Z,
i.e. such that the graph of f is transversal to the cycle X × Z ′ in X ×X ′.

10
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5. The duality theorem

The last hypothesis in Theorem 1 is used only to be able to conclude that every coherent
algebraic sheaf on X is a quotient of a locally-free coherent algebraic sheaf (Serre) and thus admits
a left resolution by locally-free sheaves.

Corollary 1. Let X and X ′ be non-singular varieties that are locally-closed in a projective space, and suppose
that X ′ is complete. Let U be a non-singular cycle on X ×X ′, and let a and b be points of X ′ such that U
intersects transversally with the cycles X × (a) and X × (b). Let Z and Z ′ be non-singular cycles on X such
that Z × (a) = (X × (a)) · U and Z × (b) = (X × (b)) · U . Then

PX(Z) = PX(Z ′).

Proof. Let fa : X → X × X ′ be defined by fa(x) = (x, a). Then, by Equation 4.8, we have
P (Z) = f∗a (P (U)); similarly, P (Z ′) = f∗b (P (U)). But then, using the Künneth formula

H•(X ×X ′,Ω•X×X′) = H•(X,Ω•X)⊗H•(X ′,Ω•X′)

and the fact that H0(X ′,ΩX′) is simply the scalars, we easily see that f∗a = f∗b , whence the result.

For all x ∈ X , (x) is a non-singular subvariety ofX of codimension n, and thus defines an element
εx of Hn(X,Ωn

X). If X is a non-singular projective variety, then it follows from Corollary 1 that εx
does not depend on the chosen point x, and we thus denote it by εX and call it the fundamental
class of Hn(X,Ωn

X).

Remark. To have a satisfying theory, we must define PX(Z) for arbitrary cycles Z, and prove
Theorem 1 for proper intersections of cycles. (At the time of writing this talk, this has still not been
done in full generality). Assuming that we have done this, Corollary 1 becomes the following: if Z
and Z ′ are two algebraically-equivalent cycles, then PX(Z) = PX(Z ′) (a claim which does not seem to
follow from the above, even if Z and Z ′ are non-singular).

Remark. [Comp.] As I pointed out in my conference at the international Congress of Mathematicians
in 1958 (Grothendieck, A. “The cohomology theory of abstract algebraic varieties”, in Proceedings of
the international Congress of Mathematicians [1958, Edinburgh], Cambridge University Press (1960),
103–118.), the questions raised here are now completely resolved.

The reader will find more information on the duality of coherent sheaves in loc. cit., pp.112–115,
as well as in [GD1960, III.2], and in [Gro1960b]. A more systematic treatment can be found in a
later chapter of [GD1960] (Chapter IX in the provisional plan).

5. The duality theorem

In this section, X denotes a non-singular projective variety of dimension n.

Theorem 2. The fundamental class εX of Hn(X,Ωn
X) is a basis of this vector space.

Proof. The proof of this statement will be given later on.

11
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With the above theorem, we can thus identify Hn(X,Ωn
X) with the field k.

We now consider the pairings described in Chapter 2, which give, in particular, a pairing

ExtpOX
(X;OX ,F )× Extn−pOX

(X;F ,Ωn
X)→ ExtnOX

(X;OX ,Ω
n
X)

i.e.

Hp(X,F )× Extn−pOX
(X;F ,Ωn

X)→ Hn(X,Ωn
X). (5.1)

Taking Theorem 2 into account, this pairing defines a homomorphism

Extn−pOX
(X;F ,Ωn

X)→ (Hp(X,F ))′. (5.2)

This homomorphism is functorial in F , and commutes with the coboundary maps relative to
the exact sequences 0→ F ′ → F → F ′′ → 0.

Theorem 3. The homomorphism in Equation 5.2 is an isomorphism.

In particular, we recover the following result of Serre:

Corollary. Let E be an algebraic vector bundle on X , and OX(E) the sheaf of germs of regular sections of
X . Then we have canonical isomorphisms ( [Trans.] This equation is labelled (5.3) in the original copy
of the notes, but this seems to be a typo, since a later equation shares the same number, and any
references to (5.3) seem to indeed point to the later equation instead of this one.)

(Hp(X,OX(E)))′ = Hn−p(X,Ωn
X ⊗OX(E′)).

Proof. It suffices to apply Theorem 3 and Corollary 1 of Proposition 1.

Theorem 2 and Theorem 3 will follow from the following claim:

Statement D. The homomorphism
Extn−pOX

(X;F ,Ωn
X)→ (Hp(X,F ))′ ⊗L (5.2 bis)

(where L = Hn(X,Ωn
X)) induced by the pairing in Equation 5.1 is an isomorphism.

We will show that Statement D implies Theorem 2. Let kx = O(x) be the structure sheaf of the
variety consisting of a single point x ∈ X, and consider the canonical homomorphism OX → kx,
and the associated homomorphism

H0(X,OX)→ H0(X, kx). (5.3)

Its transpose can be identified with the homomorphism

ExtnOX
(X; kx,Ω

n
X)⊗L ′ → ExtnOX

(X;OX ,Ω
n
X)⊗L ′ (5.4)

induced by the homomorphism between the Extn associated to OX → kx, i.e.

ExtnOX
(X; kx,Ω

n
X)→ ExtnOX

(X;OX ,Ω
n
X) (5.5)

Since Equation 5.3 is an isomorphism, so too is Equation 5.4, and thus so too is Equation 5.5.
Since s(x) is a basis of ExtnOX

(X; kx,Ω
n
X) by Equation 4.2, it indeed follows that its image εX is a

basis of Hn(X,Ωn
X).

It remains only to prove Statement D, which will follow in a purely formal way from some
elementary facts summarised in the following lemmas. Here we suppose that X is a closed subset
(singular or not) of the projective space P of dimension r. We use the notation OP(m) to denote the
sheaf on P denoted by O(m) in [Ser1955], and the notation OX(m) for the analogous sheaf on X .

Lemma 2. The statement of Statement D is true if X = P and F = OP(m).
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Proof. This lemma can be proved by a direct calculation. The explicit calculation of the Hi(P,OP(m))
can be found in [Ser1955], but it also can be done in a simpler way. Computing the cup product
Hi(P,OP(m)) × Hj(P,OP(m)′) → Hi+j(P,OP(m + m′)) (which is necessary to calculate the
pairing in Equation 5.1) does not present any difficulty.

Lemma 3. Every coherent algebraic sheaf F onX is isomorphic to a sheaf that is some quotient of OX(−m)k,
and we can take m to be as large as we wish.

Proof. This follows from the fact that F ⊗OX(m) is “generated by its sections” for large enough m;
see [Ser1955].

Lemma 4. Let i > 0. Then Hr−i(P,OP(−m)) = 0 for large enough m; and, for every coherent algebra
sheaf B on X , we have that ExtiOX

(X;OX(−m),B) = 0 for large enough m.

Proof. The first claim follows from the explicit calculations mentioned above; for the second, we
note that we have an isomorphism

ExtiOX
(X;OX(−m),B) = Hi(X,B ⊗O(m))

(by Corollary 1 of Proposition 1), whence the conclusion, by a well-known result of [Ser1955].

Combining the previous two lemmas, we find:

Corollary. Let i > 0. Then the functor F 7→ Hr−i(P,F ) on the category of coherent algebraic sheaves on
P is coeffaceable, and so too is the functor ExtiOX

(X;F ,B) on the category of coherent algebraic sheaves on
X .

Lemma 5. Let A and B be coherent algebraic sheaves on X , and let A (m) = A ⊗OX(m). Then, for
large enough m, the canonical homomorphism

ExtiOX
(X;A (−m),B)→ H0(X,Ext iOX

(A (−m),B)) = H0(X,Ext iOX
(A ,B)(m))

is an isomorphism.

Proof. This follows immediately from the spectral sequence in Proposition 1 applied to A (−m) and
B, since we then have that

Ep,q
2 (A (−m),B) = Hp(X,ExtqOX

(A (−m),B)) = Hp(X,ExtqOX
(A ,B)(m))

which is zero for p > 0 and large enough m.

We now prove Statement D in the case where X = P. We will first prove that Equation 5.2 bis is
an isomorphism for p = n; since both sides are then left-exact functors (since Hr+i(P,F ) = 0), it
follows from Lemma 3 that it suffices to prove the claim for F = OP(−m), but this is covered by
Lemma 2. Since the homomorphisms in Equation 5.2 bis are functorial and compatible with the
coboundary maps, and since, for p < n, both sides of Equation 5.2 bis are coeffaceable functors in
F (the corollary to Lemmas 3 and 4), it follows, by a standard argument, that Equation 5.2 bis is
an isomorphism for all p. This proves the duality theorem for the projective space.
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Now suppose that X is arbitrary, but non-singular. By the duality theorem for P, we have an
isomorphism

Hn(X,F ) = Hn(P,F )′ = Extr−nOP
(P;F ,Ωr

P).

By Lemma 1, the far-right-hand side can be identified with

HomOP
(P;F , ωn

X) = HomOX
(X;F ,Ωn

X) = Ext0OX
(X;F ,Ωn

X)

whence we have an isomorphism

Hn(X,F )′ = HomOX
(X;F ,Ωn

X) = Ext0OX
(X;F ,Ωn

X). (5.6)

Taking F = Ωn
X , we obtain an isomorphism

η : Hn(X,Ωn
X)

∼−→ k. (5.7)

We can prove that the isomorphism in Equation 5.6 is exactly Equation 5.2 bis with p = n and
L = k, by Equation 5.7. Subsequently, Equation 5.2 bis is an isomorphism for p = n. To prove that
it is an isomorphism for all p, it again suffices to prove that, for p < n, the two sides of Equation 5.2
bis are coeffaceable functors in F , and, a fortiori (taking Lemma 3 into account), that the two sides
are zero when we take F = OX(−m) with large enough m. But, for the left-hand side, this is true
by Lemma 4, and for the right-hand side we can write, using the duality theorem for P,

Hp(X,OX(−m))′ = Extr−pOP
(P;OX(−m),Ωr

P).

The right-hand side is zero for p < n and large enough m, as follows from Lemma 5 (where in fact
X = P) and from the fact that OX is of cohomological dimension ⩽ r − n when thought of as a
coherent algebraic sheaf on P (since X is non-singular), whence

Extr−pOP
(OX ,Ω

r
P) = 0 for p < n.

6. The duality theorem for singular varieties

Let X be a closed subset of dimension n of the projective space P of dimension r. Equation 5.6
can then be written as

Hn(X,F )′ ≃ HomOX
(X;F , ωn

X) = Ext0OX
(X;F , ωn

X) (6.1)

where we set ([Trans.] This equation is labelled (6.2) in the original, but this seems to be a typo, since a
later equation shares the same number, and any references to (6.2) seem to indeed point to the later equation
instead of this one.)

ωn
X = E0(OX) = Extr−nOP

(OX ,Ω
r
P).

As mentioned in Proposition 5, the sheaf thus defined does not depend on the chosen immersion of
X into the non-singular variety P. Taking F = ωn

X in Equation 6.1, we find that

Hn(X,ωn
X)′ ≃ HomOX

(X;ωn
X , ω

n
X) (6.2)

14



FGA 1
6. The duality theorem for singular varieties

whence the existence of a distinguished element in Hn(X,ωn
X), corresponding to the identity

morphism from ωn
X to itself:

η : Hn(X,Ωn
X)→ k. (6.3)

Then consider the pairings defined by the composition of the Ext:

Hp(X,F )× Extn−pOX
(X;F , ωn

X)→ Hn(X,ωn
X) (6.4)

and compose them with the homomorphism η in Equation 6.3; we thus obtain functorial
homomorphisms

Extn−pOX
(X;F , ωn

X)→ Hp(X,F )′ (6.5)

which are compatible with the boundary maps (generalising Equation 5.2). We can prove that,
for p = n, we thus obtain the isomorphism in Equation 6.1. With this, we have:

Theorem 3 bis. For any given integer k ⩾ 0, the four following conditions on X are equivalent:

i. The functorial homomorphism in Equation 6.5 is an isomorphism for n− k ⩽ p ⩽ n.

ii. Hp(X,OX(−m)) = 0 for n− k ⩽ p < n and large enough m.

iii. The functor Hp(X,F ) on the category of coherent algebraic sheaves on X is coeffaceable for n− k ⩽
p < n.

iv. Ei(OX) = Extr−n+i
OP

(OX , ω
r
P) = 0 for 0 < i ⩽ k.

Proof. (i) =⇒ (ii) by Lemma 4; (ii) =⇒ (iii) by Lemma 3; (iii) =⇒ (i) by a well-known standard
argument, taking into account the fact that the two sides of Equation 6.5 are then coeffaceable
functors for n− k ⩽ p < n (the first being so by Lemma 4); finally, (ii)⇐⇒ (iv) follows from the
corollary to Proposition 6.

Proposition 6. Let F be a coherent algebraic sheaf on X , and let i be an integer. Then, for large enough m,
we have an isomorphism

Hi(X,F (−m))′ ≃ H0(X,En−i(F )(m)) (6.6)

where we set

Ej(F ) = Extr−n+j
OP

(F ,Ωr
P) (6.7)

(compare with Proposition 5 in Chapter 3).

Proof. Indeed, by the duality theorem for P, the left-hand side of Equation 6.6 is isomorphic to
Extr−iOP

(P;F (−m),Ωr
P), and so Equation 6.6 follows from Lemma 5.

Corollary. For Hi(X,F (−m)) to be zero for large enough m, it is necessary and sufficient that En−i(F )
be zero.
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Recall that the Ej(F ) do not depend on the projective immersion in question. The condition of
the corollary is purely local, and so, if it is satisfied for F , then it is also satisfied for every sheaf
that is locally isomorphic to some Fn. In particular, if this condition is satisfied for OX , then it is
satisfied for every locally-free coherent algebraic sheaf. This is the case, for example, for all i < n if
X is non-singular; and for i = 0 if no component of X consists of a single point; and for i = 0, 1 if S
is normal and all its components are of dimension > 1 (see [Ser1955]). For it to be satisfied for i < k,
it is necessary and sufficient, by definition, that the local rings Ox (for x ∈ X) be of “homological
codimension ⩾ k” (see [Ser1956a] for details on this notion). If k = n, then this implies, by Theorem
3 bis, that the duality theorem is true for X, i.e. that Equation 6.5 is an isomorphism for all p and
for all F . We can give many equivalent conditions on the local rings Ox for this to be the case
(Nagata); for example, those that satisfy the Cohen-Macaulay equidimensionality theorem. It is also
the case, for example, if X is locally a “complete intersection” in a non-singular ambient variety.

7. Poincaré duality

Let X be a non-singular projective variety of dimension n. Then H•(X) = H•(X,Ω•X) is
a finite-dimensional bigraded anticommutative algebra, that we grade by the total degree, so
that Hp,q(X) = Hp(X,Ωq

X) is of degree p + q; the degrees of H•(X) are concentrated between
0 and 2n. By Theorem 2 and the corollary to Theorem 3, H•(X) is a “Poincaré algebra” of
dimension 2n, i.e. H2n(X) is endowed with an isomorphism to the base field k, and the product
Hm(X) × H2n−m(X) → H2n(X) = k is a duality between Hm(X) and H2n−m(X). Furthermore,
if Y is another non-singular projective variety, then the Künneth formula for coherent algebraic
sheaves gives

H•(X × Y ) = H•(X)⊗H•(Y ) (7.1)

which is an isomorphism that is compatible with the Poincaré algebra structures. Furthermore,
H•(X) is, as a commutative algebra, a covariant functor in X , since a morphism f : Y → X defines,
in an evident way, a homomorphism of graded algebras

f∗ : H•(X)→ H•(Y ). (7.2)

Since we are working with Poincaré algebras, we obtain, by transposition, a homomorphism of
vector spaces

f∗ : H•(Y )→ H•(X). (7.3)

We have seen in Chapter 4 that the effect of f∗ on cohomology classes that correspond to non-
singular cycles can be interpreted geometrically by taking the cohomology classes that correspond
to their inverse images. It is important, in our current study, to show that Equation 7.3 corresponds
similarly to the “direct image” operation on cycles. This follows (under suitable non-singularity
conditions, at least) from the following particular case:

Theorem 4. If f is the identity map from a non-singular subvariety Y m of Xn to Xn, then, denoting by
1Y the unit element of H(Y ), we have

f∗(1Y ) = PX(Y ) (7.4)

where the right-hand side is the cohomology class in X associated to Y .
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Proof. We consider, by Theorem 3, the transpose of the homomorphism

Hm(X,Ωm
X)→ Hm(Y,Ωm

Y ) = Hm(X,Ωm
Y )

as the homomorphism

Extn−mOX
(X; Ωm

Y ,Ω
n
X)

∼−−−−→ HomOX
(X; Ωm

Y ,Ω
m
Y )y

Hn−m(X,Ωn−m
X )

∼−−−−→ Extn−mOX
(X; Ωm

X ,Ω
n
X)

(7.5)

We can verify that the element 1Y of the dual of Hm(Y,Ωm
Y ) is identified with the element of the

right-hand side corresponding to the identity endomorphism of Ωm
Y , and also that the image of this

element in Hn−m(X,Ωn−m
X ) is indeed PX(Y ).

Equation 7.4 in Theorem 4 is equivalent to

⟨ξm,m, PX(Y )⟩εY = f∗(ξ
m,m) where ξm,m ∈ Hm(X,Ωm

X) (7.4 bis)

where εY is the fundamental element of Hm(Y,Ωm
Y ), and this, in the case of non-singular

projective varieties, gives a new definition of the cohomology class associated to Y .
These relations (which could have been given in Chapter 4) can be stated, and are indeed true,

for arbitrary non-singular varieties, with the second, for example, following from the commutativity
of the following diagram of canonical endomorphisms:

Extn−m
OX

(X; Ωm
X ,Ωn

X) ←−−−−− Extn−m
OX

(X; Ωm
Y ,Ωn

X)
∼−−−−−→ HomOX

(X; Ωm
Y ,Ωm

Y )y y
Extn−m

OX
(X;OX ,Ωn−m

X ) ←−−−−− Extn−m
OX

(X;OY ,Ωn−m
X )

∼−−−−−→ HomOX
(X; Ωm

X ,Ωm
Y )

(7.6)

We thus obtain an exact equivalent of the formalism of Poincaré duality for compact oriented
varieties. In particular, Theorem 4 allows us to determine the cohomology class associated to the
diagonal of X ×X . By a well-known argument, we thus deduce, for example, a Lefschetz formula:

Theorem 5. Let f be an endomorphism of a non-singular projective variety X such that the fixed points of
f are of multiplicity 1. Then the number of these fixed points is congruent, modulo the characteristic of k, to
the alternating sum of the traces of the endomorphisms of the Hi(X) defined by f .

The restriction on f that we have to make is related to the difficulties mentioned in the remark
in Chapter 4. We note, however, that the Lefschetz formula still holds true if f is “homotopic” to an
endomorphism whose fixed points are all of multiplicity 1.

8. Generalisation of the duality theorem

Let X be a non-singular algebraic variety such that every coherent algebraic sheaf F on X is
isomorphic to a locally-free coherent algebraic sheaf (which is the case if X is locally closed in
some projective space). Then every coherent algebraic sheaf F on X admits a finite resolution L
by locally-free sheaves, and, for any two such resolutions, we can always find a third, along with

17



FGA 1
8. Generalisation of the duality theorem

homomorphisms, from it to the first two, that are compatible with the augmentations. Similarly, if L
is a finite locally-free resolution of F , and if we have a homomorphism F ′ → F , then there exists a
finite locally-free resolution L ′ of F ′ along with a homomorphism L ′ → L that is compatible with
F ′ → F , that we can even assume to be surjective if F ′ → F is surjective. This allows us to define,
given integers r, s ⩾ 0, two cohomological multifunctors, with arguments A1, . . . ,Ar;B1, . . . ,Bs

in the category of coherent algebraic sheaves on X; one takes values in the category of coherent
algebraic sheaves on X, and the other in the category of modules over H0(X,OX).

We define them by the formulas

T s•
r (A1, . . . ,Ar;B1, . . . ,Bs)

= H•(HomOX
(L(A1)⊗ . . .⊗ L(Ar), L(B1)⊗ . . .⊗ L(Bs))),

T s•
r (A1, . . . ,Ar;B1, . . . ,Bs)

= R•Γ(HomOX
(L(A1)⊗ . . .⊗ L(Ar), L(B1)⊗ . . .⊗ L(Bs)))

(8.1)

where L(F ) denotes a finite locally-free resolution of the coherent algebraic sheaf F , and
R•Γ(K ) denotes the hypercohomology of the space X with respect to the complex of sheaves K . If
r (resp. s) is zero, then we replace the tensor product of the L(Ai) (resp. of the L(Bj)) by OX . In
particular, T 0

0 and T 0
0 are graded functors with no arguments: T 0

0 is concentrated in degree 0, where
it is the sheaf OX ; and T 0

0 is equal to H•(X,OX). The fact that the right-hand sides of Equation 8.1
do not depend on the chosen resolutions is evident for T (since the question is then local), and
for T it follows from preceding general remarks, taking into account the spectral sequence for the
hypercohomology of the complex of sheaves K = HomOX

(L(A1)⊗ . . . , L(B1)⊗ . . .) that abuts
to the hypercohomology of X with respect to K , and whose initial page is Hp(X,Hq(K )), i.e.

Ep,q
2 = Hp(X, (T s

r)
(q)(A1, . . . ,Ar;B1, . . . ,Bs)). (8.2)

We then see that this spectral sequence itself does not depend on the chosen resolutions, and its
abutment is the left-hand side of Equation 8.1. We can easily define the coboundary maps relative
to miscellaneous arguments Ai,Bj by noting that every exact sequence 0→ F ′ → F → F ′′ → 0
can be resolved by an exact sequence of finite locally-free complexes.

We define, on the system of functors T s•
r (resp. T s•

r ), operations that are analogous to those of
tensor calculus, and whose definitions are immediate from the defining formulas in Equation 8.1.
We thus have a composition (generalising that described in Chapter 2):

T s•
r (A1, . . . ,Ar;B1, . . . ,Bs)× T s′•

r′ (A ′1 , . . . ,A
′
r′ ;B

′
1, . . . ,B

′
s′)

→ T
(s+s′)•
r+r′ (A1, . . . ,Ar,A

′
1 , . . . ,A

′
r′ ;B1, . . . ,Bs,B

′
1, . . . ,B

′
s′)

(8.3)

that satisfies the evident properties of associativity, compatibility with the functorial homomor-
phisms and the coboundary homomorphisms, and spectral sequences. Similarly, we have symmetry
operations, whose explicit descriptions we leave to the reader.

We further have a contraction operation every time one of the arguments Ai is equal to one of
the arguments Bj :

T s•
r (A1, . . . ,Ai−1,C ,Ai+1, . . . ,Ar;B1, . . . ,Bj−1,C ,Bj+1, . . . ,Bs)

→ −T (s−1)•
r−1 (A1, . . . , Âi, . . . ,Ar;B1, . . . , B̂j , . . . ,Bs).

(8.4)

Furthermore, if some argument Ai is a locally-free sheaf, then we can suppress it by replacing
one of the Aj (for j ̸= i) by Aj⊗Ai, or one of the Bk by Bk⊗A ′i (where A ′i = HomOX

(Ai,OX));
we have an analogous rule for the case where one of the arguments Bj is locally free. In particular,
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we can always suppress any argument that is equal to OX . If all the arguments are locally free,
except for at most one of the arguments Bi, then the rule that we have just stated gives a functorial
isomorphism

T s•
r (A1, . . . ,Ar;B1, . . . ,Bs) = H•(X,A ′1 ⊗ . . .⊗A ′r ⊗B1 ⊗Bs) (8.5)

(since we can restrict to the case where r = 0 and s = 1, and there it is immediate; we can also
directly use the spectral sequence whose initial term is Equation 8.2). The corresponding operations
of all the above can also be defined for the T s

r. The relations between the various operations thus
introduced are the same as for the analogous relations in tensor calculus.

Now let n be the dimension of X . By successively applying a tensor composition Equation 8.3
and contractions Equation 8.4 on repeated arguments, we obtain a pairing

(T s
r )

p(A1, . . . ;B1, . . .)× (T s
r )

n−p(B1, . . . ;A1, . . . ,Ar ⊗ Ωn
X)

→ Hn(X,Ωn
X).

(8.6)

Theorem 6. If X is a non-singular projective variety, then the pairings in Equation 8.6 are dualities.

Proof. This follows in a purely formal way from the corollary of Theorem 3. In fact, it easily follows
from this corollary that, if K is a complex of locally-free coherent algebraic sheaves, then the
hypercohomology of X with respect to K is in duality with the hypercohomology of X with respect
to K ′ ⊗ Ωn

X via the natural pairings

RpΓ(K )× Rn−pΓ(K ′ ⊗ Ωn
X)→ RnΓ(Ωn

X) = Hn(X,Ωn
X). (8.7)

We can see this by using the spectral sequence with initial page Hp(Hq(X,K )) and the analogous
spectral sequence for K ′⊗Ωn

X . From the above result, Theorem 6 can be deduced from the definition
Equation 8.1.

Remarks.

1. For the definitions preceding Theorem 6, it was not necessary for X to be non-singular, since
it was not necessary to work with only finite resolutions. But, if X is singular, then we can
no long be sure, a priori, that the (T s

r)
p(A1, . . . ;B1, . . .) are coherent sheaves, since, in the

complex of sheaves

HomOX
(L(A1)⊗ . . . , L(B1)⊗ . . .)

there will be an infinite number of components of any given total degree.

2. We can easily verify that, in the formulas in Equation 8.1, we can replace one of the L(Bi)
with Bi. Taking Proposition 3 into account, this shows that we have

T 1•
1 (A ;B) = Ext•OX

(A ,B)

T 1•
1 (A ;B) = Ext•OX

(X;A ,B).
(8.8)

In particular, taking r = s = 1 and A1 = OX in Equation 8.6, we recover Theorem 3.
Equation 8.8 also implies that T 1•

0 (B) = H•(X,B), and that T 0•
1 (A ) = Ext•OX

(X;A ,OX).
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3. We see, in Equation 8.1, that the functors T s•
r and T s•

r have, in general, components in positive
and negative degrees. Using the above remark, we see that, if the dimension of X is n, then
the non-zero components of T s•

r are concentrated between degrees −(s− 1)n and rn if s > 0,
and between degrees 0 and rn if s = 0; the non-zero components of T s•

r are concentrated
between degrees −(s− 1)n and (r+1)n if s > 0, and between degrees 0 and (r+1)n if s = 0
(and, unless I am mistaken, if r > 0, between degrees −(s− 1)n and rn, resp. 0 and rn).
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FGA 2

Formal geometry and algebraic geometry

A. Grothendieck. “Géométrie formelle et géométrie algébrique”. Séminaire Bourbaki 11 (1958–59),
Talk no. 182. http://www.numdam.org/book-part/SB_1958-1960__5__193_0/

The substance of Chapter 1 to Chapter 5 is contained in the published part of [GD1960, III]; that
of Chapter 6 and Chapter 7 is contained in [Gro1960b, III]. For the study of the fundamental group,
see [Gro1960b, V, IX, X, and XI], as well as [Gro1960b, X, XII, and XIII] for the Lefschetz-type
theorems and numerous open questions. Only the theory of moderately ramified coverings (cf.
Theorem 14) has not yet been the subject of a dedicated talk. The corollary to Theorem 14, which
completely determines Galois coverings of order coprime to the characteristic of an algebraic curve
over an algebraically closed field, has been used in an essential manner on three separate occasions:

1. in the proof by Igusa of the Picard inequality for non-singular projective surfaces in arbitrary
characteristic;

2. in the study (developed independently by Ogg and Šafarevič) of the group of homogeneous
principal bundles over an abelian variety defined over a function field in one variable, in
arbitrary characteristic; and

3. in the recent proof, by Artin, of certain key theorems concerning the “Weil cohomology” of
algebraic varieties.

1. Schemes

We know that an affine algebraic space defined over a field k is essentially determined by its affine
algebra A (the ring of regular functions defined over k), and the morphisms X → Y of algebraic
spaces correspond bijectively to homomorphisms A(Y )→ A(X) of k-algebras. The affine algebra
corresponding to an algebraic space is a k-algebra of finite type, and, from the “classical” point of
view, it has no nilpotent elements; conversely, every such algebra is obtained as the affine algebra
of an algebraic space defined over k. There is thus a known dictionary that allows us to interpret
situations concerning affine algebraic spaces in terms of commutative algebra. We have long since
noted that we thus obtain more general statements, since it was not generally necessary to suppose
that the rings in play were of the form just described, with the Noetherian hypothesis being sufficient
the most of the time. In particular, whether or not a base field were given, it was not necessary
to exclude the case where these rings contained nilpotent elements. Up until now, geometers had
refused to take into account this information, and were obstinate in restricting to the consideration
of affine algebra without nilpotent elements, i.e. algebraic spaces in whose structure sheaves there
are no nilpotent elements (and even, most of the time, “absolutely irreducible” algebraic spaces).
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The speaker thinks that this state of mind has been a serious obstacle to the development of truly
natural methods in algebraic geometry.

Let A be a commutative ring. It is well known that the set X = Spec(A) of prime ideals of A
is endowed with a natural topology: the “Zariski topology”, or the spectral topology. Also, there is
a sheaf of commutative rings OX on X, whose fibre at p ∈ X is the localised ring Ap, and whose
ring of sections can be identified with A. Thus X becomes a ringed space, and is called the prime
spectrum of A. A ring homomorphism f : A→ B defines a morphism f ′ : Spec(B)→ Spec(A) of
ringed spaces, with the underlying map of sets being exactly p 7→ f−1(p). The homomorphisms
Spec(B) → Spec(A) of ringed spaces obtained in this manner are exactly those for which the
homomorphisms Ox → Oy (where x = f ′(y)) are local (i.e. the inverse image of a maximal ideal is
a maximal ideal).

We define an affine scheme to be a ringed space that is isomorphic to some Spec(A), and a
prescheme to be a locally-affine ringed space, i.e. such that every point has an open neighbourhood
that is an affine scheme for the induced structure. We define, in an evident way, morphisms of
preschemes; locally, they correspond to ring homomorphisms.

When we fix a prescheme S, and we look at morphisms X → S of preschemes, then S plays the
role of a base field or base ring (or, even better, of a base space in a fibration). We then say that X
is an S-prescheme; if S = Spec(A), then this also implies that OX is a sheaf of A-algebras. So every
prescheme can be regarded in a unique way as a Z-prescheme. Of course, S-preschemes form a
category, and we can further show that, in this category, the product of two objects X and Y always
exists; it is denoted by X ×S Y . This notion of product allows us to define the change of base of
an S-prescheme, corresponding to a morphism S′ → S, since X ×S S

′ can be considered as an
S′-prescheme.

We say that X is separated over S if the diagonal of X ×S X is closed. We define a scheme to be
a prescheme that is separated over Z; it is then separated over anything. For simplicity, we will now
only speak of schemes, which we will further suppose to be Noetherian, i.e. finite unions of affine
opens that are spectra of Noetherian rings. We say that X is of finite type over S if, for every affine
open subset U of S, its inverse image in X is a finite union of affine opens whose rings are algebras
of finite type over the ring of U . It is such S-schemes that lend themselves to a properly geometry
study. In particular, for every s ∈ S, the fibre f−1(s) of X over s is an algebraic scheme over the
residue field k(s) of the local ring Os of s in S. Thus X can be, to a certain extent, considered as a
family of “algebraic spaces” f−1(s), with the parameter s running over S (i.e., from the local point
of view, the set of prime ideals of a given ring). Of course, the k(s) can have different characteristics.
If S = Spec(k), where k is a field, then we essentially recover the usual notion of “algebraic space”,
with the only difference being that now the structure sheaf can have nilpotent elements.

Inspired by well-known ideas, we can define the notion of a projective morphism, and, more
generally, of a proper morphism. Such a morphism is of finite type, and further sends closed subsets
to closed subsets, and retains this property under an arbitrary change of base.

With X being a (Noetherian, as always) scheme, the sheaf OX is a coherent sheaf of rings in the
sense of [Gro1960]. The coherent sheaves of modules on X are thus also the sheaves which are
locally isomorphic to a cokernel of some morphism Om

X → On
X .

2. Formal schemes

Let X be a scheme, and X ′ a closed subset of X . Then there exists a coherent subsheaf J
of OX such that X ′ = suppOX/J (and there even exists a largest such one). Endowing X ′ with
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the sheaf OX/J makes X ′ a scheme, denoted X0; such a scheme is called a closed subscheme of
X . We can also, for any n, consider X ′ endowed with OX/J n+1, denoted Xn, which is a closed
subprescheme of X whose underlying set is again X ′, but with a different structure sheaf, namely
OXn

= OX/J n+1. Clearly the OXn
form a projective system of sheaves of rings on X, whose

projective limit OX is called the formal completion of OX along X ′. Endowed with this sheaf of
rings, X ′ is called the formal completion of X along X ′, and is thus a ringed space, but not a scheme
in general. For every coherent sheaf F on X, we can similarly consider the formal completion
F = lim←−n

Fn of F along X ′ (where Fn = F ⊗OX
OX/J n+1), which is a sheaf of modules

on X . Its sections are called formal sections of F along X, and can be identified with elements of
lim←−n

Γ(X ′,Fn). For F = OX , we recover the “holomorphic functions” of X along X ′, in the sense
of Zariski (whose terminology we will not follow, due to its interferences with classical terminology).

We define a formal scheme (implicitly assumed to be Noetherian) to be a topological space
X endowed with a sheaf of topological rings OX satisfying the following condition: there is an
isomorphism of sheaves of topological rings OX = lim←−n

On, where the On form a projective system
of sheaves of rings on X, with each one making X into a scheme Xn, and such that, for m ⩾ n, the
homomorphism Om → On is surjective and has J n+1

m as its kernel, where Jm is the kernel of
Om → O0. We will show that OX is a coherent sheaf of local Noetherian rings.

By the definitions, a formal completion X as above is a formal scheme, and, conversely, every
formal scheme is locally of this type. In fact, the data of a formal affine scheme (i.e. such that X0 is
affine, which implies that all the Xn are affine) is equivalent to the data of a separated complete
J -adic Noetherian topological ring.

The usual definitions (morphism, morphism of finite type, proper morphism, etc.) for ordinary
schemes generalise without problem to formal schemes.

3. The three fundamental theorems

Let f : X → Y be a proper morphism of schemes (Noetherian, as always), and let Y ′ be a closed
subset of Y ′, with X ′ its inverse image in X , and consider the corresponding formal completions Y
and X . Then f induces a morphism f : X → Y of formal schemes, which is also proper. Let F be
a coherent sheaf on X, then F is a coherent sheaf on X . In Theorem 1, we forget X, Y , and F ,
and consider only the proper morphism f of formal schemes, along with the coherent sheaf F on
X . (However, the speaker has only written the complete proof in the case where we start with some
X, Y , f , and F ).

Theorem 1 (Finiteness theorem).

i. The Rq f∗(F ) are coherent sheaves on Y .

ii. The natural homomorphisms

Rq f∗(F )→ lim←−
n

Rq(fn)∗(Fn)

are isomorphisms.

In the statement of Theorem 1, we suppose that we already have some coherent subsheaf J of
OY that defines Y ′, whence, by taking the inverse image, a coherent subsheaf of OX that defines
X ′, whence, by definition, Fn, Xn, Yn, and fn : Xn → Yn as in Chapter 2. The minor changes that
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need to be made to the notation in the explanation if we started with an arbitrary proper morphism
between two formal schemes are evident.

Theorem 1 deals only with “formal cohomology”; the following theorem relates it with “algebraic
cohomology”, and resembles a well-known theorem of Serre [Ser1956] on the comparison between
algebraic cohomology and analytic cohomology.

Theorem 2 (First comparison theorem). The Rq f∗(F ) are coherent sheaves on Y (which is a particular
case of Theorem 1), and the natural homomorphisms

Rq f∗(F )→ lim←−
n

Rq(fn)∗(Fn)

are isomorphisms.

Corollary 1. There are canonical isomorphisms Rq f∗(F ) = Rq f∗(F ).

This corollary is, for q = 0, a generalisation of Zariski’s “fundamental theorem of holomorphic
functions”, from which we will deduce a generalisation of Zariski’s “connection theorem”. We also
note that, while (ii) in Theorem 1 is trivial for q = 0, this is not at all the case for Theorem 2 nor
for its equivalent formulation (Corollary 1). In fact, the proof proceeds by decreasing induction on
q (being trivial for large q, since then both sides of the equation are zero), and the case q = 0 thus
appears as the last induction step, and so could be called the “most difficult” case.

Corollary 2. Let Y = Spec(A), and let Y ′ be defined by an ideal J of A. Then, for every coherent sheaf
F on X , the Hq(X,F ) are A-modules of finite type, whose J -adic completions are the Hq(X,F ).

Finally, applying this corollary to H = HomOX
(F ,G ), we obtain:

Corollary 3. Let Y = Spec(A), and let Y ′ be defined by an ideal J of A. Let F and G be coherent
sheaves on X . Then Hom(F ,G ) is an A-module of finite type, whose J -adic completion can be identified
with Hom(F ,G ).

Of course, the natural map Hom(F ,G )→ Hom(F ,G ) is that which sends a homomorphism
u : F → G to its extension “by continuity” u : F → G (so that F becomes a functor in F ).

Now suppose that A is separated and complete for its J -adic topology. Then Corollary 2 and
Corollary 3 above give:

Hq(X,F ) = Hq(X,F ),

Hom(F ,G ) = Hom(F ,G ).

The latter identity shows that the category of coherent sheaves on X can be identified with a
subcategory (with morphisms being the induced morphisms) of the category of coherent sheaves on
X . In fact, we even have:

Theorem 3. For a sheaf of modules on X to be coherent, it is necessary and sufficient that it be isomorphic
to a sheaf of the form F , where F is a coherent sheaf on X (determined up to canonical isomorphism, by
Corollary 3 above). (We recall that now Y = Spec(A), with A being a complete and separated J -adic
Noetherian topological ring).

Corollary 1. The closed subschemes of X are in bijective correspondence with the closed formal subschemes of
X .
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Indeed, they correspond to coherent subsheaves of OX (resp. of OX). Considering the graphs
of morphisms as closed subschemes, Corollary 1 above implies:

Corollary 2. Let X and Z be proper schemes over A (which is a separated complete J -adic Noetherian ring).
Then the map g 7→ g defines a bijective correspondence between Y -morphism from X to Z and Y -morphisms
from X to Z .

In other words, proper algebraic schemes over A give a subcategory (with the morphisms being
the induced morphisms) of the category of proper formal schemes over Y . We note, however, that
there exist proper formal schemes over Y that are not “algebraisable”, i.e. isomorphic to some X, where
X is proper over A (just as there exist compact complex-analytic varieties that do not come from
algebraic varieties defined over the field of complex numbers). Such formal schemes naturally appear
in “module theory”. We note, however, an interesting case where a formal scheme is algebraisable:

Theorem 4. Let A be a complete local Noetherian ring, with residue field k, and let X be a proper formal
scheme over A (endowed with its r(A)-adic topology). We suppose that

i. the local rings of OX are flat A-modules, or, equivalently, that, if we endow OX and A with the
filtration given by powers of the maximal ideal of A, then the associated graded algebras satisfy

gr(OX) ≃ gr0(OX)⊗k gr(A);

ii. H2(X0,OX0) = 0, where we consider X0 = X⊗A k as an algebraic scheme over k;

iii. X0 is projective.

Then, under these conditions, X is algebraisable, and, more precisely, is isomorphic to X , where X is some
projective A-scheme.

Conditions (ii) and (iii) in Theorem 4 will be satisfied if, in particular, X0 is a simple curve over
k, and Theorem 4 can be applied, in particular, in the “module theory” of curves of a given genus...
We will give here a hint on how to prove Theorem 4: we can show (cf. Proposition 3 below) that (i)
and (ii) imply that every coherent sheaf on X0 that is locally isomorphic to a fundamental sheaf
can be obtained by reduction starting from a sheaf of the same nature on X. So, starting with an
“ample” sheaf on X0 (which, by (iii), exists), we lift it to obtain an invertible sheaf on X, and, using
Theorem 1, we prove that a multiple of this invertible sheaf defined an immersion of X into the
formal completion of a scheme Pr

A (“projective type” of dimension r over A).
For the proof of Theorem 1, Theorem 2, and Theorem 3, we refer the reader to [GD1960, I].

4. Applications to Zariski’s connection theorem and “main theorem”

Let f : X → Y be a proper morphism of schemes. Then, by the finiteness theorem (Theorem 1),
f∗(OX) = A is a coherent sheaf on Y , and is also a sheaf of commutative algebras, and thus
corresponds to a Y -scheme g : Y ′ → Y that is finite over Y (defined by the condition of being affine
over Y , i.e. the inverse image of an affine open is affine, and g∗(OY ′) = A). It is immediate that
f then canonically factors as f = gf ′, where f ′ : X → Y ′ is a morphism from X to Y that is now
such that f ′∗(OX) = OY ′ . This factorisation of f is called the Stein factorisation of f . Applying the
first comparison theorem (Theorem 2) and its Corollary 1 to f ′ and the subset Y ′ consisting of a
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single point y′, we see that (f ′)−1(y′) = X ′ is connected (or, in other words, the formal sections of
X along X ′ do not form a local ring, but the completion f ′∗(OX)y′ = Oy′ is local!) We have proven:

Theorem 5 (Zariski’s “connection theorem”). Let f : X → Y be a proper morphism. Then f factors
uniquely (up to isomorphism) as f = gf ′, where g : Y ′ → Y is finite, and f ′ : X → Y ′ is such that
f ′∗(OX) = OY ′ (whence g∗(OY ′) = f∗(OX)). Also, the fibres of f ′ are connected, i.e. the set of connected
components of a fibre f−1(y) of f is in bijective correspondence with the set of points of Y ′ over y, i.e. the set
of maximal ideals in f∗(OX)y .

From this, we immediately deduce the usual variants of the connection theorem. We state here
only the following:

Corollary 1. For a point x of X to be isolated in its fibre f−1(y), it is necessary and sufficient that the
fibre (f ′)−1(y′) (where y′ = f ′(x)) consist of a single point x, or that f ′ induce an isomorphism from a
neighbourhood of x to a neighbourhood of y′. The set of these points is an open subset U , and f ′ induces an
isomorphism from U to an open subset of Y ′.

To show that f ′ is a local isomorphism at x, we note that f ′ induces an isomorphism Oy′ → Ox,
as we see thanks to f ′(OX) = OY ′ ; we also note that the (f ′)−1(V ) give a fundamental system of
neighbourhoods of x when V runs over a fundamental system of neighbourhoods of y′ (since f ′

is a closed map whose fibre at y′ consists of the single point x). We thus immediately deduce the
following result, due to Chevalley in the “geometric” case:

Corollary 2. For f to be a finite morphism, it is necessary and sufficient that it be proper with finite fibres.

If the hypotheses of Corollary 2 hold, then f ′ is effectively an isomorphism, by the above.
Let f : X → Y be a morphism that is not necessarily proper, but suppose that X is contained

in some proper Y -scheme f : X → Y as an open subset (which is the case if, in particular, f is
quasi-projective). Applying Corollary 1, we see that f ′ induces an isomorphism from the set U of
points of X that are isolated in their fibre to an open subset of Y ′ (and that U is indeed an open
subset). We thus deduce the following global version of Zariski’s “main theorem”:

Theorem 6. Let f : X → Y be a morphism of finite type. Then the set U of points of X that are isolated
in their fibre is open, and, if f is quasi-projective, ( [Comp.] This hypothesis can be replaced by the weaker
hypothesis “if f is separated”, by means of the following result (see [Gro1960b, VIII, 6.2]): every morphism
f : X → Y which is quasi-finite and separated is also projective.) then U is Y -isomorphic to an open subset
of some scheme Y ′ that is finite over Y .

Since a morphism of finite type is locally affine, and a fortiori locally quasi-projective, we
immediately deduce from Theorem 6 the usual local variants of the main theorem.

5. Application to the cohomological study of proper and flat mor-
phisms

Let f : X → Y be a proper morphism, and F a coherent sheaf on X, with F assumed to be
Y -flat, i.e. the Fx are flat modules over the rings Oy (where y = f(x)).

This also implies that, for every y ∈ Y , if we filter F along the fibre f−1(y) by the mn
yF

(where my is the maximal ideal of Oy), then the associated graded algebra is isomorphic to
(F/myF )⊗k(y) gr(Oy); in other words, we have that

mn
yF/mn+1

y = Fy ⊗k(y) (m
n
y/m

n+1
y )
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for every integer n, where Fy denotes the sheaf F/myF induced by F onXy (withXy denoting the
fibre f−1(y) considered as a proper scheme over the residue field k(y) of y). Taking this isomorphism,
as well as Theorem 2, into account, we obtain augmentations, and sometimes computations, of the
Rq f∗(F ) in a neighbourhood of y, knowing the cohomology of Xy with coefficients in Fy. Here
Theorem 2 takes the form

Rq f∗(F ) = lim←−
n

Hq(Fy,F/mn
yF ).

We will mention here only the following consequence:

Proposition 1. Let f : X → Y be a proper morphism, and F a coherent Y -flat sheaf on X . Let y ∈ Y , let
q be an integer, and suppose that Hq(Xy,Fy) = 0. Then Rq f∗(F ) is zero on a a neighbourhood of y, and,
for every n, the natural homomorphism

Rq−1 f∗(F )y → Hq−1(Xy,Fy/m
n
yFy)

is surjective.

In particular, if f is a flat morphism (i.e. if OX is Y -flat), then every locally free coherent sheaf
F on X is Y -flat. Let F and G be two such sheaves, and apply Proposition 1 to HomOX

(F ,G )
and q = 1 to obtain:

Theorem 7. Let f be a flat proper morphism, F and G locally free coherent sheaves on X , and y ∈ Y ;
suppose that H1(Xy,HomOX

(Fy,G )) = 0. Then every homomorphism u0 : Fy → Gy is induced by a
homomorphism u : F |V → G |V , where V = f−1(U) is the inverse image of a neighbourhood U of y.

Corollary 1. If u0 is an isomorphism (resp. a monomorphism, resp. an epimorphism), then so too is u, for
small enough U .

In particular:

Corollary 2. Let E0 be a locally free coherent sheaf on Xy such that H1(Xy;HomOX
(E0, E0)) = 0.

Then any two locally free sheaves whose restrictions to Xy are isomorphic to E0 are themselves isomorphic to
one another in a neighbourhood of Xy .

Thus:

Corollary 3. Suppose that H1(Xy,OXy
) = 0. Then any two invertible sheaves on X (i.e. locally isomorphic

to OX ) whose restrictions to Xy are isomorphic are themselves isomorphic to one another.

It thus follows that:

Proposition 2. Let Y be a connected scheme, and E a locally free coherent sheaf on Y . Consider the bundle
of projective spaces X = P(E) associated to E, endowed with its well-known invertible sheaf OX(1). Then
every invertible sheaf L on X is isomorphic to a sheaf of the form f∗(L ′) ⊗ OX(n), where L ′ is an
invertible sheaf on Y , and n is an integer. Furthermore, n is uniquely determined, and L ′ is determined up
to isomorphism.

Proof. Corollary 3 above proves that L is isomorphic to an OX(n)-module on a neighbourhood of
each fibre. The rest is more or less formal.
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Proposition 2 allows us to determine the Y -morphisms from X = P(E) to another projective
bundle. We see, in particular:

Corollary 1. Let u be an automorphism of X = P(E). Then there exists an invertible sheaf L ′ on Y , and
an isomorphism v from E to E⊗L ′ such that u is the isomorphism corresponding to P(E)

∼−→ P(E⊗L ′) =
P(E); the pair (v,L ′) is determined up to isomorphism.

Let Γ be the set of classes of invertible bundles L ′ on Y such that E ⊗L ′ is isomorphic to E.
Its elements are torsion, since, if n is the rank of E, then (by taking n-th exterior powers) we must
have that (L ′)⊗n ∼−→ OY . The above corollary can then be expressed by saying that we have an
exact sequence of groups:

e→ Aut(E)/Γ(Y,O∗Y )→ AutY (X)→ Γ→ e

(which can also be deduced from the exact sequence in cohomology induced by the exact sequence
of sheaves of groups

e→ O×X → Aut → AutY (X)→ e,

where O×X is the sheaf of “units” of OX , identified with the centre of Aut(E).)

6. Application to existence and uniqueness theorems for sheaves and
schemes over a complete J -adic ring

Theorem 7 gave a uniqueness result for locally free coherent sheaves, by using Theorem 1
and Theorem 2. Using Theorem 3, we now obtain existence theorems for sheaves, for morphisms
of schemes, or for schemes. In the following, A denotes a local Noetherian ring, assumed to be
separated and complete. The general method still consists of making formal construction, which
consists essentially of doing algebraic geometry over an Artinian ring, and deducing conclusions from
this that are “algebraic” in nature, by using the three fundamental theorems.

Proposition 3. Let X be a proper formal scheme that is flat over A, and let F0 be a locally free sheaf on X0

such that H2(X0,HomOX0
(F0,F0)) = 0. Then there exists a locally free sheaf F on X that induces, onX0,

a sheaf isomorphic to F0. (This F is also unique up to isomorphism if H1(X0,HomOX0
(F0,F0)) = 0).

We construct, step by step, locally free sheaves Fn on the Xn that induce one another. The con-
struction of F0 is met with an obstruction living in H2(X0,HomOX0

(F0,F0))⊗A/J (J n/J n+1),
but this is zero, by hypothesis. Now, using Theorem 3, we obtain:

Corollary 1. Let X be a proper scheme that is flat over A, and let F0 be as above. Then there exists a
locally free sheaf F on X that induces, on X0, a sheaf that is isomorphic to F0. This F is also unique up
to isomorphism if H1(X0,HomOX0

(F0,F0)) = 0.

Let X0 be a scheme of finite type over the field k, and suppose that X0 is simple (by which we
mean absolutely simple) over k, but not necessarily proper over k. Let A be a local Artinian ring
with residue field k. We are interested in finding schemes X that are flat over A, and such that
X ⊗A k = X0 (this is the starting point of the “theory of modules”, or of “structure variations” of X0).

It is equivalent to give either such an X or, on the topological space X0, a sheaf OX endowed
with the following structures:
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i. OX is a sheaf of A-algebras;

ii. OX is endowed with an augmentation homomorphism OX → OX0
(that is compatible with

the A-algebra structures);

and with the above data being subject to the following conditions: the augmentation induces
an isomorphism OX ⊗A k

∼−→ OX0 ; OX is flat over A, i.e. the graded algebra associated to OX

filtered by the powers of the maximal ideal m of A is isomorphic to gr0(OX)⊗k gr(A), i.e. we have
isomorphisms mnOX/m

n+1OX = OX0
⊗k (mn/mn+1). The fundamental fact is the following:

Theorem 8. Let X0 be a simple scheme of finite type over the field k, and assume X0 to be affine. Let A be
a local Artinian ring of residue field k. Then there exists an A-scheme X that is flat over A and such that
X ⊗A k = X0. Further, any two such schemes are necessarily isomorphic.

Note that the isomorphic in question is not canonical, since X will have, in general, non-trivial
A-automorphisms that induce the identity on X0. Furthermore, there is not, in general, a “canonical”
choice of X satisfying the given conditions, except in the case where A is a k-algebra (the case of
equal characteristics), where we can take X = X0 ⊗k A, i.e. OX = OX0

⊗k A (whether or not X0

is affine, in fact). In the case of unequal characteristics, I do not know in general, when X0 is not
affine, if we can “lift” X0 to an X defined over A. However, for any integer n > 0, let An−1 = A/mn,
and suppose that we have lifted X0 to a flat An−1-scheme Xn−1; we intend to lift Xn−1 to a flat
An-scheme Xn. We already know, by Theorem 8, that this is possible locally; we can also easily
verify that, if Un lifts an open subset Un−1 of Xn−1, then the sheaf of groups of automorphisms of
Un (that induce the identity on Un−1) is canonically isomorphic to GX0/k⊗k m

n/mn+1 restricted to
Un−1, and thus, in particular, commutative (where GX0/k denotes the sheaf of germs of k-derivations
on X0). It follows easily that we have an *obstruction of constructing Xn lifting Xn−1*, which lives
in H2(X0,GX0/k)⊗mn/mn+1. Then:

Corollary 1. Let X0 be a simple scheme of finite type over k, and suppose that

H2(X0,GX0/k) = 0.

Then, for every local Artinian ring A with residue field k, there exists a flat A-scheme X such that
X ⊗A k = X0.

Also, if we can find one X that is flat over A and that lifts X0, then, by Theorem 8, the set of
classes (up to isomorphism) of flat A-schemes that lift X0 can be identified with H1(X0,Aut(X)),
where Aut(X) denotes the sheaf of germs of automorphisms of the sheaf OX of A-algebras that
are compatible with the augmentation. The filtration of OX defines a filtration of Aut(X), with the
quotient of this sheaf by the n-th subgroup of the filtration being Aut(Xn); the graded algebra
associated to this filtration is commutative, and can be identified with GX0/k⊗k gr(A). In particular,
if mn+1 is the first power of m that is not zero, then Fn(Aut(X)) (the last stage of the filtration)
is in the centre of Aut(X), and is isomorphic to GX0/k ⊗k mn; it is also the sheaf of germs of
automorphisms of X that induce the identity on Xn−1 = X ⊗A A/mn. Using these results, we
immediately obtain the following statements:

Corollary 2. Let X0 be a simple scheme of finite type over k, and let A be a local Artinian ring with
residue field k and maximal ideal m. Suppose that mn+1 = 0. Let An−1 = A/mn, and let Xn−1 be a flat
An−1-scheme such that Xn−1 ⊗A k = X0. Then the set of classes (up to an isomorphism that induces the
identity on Xn−1) of flat A-schemes Xn such that X ⊗A An−1 = Xn−1 is either empty, or a homogeneous
principal space under H1(X0,GX0/k)⊗k mn.
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(Note that, in general, there is no privileged choice of origin in the latter homogeneous principal
space, since there is no privileged way of lifting Xn−1 to Xn).

Corollary 3. Let X0 be a simple scheme of finite type over k, and suppose that H1(X0,GX0/k) = 0. Then,
for every local Artinian ring A with residue field k, there exists at most one flat A-scheme X (up to
isomorphism) such that X ⊗A k = X0.

Corollary 1 and Corollary 3 of Theorem 8 immediately imply the claims, which seem more
general, obtained by supposing only that A is a complete local Noetherian ring with residue field k,
provided that we introduce X as a formal scheme over A:

Theorem 9. Let k be a field, and X0 a simple scheme of finite type over k. For every complete locally
Noetherian ring A with residue field k, let F (A) be the set of classes (up to an isomorphism that induces the
identity on X0) of formal schemes X over A, of finite type, and flat over A, such that X ⊗A k = X0.

With this notation: for all A,

i. if H1(X0,GX0/k) = 0 then F (A) has at most one element;

ii. if H2(X0,GX0/k) = 0 then F (A) has at least one element.

Corollary 1. Suppose that X0 is proper over k. Under condition (i) of Theorem 9, for all A, there exists at
most (up to an isomorphism that induces the identity on X0) one scheme X that is proper, flat over A, and
such that X ⊗A k = X0.

We can use Corollary 2 of Theorem 3. For example:

Corollary 2. If X is a proper flat A-scheme such that X ⊗A k is isomorphic to the projective-type scheme
Pr

k of dimension r over k, then X is isomorphic to Pr
k.

(We can also deduce this result from Corollary 1 of Proposition 3).

Corollary 3. Let X0 be a simple projective scheme over k, and suppose that

H2(X0,OX0) = H2(X0,GX0/k) = 0.

Then, for all A, there exists a flat projective A-scheme such that X ⊗A k = X0.

We can combine part (ii) of Theorem 9 with Theorem 4. In particular:

Corollary 4. Let X0 be the scheme of a complete simple algebraic curve over k. Then, for every complete
local Noetherian ring A with residue field k, there exists a “simple curve scheme” X over A, such that
X ⊗A k = X0.

Remarks.

1. Corollary 3 and Corollary 4 are above all interesting if k is of characteristic p ̸= 0, taking A to
be a discrete valuation ring of characteristic 0, with residue field k; for example, the “smallest
possible A”, i.e. that for which p generates the maximal ideal. (In fact, by theorems of Cohen,
it suffices to have Corollary 3 and Corollary 4 for such a ring A). We note that, concerning
this point, according to the specialists, we do not know if there exist schemes over a field k
that are not reductions mod p of a flat scheme defined over such a ring A. At the least, the
results of this section give a way of systematically investigating this question. We must start by
seeing if the first obstruction that we have, in H2(X0,GX0/k), is necessarily zero.
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2. We note that Theorem 3, and the corresponding technique, only works for a complete (local, for
simplicity) base ring. In order to go from known results concerning the completion of a local
ring to the corresponding results for the local ring itself, we would need a fourth “fundamental
theorem”, whose precise statement still needs to be found.

3. We will compare the results from this section (mainly the above Corollary 1 and Corollary 2),
as well as those from the following, with the results of Kodaira–Spencer on the variation of
complex structures. Using the conjectural theorem to which we have just alluded, we should be
able to conclude, under the conditions of Corollary 1, but where A is no longer assumed to be
complete, that there exists a ring A′ that contains A, and that is finite and unramified over A,
such that X⊗AA

′ and X ′⊗AA
′ are A′-isomorphic (where X and X ′ are given, and are proper

flat A-schemes such that X ⊗A k = X ′ ⊗A k = X0). This is what we can prove, at least, when
X0 = Pr

k, by using Corollary 1 of Proposition 2. In any case, if H1(X0,GX0/k) = 0, then we
can prove that the fibres of X and X ′ over any point y of Y = Spec(A) are isomorphic, or at
least when we pass to the algebraic closure of the residue field k(y). (We have a local result,
seemingly stronger, when we don’t suppose that A is necessarily local). As for “structure
variations” of the projective space, we again point out the following question, suggested by
a corresponding problem of Kodaira–Spencer. Let X be a proper flat scheme, over a local
integral ring A with field of fractions K and residue field k, and suppose that X ⊗A K is
isomorphic to Pr

K . Is it then true that X ⊗A k = X0 is isomorphic to PR
k (or at least, over

the algebraic closure of k)? In this question, we can assume that A is a complete discrete
valuation ring. There is an analogous question when X0 is an abelian variety.

Remark. [Comp.] (Concerning Remark 1 above). We note that J.-P. Serre has constructed in [Ser1961] a
non-singular projective variety, of dimension 3, over an algebraically closed field k, of characteristic
p > 0, which does not come from reduction of a proper scheme over a local integral ring with
residue field k, and having a field of fractions of characteristic 0. Mumford would have found an
analogous result, with a non-singular projective surface.

Remark. [Comp.] (Concerning Remarks 2 and 3 above). I am now less optimistic concerning the
results conjectured here. However, the question concerning structure variations for projective
space, mentioned at the end of Remark 3 above, has been positively resolved by Hironaka, and the
analogous question for abelian varieties has been resolved by Koizumi.

7. Application to the “theory of modules”

Since the speaker has only recently encountered this theory himself, we will be obliged to limit
ourselves to just cursory remarks. For simplicity, we work over a field k, i.e. we work in equal
characteristic, even though Theorem 8 allows us to also discuss the more general case, without any
fundamental changes, so it seems. We have not yet gotten past the “formal” stage, but the speaker
still hopes to be able to construct true schemes of modules in certain cases from this, and, in
particular, construct, for every integer g, a scheme over the integers that plays the role of universal
scheme of modules for the simple curves of genus g.

Remark. [Comp.]
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We note that Mumford has recently constructed schemes of modules for the curves of genus g
(cf. Mumford–Tate seminar, Harvard University, 1961–62). Theorem 10 also proves that the “level n
Jacobi schemes” from the theory of modules are non-singular (and even simple over Z).

We continue to use the setting and notation of Theorem 9, and now suppose that A is a local
algebra of finite rank over k, which is assumed to be algebraically closed, for simplicity. Then
F (A) can be thought of as a covariant functor in A, with values in the category of sets, with a
homomorphism A→ B of k-algebras defining a map F (A)→ F (B), since every flat A-scheme X
with X ⊗A k = X0 gives rise to a B-scheme X ⊗A B with the same properties. Suppose that we can
find a complete local Noetherian k-algebra O, as well as a functorial isomorphism

Hom(O, A)
∼−→ F (A) (*)

(where the left-hand side denotes homomorphisms of k-algebras). We can easily see that such an O

is determined up to canonical isomorphism, and so we call the formal spectrum Y of O (i.e. the
topological space consisting of a single point, endowed with a sheaf of topological rings consisting
of just O) the formal scheme of modules for X0. (Note that it does not necessarily exist). Let r be
the maximal ideal of O, and, for all n, let On = O/rn+1 (so that O0 = k). Then the canonical
homomorphism O → On is an element of Hom(O,On), and thus defines an element of F (On),
i.e. a flat On-scheme Xn whose restriction mod r is X0. These Xn are induced from one another
by extension of scalars (i.e. here by reductions), whence it follows that they come from a formal
scheme X that is well determined by the formal scheme of modules Y; further, X is flat over Y, and
X0 = X0. The isomorphism (∗) is then given, as we can immediately see, by associating to each
homomorphism O → A of k-algebras the class of the A-scheme X⊗O A (i.e. to every morphism
Y′ = Spec(A) → Y of k-schemes, we associate the Y′-scheme X ⊗Y Y′ given by base change).
Furthermore, we see that the isomorphism (∗) and its above description still hold even if we only
suppose that A is a complete local Noetherian k-algebra (not necessarily Artinian). Of course,
as always, O can indeed a priori have nilpotent elements, and it seems likely that there should
exist cases where O is itself Artinian, without being identical to k. This tells us at which point the
point of view of Kodaira–Spencer (restricting to considering the A that are regular rings) is a priori
inadequate in the general case.

It remains to give sufficient conditions for there to exist a formal scheme of modules for X0,
assumed to be proper over k. Generally, it is easy to give simple necessary and sufficient conditions
on a functor A→ F (A) (from local k-algebras of finite rank to sets) in order for it to be of the form
Hom(O, A) for some suitable O. We do not give the details here. We point out only that, in the case
which we are studying, these conditions impose non-trivial conditions of a cohomological nature
on X0, and it seems unlikely that they will always be satisfied, even though the speaker has not
constructed any counterexamples. It seems plausible, however, that the condition H0(X,GX0/k) = 0
is sufficient (even if not at all necessary) in order to guarantee the existence of a formal scheme of
modules. We restrict ourselves to stating here a theorem that deals with a particularly simple case
(whose analogue in the theory of analytic spaces is well known, cf. Kodaira–Spencer), which can
easily be proven using the results from the previous section:

Theorem 10. Let X0 be a simple proper scheme over the field k such that

H0(X0,GX0/k) = H2(X0,GX0/k) = 0.

Then there exists a formal scheme of modules for X0, corresponding to a local regular ring O (i.e. an algebra
of formal series over k).

As we have already pointed out, it is not true in general that the formal scheme X over O is
algebraisable; but we know that this is true, however, when X0 is projective and H2(X0,OX0

) = 0
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(Theorem 4), such as when X0 is of dimension 1. This is what gives some hope of constructing a
scheme of modules over the integers for curves of a given genus...

Note also that methods such as those described in this section can be applied in the construction
and study of Picard varieties, as well as in many other constructions. We will return to this soon.

8. Application to the fundamental group

The techniques described allows us to tackle the system study of the fundamental group, using
the example of topological theory. The first two theorems stated in this section are generalisations
of results in a recent work by Lang–Serre.

Let X be a scheme.
Then an X -scheme X ′ is said to be an unramified covering of X if

i. X ′ is finite over X, i.e. it is defined by a coherent sheaf of algebras A = A (X ′) on X;

ii. A is a locally free sheaf on X;

iii. for all x ∈ X, the quotient Ax/mxAx = Ax ⊗OX
π(x) is a separable algebra over k(x).

This notion of unramified covering (due to Serre and the speaker) posses all the elementary
properties for which we can reasonably hope, and which we will not list. We restrict ourselves to
saying that it gives rise to a Galois theory modelled on classical Galois theory (and containing it; the
proofs being overall simpler than the proofs generally seen for the latter) and the Galois theory of
topological coverings. More precisely, we define a geometric point of a scheme X to be a morphism a
from the spectrum ξ of an algebraically closed field Ω to X, i.e. the data of an algebraically closed
extension of the residue field k(x) of a point x = |a| of X (called the locality of the geometric point
a). If X ′ is an unramified covering of X, then we can associate to it the set Ea(X

′) of “geometric
points of X ′ over a”, i.e. the set of pairs consisting of an x′ ∈ X ′ over x and a k(x)-homomorphism
to Ω. We thus obtain (for fixed (X, a)) a functor F (X, a) from the category R(X) of unramified
coverings X ′ of X to the category of finite sets. If X is connected, then the pair given by R(X)
and F (X, a) has all the formal properties necessary in order to be isomorphic to the analogous
pair defined by a suitable totally disconnected compact topological group π (i.e. a projective limit
of finite groups): we take the category C(π) of finite sets on which π acts continuously, and the
identity functor F (π)(E) = E from this category to the category of finite sets. The group π is also
determined up to canonical isomorphic by the condition that (C(π), F (π)) is isomorphic to a given
pair. To be precise, π is called the fundamental group of the connected scheme X at the geometric point
a, and we denote it by π1(X, a). If X is not connected, then we can replace it by the connected
component containing x = |a|. If, however, X is connected, then the groups π1(X, a′) and π1(X, a′)
are isomorphic for any two geometric points a′ and a′′ of X (with the isomorphism being determined
up to inner automorphism), and thus we can, as per usual, choose the most suitable a for our
purposes, such as the generic point of X that is assumed to be irreducible.

Of course, π1(X, a) is a covariant functor in the pointed scheme (X, a). Every statement concerning
the classification of inseparable coverings can then be translated into the language of group theory,
following the well-known dictionary (except that we must take into account the fact that here we
have topological groups).

Our goal is to develop an analogue of the homotopy exact sequence of fibre bundles, relative
to a proper morphism f : X → Y . Clearly, since we don’t know what the higher homotopy groups
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are, we will only have necessarily incomplete results. In order to be able to apply the fundamental
theorems from Chapter 3, we must first explain certain elementary lemmas concerning schemes
over Artinian rings or fields (following the general procedure!).

Lemma 1. Let (X ′, a′) be a pointed unramified covering associated to a pointed representation of π1(X, a)
in a finite set E (endowed with a marked point e), Then the canonical morphism π1(X

′, a′)→ π1(X, a)
identifies the domain with the stabiliser of e in π1(X, a) (and is thus injective).

Lemma 2. Let X be an algebraic scheme over the field k, and let k′ be a radicial extension of k. Then
every unramified covering of X ⊗k k

′ is given by the inverse image (i.e. extension of scalars) of an unramified
covering of X , determined up to isomorphism.

It follows, in particular, from these two lemmas that, for every algebraic extension K of k, and
every geometric point a′ of X ′ = X ⊗k K that projects to the geometric point a of X, that the
functorial homomorphism π1(X

′, a′)→ π1(X, a) is injective.

Lemma 3. Let X be a complete scheme over a local Artinian ring A, such that H0(X,OX) = A. Let X ′

be an unramified covering of X , and let A′ = H0(X ′,OX′), which is thus a ring that is finite over A (and
which may a priori be ramified over A). Let X0 and X ′0 be the reduced subschemes associated to X and X ′,
respectively (obtained by splitting by the sheaves of nilpotent elements in OX and OX′ , respectively). Let k be
a subfield of A/r(A) over which A/r(A) is finite (so X0 is a complete algebraic scheme over k, and X ′0 is an
unramified covering). Finally, let Ω be an algebraically closed extension of k, and consider the unramified
covering X ′0 ⊗k Ω of X0 ⊗k Ω.

Then the following two conditions are equivalent:

i. X ′0 ⊗k Ω is completely decomposed over X0 ⊗k Ω;

ii. the natural morphism X ′ → X ⊗A A
′ is an isomorphism.

Under these conditions, A′ is an unramified extension of A. Finally, if X ′ is connected, then condition
(i) is equivalent to the following, seemingly weaker, condition:

i bis. X ′0 ⊗k Ω admits a regular section over X0 ⊗k Ω.

When condition (ii) of Lemma 3 is satisfied, we say that the unramified covering X ′ of X is
geometrically trivial.

Lemma 4. Let f : X → Y be a proper morphism such that f∗(OX) = OY . Let a be a geometric point of
X , and b its projection over Y . Then π1(X, a)→ π1(Y, b) is surjective.

What we need to show is effectively the following: if an unramified covering Y ′ of Y (corre-
sponding to a locally free sheaf of algebras A ) is such that X ⊗Y Y ′ is disconnected, then Y ′ is
also disconnected. In fact, A is then the direct sum of two non-zero sheaves of rings, and thus so
too is its direct image, which is exactly A ⊗ f∗(OX) = A .

Lemma 5. Let X be a complete scheme over a field k, and suppose that H0(X,OX) is a local ring A, and
that A/r(A) is radicial over k. Let Ω be an algebraic closure of k, and let X = X ⊗k Ω (which is connected).
Pick a geometric point a of X that projects to the geometric point a of X . Then we have an exact sequence

e→ π1(X, e)→ π1(X, a)→ π1(k, b)→ e

(where π1(k, b) is the Galois group of Ω over k).
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Proof. The fact that the first homomorphism is injective has already been shown with Lemma 1 and
Lemma 2; the exactness in the middle follows from Lemma 3; finally, the surjectivity of the last
homomorphism (which is the only thing to rely on the fact that A/r(A) is radicial) follows from
Lemma 4.

Proposition 4. Let f : X → Y be a proper flat morphism such that, for all y ∈ Y , the algebra
H0(f−1(y),Of−1(y)) is separable over the residue field k(y) (which is the case, for example, if f−1(y)
is a separable scheme over k(y), i.e. reduced and such that the fields corresponding to its irreducible
components are separable extensions of k(y)).

Then the covering Y ′ of Y associated to f∗(OX) is unramified.

Proof. The proof is easy, thanks to Theorem 2.

Proposition 4, combined with Lemma 1, practically reduces the homotopical study of proper
and flat morphisms (with separable fibres) to the case where f∗(OX) = OY (since, using Stein
factorisation, we can replace Y by Y ′).

Remark. A flat morphism of finite type whose fibres are separable (resp. simple) schemes is said to
be separable (resp. simple). We show that, if f is flat and if f−1(y) is separable (resp. simple) then
there exists a neighbourhood of f−1(y) on which f is separable (resp. simple). The same result
holds true for “absolutely normal” (this is Bertini’s theorem).

Let f : X → Y be a proper morphism such that

i. f∗(OX) = OY

and let X ′ be a finite scheme over X . Let Y ′ be the covering of Y corresponding to the Stein
factorisation of X ′ → Y (cf. Theorem 5). Let y ∈ Y , so that the set of connected components of the
fibre F ′ of X ′ over y can be identified with the set of points y′ ∈ Y ′ over y (Theorem 5). Consider
the evident morphism

X ′ → X ×Y Y ′ (*)

induced by the natural morphisms X ′ → X and X → Y ′; this will be an isomorphism whenever X ′

is of the form X ×Y Y ′′, where Y ′′ is an unramified covering of Y , and then Y ′ will be exactly Y ′′,
and Equation * will be the identity. We wish to precisely give the conditions for which X ′ is of the
form that we have just indicated, i.e. such that Y ′ is unramified and Equation * is an isomorphism.
For this, we introduce the fibre F of X at y, which is a proper scheme over k(y), for which F ′ is a
cover (an unramified one if X is). Let F ′1 be a connected component of F ′ corresponding to a point
y′1 of Y ′ over y. Suppose further that

ii. X ′ is unramified over X at the points of F ′1 (and thus F ′1 is an unramified cover of F ), and

iii. F ′1 is a geometrically trivial covering of F (cf. Lemma 3).

Theorem 11. Under the above conditions, there exists an open neighbourhood U ′ of y′1 in Y ′ such that
Equation * is an isomorphism over U ′.

Furthermore, Y ′ is unramified at y′1 over Y (but can be ramified at other points y′ of Y ′ over y).

Proof. Of course, conditions (ii) and (iii) are also necessary for the conclusion of the theorem. The
proof of the theorem is easy, thanks to Lemma 3 and Theorem 2.
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Corollary 1. Suppose that (i) above is satisfied. For an unramified covering over X to be isomorphic to the
inverse image of an unramified covering Y ′ of Y , it is necessary and sufficient that X ′ induce, on each fibre
f−1(y), a geometrically trivial covering.

Proof. By Theorem 11, the set of points of Y for which this condition is satisfied is open, and so it
suffices to verify it at the points y which are closed...

Note that the following statement is equivalent to Corollary 1:
The kernel of the homomorphism π1(X) → π1(Y ) (which is surjective, by Lemma 4) is the closed

invariant subgroup generated by the images in π1(X) of π1(f−1(y)), where f−1(y) denotes the scheme
f−1(y)⊗k(y) k(y) (where k(y) denotes an algebraic closure of k(y)).

We note that, since we cannot choose the same base point for all the fibres, the homomorphisms
π1(f

−1(y))→ π1(X) are determined (after having picked a base point for X , and then for Y ) only
up to composition with an inner automorphism of π1(X).

Corollary 2. Under the general conditions of Theorem 11, suppose further that Y , X , and X ′ are integral,
and let K , L, and L′ be their fields (respectively). Then there exists a separable sub-extension K ′ of K in L′,
linearly disjoint from L, such that L′ = LK ′ (whence L′ = L⊗K K ′).

Proof. (We apply the last part of Lemma 3 to the generic fibre of X).

The most interesting case in which we can apply Theorem 11 is when f is a separable morphism.
Then X ′ is also separable over Y , and so, by Proposition 4, Y ′ is unramified over Y , and so the
right-hand side X ×Y Y ′ in Equation * is unramified over X . From this, we easily conclude:

Corollary 3. Suppose, in addition to (i), that f is separable. Let X ′ be a connected unramified covering of
X . For X to be the inverse image of an unramified covering Y ′ of Y , it is necessary and sufficient that the
induced covering F

′
of a geometric fibre F = f−1(y) admit a regular section.

Note that it was not necessary to suppose that F
′
be geometrically trivial over F (which will be

true a posteriori, even though a priori this condition is a lot stronger).
Corollary 3 is equivalent to the following statement:

Corollary 4. Let f : X → Y be a proper and separable morphism such that f∗(OX) = OY . Let F be the
geometric fibre of a point y ∈ Y , and pick a geometric point in F , which, by the morphisms F → X → Y ,
gives geometric points in X and Y ; we take these three points as base points for the fundamental groups of F ,
X , and Y , respectively. Under these conditions, we have the exact sequence

π1(F )→ π1(X)→ π1(Y )→ 0.

From this, we easily deduce the two following statements of Serre–Lang, with all normality
hypotheses removed:

Corollary 5. Let X and Y be connected schemes over a field k, with X or Y proper over k, and suppose
that the reduced scheme Xred is separable over k (which is automatically true if k is perfect) and complete.
Pick a geometric point a (resp. b) in X (resp. Y ); this gives a geometric point c = (a, b) in X ×k Y , and a
natural morphism

π1(X ×k Y, c)→ π1(X, a)× π1(Y, b)

36



FGA 2
8. Application to the fundamental group

(induced by the functorial morphisms from π1(X × Y, c) to π1(X, a) and π1(Y, b)). This morphism is
injective, and further bijective if k is algebraically closed.

(The surjectivity in Corollary 5 is almost trivial). We thus deduce, with Serre–Lang:

Corollary 6. Let X be a connected algebraic scheme over an algebraically closed field k, and let K be an
algebraically closed extension of k. Then the fundamental groups of X and X ×k K are the same, i.e. every
unramified covering of the latter scheme is given by extension of scalars of an unramified covering (which is
unique up to isomorphism) of X .

Remarks.

1. Using Proposition 4, we see that the hypothesis that f∗(OX) = OY in Corollary 4 is not
essential. In the general case, instead of putting the trivial group e after π1(Y ), one must
continue by π0(F )→ π0(X)→ π0(Y )→ e, as in algebraic topology.

2. In general, we cannot say anything at the moment about the kernel of π1(F ) → π1(X),
although it should involve a π2(Y ). It seems, however, that we should be able to prove that
π1(F )→ π1(X) is injective if Y is the spectrum of a local ring A, by appealing to Lemma 12
below (which shows that this is the case if A is complete).

Theorem 11 used only Theorem 1 and Theorem 2; we will now use Theorem 3, along with the
following elementary lemma:

Lemma 6. Let X be a scheme, and X0 the corresponding reduced scheme (i.e. where we have killed all the
nilpotent elements). Then every unramified covering X ′0 of X0 is induced by an unramified covering X ′ of X ,
determined up to isomorphism.

This lemma, which is of a purely local nature, plays a role analogous to that of Theorem 8 here,
in the theory of modules. Combining it with the existence theorem (Theorem 3), we obtain:

Lemma 12. Let A be a complete local Noetherian ring with residue field k. Let X be a proper scheme over
A. Then every unramified covering X ′0 of X0 = X ⊗A k is induced by an unramified covering X ′ of X ,
unique up to isomorphism.

In other words:

Corollary 1. Pick a geometric point in X0 as the base point for the fundamental groups of X0 and X . Then
the canonical homomorphism π1(X0)→ π1(X) is an isomorphism.

Applying Lemma 5 to X0 (supposing that H0(X0,OX0
) = k, for simplicity), and noting that,

since A is complete, the unramified extensions of A correspond to unramified extensions of its
residue field, i.e. π1(Y ) = π1(k) (where Y = Spec(A)). We obtain the exact sequence:

e→ π1(X0)→ π1(X)→ π1(Y )→ e.

Corollary 2. Let f : X → Y be a proper flat morphism, and let y1 be a point of Y , and y0 a specialisation
of y1. Consider the corresponding “geometric” fibres X1 and X0, and suppose that X0 is separable and
connected (which implies that X1 satisfies the same conditions). Then we can find a group homomorphism
π1(X1)→ π1(X0), defined up to inner automorphism. Further, this homomorphism is surjective.

We might hope that the homomorphism in Corollary 2 is always bijective. Unfortunately, this
is not the case in general if k(y0) is of characteristic > 0. We will, however, obtain below a group
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containing the kernel of this homomorphism (at least in the case where X0 is simple), implying
that, if k(y0) is of characteristic 0, then the above homomorphism is bijective (which is a result that
we can also prove by transcendentality). At the very least, we already have, in any case, a group
containing π1, given by a special fibre, using the one given by a generic fibre. Using, for example,
the fact that an algebraic curve in characteristic p lifts to a curve in characteristic 0 (Corollary 4 of
Theorem 9), we obtain, by transcendentality:

Corollary 3. Let X0 be the scheme of complete simple curve over an algebraically closed field of arbitrary
characteristic, and let g be the genus of X0. Then π1(X0) admits 2g topological generators, related by the
well-known relation.

We thus deduce, by a well-known technique using hyperplane sections:

Corollary 4. Let X be a simple projective scheme over an algebraically closed field of arbitrary characteristic.
Then π1(X) admits a finite number of topological generators.

We wish to describe the kernel of the homomorphism π1(X1) → π1(X0). For this, we can
suppose that Y is the spectrum of a discrete complete valuation ring V = Oy (where y = y0). The
question is the equivalent to the following: given an unramified covering X ′1 of X1 (which as can
suppose to be Galois, if we wish), under which conditions must it come from an unramified covering
of X0? A priori, the given covering comes, by extension of scalars, from an unramified covering X ′1
of X1 ⊗K K ′, where K ′ is a finite extension of the algebraic closure K of the field of fractions K of
V ; if X ′1 were Galois, of group G, then we could choose X ′1 to also be Galois of group G. Thus: for
X ′1 ⊗K′ K = X ′1 to come from an unramified covering of X0, it is necessary and sufficient that there exist a
finite extension K ′′ of K ′ in K such that X ′′1 = X ′1 ⊗K′ K ′′ is of the form X ′′ ⊗V ′′ K ′′, where V ′′ is the
normal closure of V in K ′′, and where X ′′ is an unramified covering of X ⊗V V ′′. Suppose, for example,
that X0 is absolutely normal, whence X ⊗V V ′′ is normal (since it is flat over V ′′ and has normal
special fibre), and its field of functions is identical to K ′′(X1), which is the field of functions of

X1 ⊗K K ′′ = (X ⊗V K)⊗K K ′′ = X ⊗V K ′′ = (X ⊗V V ′′)⊗V ′′ K ′′.

Let L′′ = K ′′(X ′1) be the field of functions of X ′1 ⊗K′ K ′′, which is a separable finite extension
of K ′′(X1), and the above condition also implies that L′′ is an unramified extension of the field of
functions of X ⊗V V ′′ (i.e. the normalisation of X ⊗V V ′′ in L′′ is unramified over X ⊗V V ′′). It
suffices to show that L′′ is unramified at the points of the special fibre of X ⊗V V ′′ (since it is
unramified over the generic fibre X1 ⊗K K ′′). If X0 is now simple, then it follows from the “purity
theorem” of Nagata–Zariski that it even suffices to show that L′′ is unramified over the local ring O′′

of the generic point of the normalisation of X ⊗V V ′′, which is a discrete valuation ring, equal to
the normalisation in K ′′(X1) of the local ring O ⊂ K(X1) of the generic point of the special fibre
of X . We thus obtain:

Corollary 5. Under the above conditions, and with the above notation, for the unramified coveringX ′1⊗K′K
of X1 = X1 ⊗K K to come from an unramified covering of X0, it is necessary and sufficient that there
exist a finite sub-extension K ′′ of K/K ′ such that K ′′(X ′1) is unramified over the discrete valuation ring
O′′ ⊂ K ′′(X1).

Now note that O′′ is the normalisation in K ′′(X1) of the discrete valuation ring O′ ⊂ K ′(X1)
(which is the normalisation of O in K ′(X1)), and that O′ contains the normalisation V ′ of V in
K ′, with a uniformiser u of V ′ being also a uniformiser of O′. Suppose now that X ′1 is Galois, with
Galois group G of order n, coprime to the characteristic p of k(y0) (which is also the characteristic of
the residue field of O′). Then K ′(X ′1) is “tamely ramified” over O′, from which it easily follows
(via “Abhyankar’s lemma”) that, if we adjoin an n-th root v of a uniformiser of O′, then it becomes
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unramified over the normalisation of O′ in K ′(X1)(v). But we can take v to be an n-th root of a
uniformiser of V ′, which shows that the condition of Corollary 5 is satisfied. (This idea of using
Abhyankar’s lemma and the purity theorem was given to me by Serre). To express the result we
thus obtain, we introduce, for every totally disconnected compact group π, the quotient π of π by
the closed subgroup generated by its Sylow p-sub-groups, i.e. the projective limit of the discrete
quotient groups of π that are of order coprime to p. With this notation, we obtain:

Theorem 13. Let f : X → Y be a proper flat morphism, y1 a point of Y , and y0 a specialisation of y1.
Suppose that X0 is connected and simple.

Then the homomorphism π1(X1)→ π1(X0) induced by the surjective homomorphism from Corollary 2
of Theorem 12 is an isomorphism.

In other words:

Corollary 1. The classification of unramified Galois coverings, of Galois group of order coprime to the
characteristic p of k(y0), is the same for X0 and for X1.

In particular, if k(y0) is of characteristic 0, then we see, algebraically, that π1(X1)→ π1(X0) is
bijective.

We finally point out that the techniques utilised also give the following result, which is more
general than Theorem 13:

Theorem 14. Let f : X → Y be a proper simple morphism, and let D be a closed subscheme of X that is
simple over Y , and of codimension 1 at all points. Given a fibre Z = f−1(z) of f , let Z ′ = Z \Z ∩D, and
let πt

1(Z
′) be the quotient of the fundamental group π1(Z ′) that classifies the unramified coverings of Z ′

that are “tamely ramified” over Z ∩D. Let y0 and y1 be as in Theorem 13. Then there exists a surjective
homomorphism (defined up to inner automorphism) πt

1(X
′
1)→ πt

1(X
′
0), and the corresponding homomorphism

πt
1(X

′
1)→ πt

1(X
′
0) is an isomorphism.

From this we obtain corresponding variants of the corollaries of Theorem 13, and of Corollary 4
of Theorem 12. Similarly, using Corollary 3 of Theorem 9, we obtain, transcendentally:

Corollary 1. Let X0 be the scheme of a complete simple curve over an algebraically closed field of arbitrary
characteristic, and let S = (si)1⩽i⩽n be a finite subset of X0 with n elements. Then πt

1(X0 \ S) admits
2g + n topological generators, xi, yi, σj (for 1 ⩽ i ⩽ g and 1 ⩽ j ⩽ n), satisfying the relation(∏

i

xiyix
−1
i y−1i

)
σ1 . . . σn = 1,

where the σj are generators of the inertia groups corresponding to the sj . For every finite group G of order
coprime to the characteristic that is generated by elements xi, yi, σj satisfying the above relation, there
exists an unramified Galois covering of X0 \ S, of group G, with inertia groups at the points sj generated by
the σj .

If X0 is of genus 0, and n = 3, then we have a solution to the “three point problem”, at least for
Galois coverings of order coprime to the characteristic.

(Here, Theorem 9 is actually useless, and it seems that we can deduce the above corollary from
the particular case in question in the three point problem).

Remarks.

1. A more complete study, probably involving generalised Galois coverings of X, X0, and X1

(of eventually infinitesimal Galois group), should allow one to recover the kernel in Corollary
2 of Theorem 12. However, a study of coverings admitting ramifications that are not “tame”
seems much more difficult.
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2. Lemma 6, combined with a result of Grauert concerning the formal completion of a non-
singular projective scheme along a hyperplane section (or with the theorem, as yet unproven,
mentioned in Remark 2 after Theorem 11), would also allow us to prove, in “abstract” algebraic
geometry, the classical Lefschetz theorem on the fundamental group.
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FGA 3.I

Generalities, and descent by faithfully flat mor-
phisms

A. Grothendieck. “Technique de descente et théorèmes d’existence en géométrie algébrique, I:
Généralités. Descente par morphismes fidèlement plats”. Séminaire Bourbaki 12 (1959–60), Talk no.
190. http://www.numdam.org/book-part/SB_1958-1960__5__299_0/

[Comp.] For various details concerning the theory of descent, see also [Gro1960b, VI, VII, and
VIII].

From a technical point of view, the current article, and those that will follow, can be considered
as variations on Hilbert’s celebrated “Theorem 90”. The introduction of the method of descent
in algebraic geometry seems to be due to A. Weil, under the name of “descent of the base field”.
Weil considered only the case of separable finite field extensions. The case of radicial extensions of
height 1 was then studied by P. Cartier. Lacking the language of schemes, and, more particularly,
lacking nilpotent elements in the rings that were under consideration, the essential identity between
these two cases could not have been formulated by Cartier.

Currently, it seems that the general technique of descent that will be explained (combined with,
when necessary, the fundamental theorems of “formal geometry”, cf. FGA 2) is at the base of the
majority of existence theorems in algebraic geometry. ([Trans.] [Comp.] It now seems excessive to
say that the technique of descent is “at the base of the majority of existence theorems in algebraic geometry”.
This is true to a large extent for the non-projective techniques that are the object of study of the first two
talks of this current series (i.e. “Techniques of descent and existence theorems in algebraic geometry”), but not
for the projective techniques (talks IV, V, and VI).) It is worth noting as well that this aforementioned
technique of descent can certainly be transported to “analytic geometry”, and we can hope that,
in the not-too-distant future, specialists will know how to prove the “analytic” analogues of the
existence theorems in formal geometry that will be given in talk II. In any case, the recent work of
Kodaira–Spencer, whose methods seem unfit for defining and studying “varieties of modules” in the
neighbourhood of their singular points, shows reasonably clearly the necessity of methods that are
closer to the theory of schemes (which should naturally complement transcendental techniques).

In the present talk (namely talk I) we will discuss the most elementary case of descent (the one
indicated in the title). The applications of Theorem 1, Theorem 2, and Theorem 3 below (in § B.1)
are, however, already vast in number. We will restrict ourselves to giving only some of them as
examples, without aiming for the maximum generality possible.

We will freely use the language of schemes, for which we refer to the already cited article, as well
as [GR1958]. We make clear to point out, however, that the preschemes considered in this current
article are not necessarily Noetherian, and that the morphisms are not necessarily of finite type.

So, if A is a local Noetherian ring, with completion A, then we will need to consider the
non-Noetherian ring A⊗A A, as well as the morphisms of affine schemes that correspond to the
inclusions between the rings in question.
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A. Preliminaries on categories

A.1. Fibred categories, descent data, F-descent morphisms

A.1.a.

Definition 1.1. A fibred category F with base C (or over C) consists of

• a category C

• for every X ∈ C, a category FX

• for every C-morphism f : X → Y , a functor f∗ : FY → FX , which we also write as

f∗(ξ) = ξ ×Y X

for ξ ∈ FY (with X being thought of as an “object of C over Y ”, i.e. as being endowed with
the morphism f)

• for any two composible morphisms X
f−→ Y

g−→ Z, an isomorphism of functors

cf,g : (gf)
∗ → f∗g∗

with the above data being subject to the conditions that

i. id∗ = id

ii. cf,g is the identity isomorphism if f or g is an identity isomorphism

iii. for any three composible morphisms X
f−→ Y

g−→ Z
h−→ T , the following diagram, given by

using the isomorphisms of the form cu,v, commutes:

(h(gf))∗ ((hg)f)∗y y
(gf)∗h∗ f∗(hg)∗y y
(f∗g∗)h∗ f∗(g∗h∗)

Example 1. Let C be a category where all fibre products exist. We then define a fibred category F

with base C by setting FX to be the category of objects of C over X , and the functor f∗ : FY → FX

corresponding to a morphism f : X → Y being defined by the fibre product Z 7→ Z ×Y X .

Example 2. Let C be the category of preschemes, and, for X ∈ C, let FX be the category of quasi-
coherent sheaves of modules on X . If f : X → Y is a morphism of preschemes, then f∗ : FY → FX

is the inverse image of sheaves of modules functor.
We thus obtain a category fibred over C.
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A.1.b.

Definition 1.2. A diagram of maps of sets

E
u−→ E′

v1
⇒
v2

E′′

is said to be exact if u is a bijection from E to the subset of E′ consisting of the x′ ∈ E′ such that
v1(x

′) = v2(x
′).

Definition 1.3. Let F be a fibred category with base C, and consider a diagram of morphisms in C

S
α←− S′

β1

⇔
β2

S′′

such that αβ1 = αβ2; this diagram is said to be F-exact if, for every pair (ξ, η) of elements of FS ,
the diagram of sets

Hom(ξ, η)
α∗

−−→ Hom(α∗(ξ), α∗(η))
β∗
1

⇒
β∗
2

Hom(γ∗(ξ), γ∗(η)) (+)

(where γ = αβ1 = αβ2) is exact.
In this diagram above, for simplicity, we have identified β∗i α

∗ with (αβi)
∗ = γ∗, using cβi,α.

Definition 1.4. Let F be a fibred category with base C, and consider morphisms β1, β2 : S′′ → S′

in C. Let ξ′ ∈ FS′ . We define a gluing data on ξ′ (with respect to the pair (β1, β2)) to be an
isomorphism from β∗1(ξ

′) to β∗2(ξ
′). If ξ′, η′ ∈ FS′ are both endowed with gluing data, then a

morphism u : ξ′ → η′ in FS′ is said to be compatible with the gluing data if the following diagram
commutes:

β∗1(ξ
′) −−−−→ β∗2(ξ

′)y y
β∗1(η

′) −−−−→ β∗2(η
′).

With this definition, the objects of FS′ that are endowed with gluing data (with respect to β1
and β2) then form a category.

If α : S′ → S is a morphism such that αβ1 = αβ2, then, for every ξ ∈ FS′ , the object ξ′ = α∗(ξ)
of FS′ is endowed with a canonical gluing data, since

β∗i α
∗(ξ) ≃ (αβi)

∗(ξ) = γ∗(ξ),

where we again set γ = αβ1 = αβ2; furthermore, if u : ξ → η is a morphism in Fs, then

α∗(u) : α∗(ξ)→ α∗(η)

is a morphism in FS′ that is compatible with the canonical gluing data. We thus obtain a canonical
functor from the category FS to the category of objects of FS′ endowed with gluing data with respect
to the pair (β1, β2). With this, we can also rephrase Definition 1.3 by saying that Equation + is
F-exact if the above functor is fully faithful, i.e. if the above functor defines an equivalence between
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the category FS and a subcategory of the category of objects of FS′ endowed with gluing data with
respect to (β1, β2).

Definition 1.5. We say that a gluing data on ξ′ ∈ FS′ is effective (with respect to α) if ξ′, endowed
with this data, is isomorphic to α∗(ξ) for some ξ ∈ FS .

In the case where Equation + is F-exact, the object ξ in Definition 1.5 is then determined up
to unique isomorphism, and the category FS is equivalent to the category of objects of FS′ endowed with
effective gluing data.

A.1.c.

The most important case is that where

S′′ = S′ ×S S
′,

with the βi being the two projections p1 and p2 from S′ ×S S
′ to its two factors (where we now

suppose that C has all fibre products). We then have two immediate necessary conditions for a
gluing data φ : p∗1(ξ

′)→ p∗2(ξ
′) on some ξ′ ∈ FS to be effective:

i. ∆∗(φ) = idξ, where ∆: S′ → S′×S S
′ denotes the diagonal morphism, and where we identify

∆∗p∗i (ξ
′) with (pi∆)∗(ξ′) = ξ′.

ii. p∗31(φ) = p∗32(φ)p
∗
21(φ), where pij denotes the canonical projection from S′ ×S S

′ ×S S
′ to

the partial product of its ith and jth factors.

Definition 1.6. We define descent data on ξ′ ∈ FS′ , with respect to the morphism α : S′ → S, to
be a gluing data on ξ′ with respect to the pair (p1, p2) of canonical projections S′ ×S S

′ → S′ that
satisfies conditions (i) and (ii) above.

Definition 1.7. A morphism α : S′ → S is said to be an F-descent morphism if the diagram of
morphisms

S
α←− S′

p1

⇔
p2

S′ ×S S
′

is F-exact (Definition 1.3); we say that α is a strict F-descent morphism if, further, every descent data
(Definition 1.6) on any object of FS′ is effective.

This latter condition (of strictness) can also be stated in a more evocative way: “giving an object
of FS is equivalent to giving an object of FS′ endowed with a descent data”.

Note that, if an F-descent morphism ([Comp.] It is useless to assume here that α is an F-descent
morphism.) α : S′ → S admits a section s : S → S′ (i.e. a morphism s such that αs = idS), then it
is a strict F-descent morphism: if ξ′ ∈ FS′ is endowed with descent data with respect to α, then “it
comes from” ξ = s∗(ξ′).
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A.1.d.

We can present the above notions in a more intuitive manner, by introducing, for an object T of
C over S, the set

HomS(T, S
′) = S′(T ),

where elements will be denoted by t, t′, etc. Given an object ξ′ ∈ FS′ , there then corresponds,
to every t ∈ S′(T ), an object t∗(ξ′) of FT , which will also be denoted by ξ′t. A gluing data on ξ′

(with respect to (p1, p2)) is then defined by the data, for every T over S, and every pair of points
t, t′ ∈ S′(T ), of an isomorphism

φt′,t : ξ
′
t → ξ′t′

(satisfying the evident conditions of functoriality in T ). Conditions (i) and (ii) of § A.1.c can then
be written as

i bis. φt,t = idξ′t , for all T and all t ∈ S′(T ).

ii bis. φt,t′′ = φt,t′φt′,t′′ , for all T and all t, t′, t′′ ∈ S′(T ).

We can show that (ii bis) implies that φ2
t,t = φt,t, by taking t = t′ = t′′, and thus, since φt,t is

an isomorphism by hypothesis, implies (i bis), which is thus a consequence of (ii bis) (and so (i) is
also a consequence of (ii)). But if we no longer suppose a priori that the φt,t are isomorphisms (i.e.
that φ : p∗1(ξ

′)→ p∗2(ξ
′) is an isomorphism), then (ii bis) no longer necessarily implies (i bis); the

combination of (ii bis) and (i bis), however, does imply that the φt,t′ are isomorphisms (since we
then have φt,t′φt′,t = φt,t = idξ′t).

A.2. Exact diagrams and strict epimorphisms, descent morphisms, and examples

A.2.a.

Definition 2.1. Let C be a category. A diagram of morphisms

T
α−→ T ′

β1

⇒
β2

T ′′

is said to be exact if, for all Z ∈ C, the corresponding diagram of sets

Hom(Z, T )→ Hom(Z, T ′) ⇒ Hom(Z, T ′′)

is exact (Definition 1.2). We then say that (T, α) (or, by an abuse of language, T ) is a kernel of the
pair (β1, β2) of morphisms.

This kernel is evidently determined up to unique isomorphism. If C is the category of sets, then
the above definition is compatible with Definition 1.2. Dually, we define the exactness of a diagram
of morphisms in C

S
α←− S′

β1

⇔
β2

S′′
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and then say that (S, α) is a cokernel of the pair (β1, β2) of morphisms.

Definition 2.2. A morphism α : S′ → S is said to be a strict epimorphism if it is an epimorphism
and, for every morphism u : S′ → Z, the following necessary condition is also sufficient for u to
factor as S′ → S → Z: for every S′′ ∈ C and every pair β1, β2 : S′′ → S of morphisms such that
αβ1 = αβ2, we also have that uβ1 = uβ2.

If the fibre product S′ ×S S
′ exists, then it is equivalent to say that the diagram

S
α←− S′

p1

⇔
p2

S′ ×S S
′

is exact, i.e. that S is a cokernel of the pair (p1, p2). In any case, a cokernel morphism is a
strict epimorphism. Note also that, if a strict epimorphism is also a monomorphism, then it is an
isomorphism. We leave to the reader the task of developing the dual notion of a strict monomorphism.

To make the relation between the ideas of F-descent morphisms and strict epimorphisms more
precise, we introduce the following definitions:

Definition 2.3. A morphism α : S′ → S is said to be a universal epimorphism (resp. a strict universal
epimorphism) if, for every T over S, the fibre product T ′ = S′×S T exists, and the projection T ′ → T
is an epimorphism (resp. a strict epimorphism).

In very nice categories (such as the category of sets, the category of sets over a topological space,
abelian categories, etc.), the four notions of “epijectivity” introduced above all coincide; they are,
however, all distinct in a category such as the category of preschemes, or the category of preschemes
over a given non-empty prescheme S, even if we restrict to S-schemes that are finite over S.

Definition 2.4. A morphism α : S′ → S is said to be a descent morphism (resp. a strict descent
morphism) if it is an F-descent morphism (resp. a strict F-descent morphism) (cf. Definition 1.7),
where F denotes the fibred category over C of objects of C over objects of C (cf. Example 1).

Proposition 2.1. If C has all finite products and (finite) fibre products, then there is an identity between
descent morphisms in C and strict universal epimorphisms in C.

A.2.b.

Example. Let C be the category of preschemes. Let S ∈ C, and let S′ and S′′ be preschemes that are
finite over S, i.e. that correspond to sheaves of algebras A ′ and A ′′ over S that are quasi-coherent
(as sheaves of modules) and of finite type (i.e. coherent, if S is locally Noetherian). Let α : S′ → S
be the structure morphism of S′, and let β1 and β2 be S-morphisms from S′′ to S′, defined by
algebra homomorphisms A ′ → A ′′, which we also denote by β1 and β2. Using the fact that a finite
morphism is closed (the first Cohen–Seidenberg theorem), we can easily prove that the diagram in
C

S
α←− S′

β1

⇔
β2

S′′ (+)

is exact if and only if the diagram of sheaves on S

OS = A
α−→ A ′

β1

⇒
β2

A ′′
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is exact. In particular, if α : S′ → S is a finite morphism corresponding to a sheaf A ′ of algebras
on S, then α is a strict epimorphism if and only if the diagram of sheaves

OS = A → A ′
p1

⇒
p2

A ′ ⊗A A ′

is exact (it is an epimorphism if and only if A → A ′ is injective). If S is affine of ring A, then S′ is
affine of ring A′, with A′ finite over A, and so S′ → S is a strict epimorphism if and only if A→ A′

is an isomorphism from A to the subring of A′ consisting of the x′ ∈ A′ such that

1A′ ⊗A x
′ − x′ ⊗A 1A′ = 0

(it is an epimorphism if and only if A → A′ is injective). As we have already mentioned, even if
S is the scheme of a local Artinian ring, then a finite morphism S′ → S that is an epimorphism
is not necessarily a strict epimorphism. However, we can prove that, if S is a Noetherian prescheme,
then every finite morphism S′ → S that is an epimorphism is the composition of a finite sequence of strict
epimorphisms (also finite). This also shows that the composition of two strict epimorphisms is not
necessarily a strict epimorphism.

A.2.c.

If Equation + is an exact diagram of finite morphisms, then, for every flat morphism T → S of
prescheme, the diagram induced from Equation + by a change of base T → S is again exact. It thus
follows that, if X and Y are S-preschemes, with X flat over S, then the following diagram of maps
(where X ′ and Y ′ are the inverse images of X and Y over S′, and X ′′ and Y ′′ are their inverse
images over S′′) is exact:

HomS(X,Y )→ HomS′(X ′, Y ′) ⇒ HomS′′(X ′′, Y ′′).

In particular, if F denotes the fibred category (over the category C of preschemes) such that,
for X ∈ C, FX is the category of flat X -preschemes, then the diagram Equation + is F-exact.
(This result becomes false if we do not impose the flatness hypothesis; in particular, a finite strict
epimorphism is not necessarily a descent morphism). We similarly see that Equation + is F-exact if
F denotes the fibred category for which FX is the category of flat quasi-coherent sheaves on the
prescheme X (here, again, the flatness hypothesis is essential).

In either case, the question of effectiveness of a gluing data (and, more specifically, of a descent
data, when S′′ = S′ ×S S

′) on a flat object over S′ is delicate (and its answer in many particular
cases in one of the principal objects of these current articles). The speaker does not know if, for
every finite strict epimorphism S′ → S, every descent data on a flat quasi-coherent sheaf on S′ is
effective (even if we suppose that S is the spectrum of a local Artinian ring, and we restrict to locally
free sheaves of rank 1). More generally, let A be a ring, and A′ an A-algebra (where everything is
commutative) such that the diagram

A→ A′ ⇒ A′ ⊗A A
′

is exact, which is equivalent to saying that the corresponding morphism S′ → S between the spectra
of A′ and A is an F-descent morphism, where F is the fibred category of flat quasi-coherent sheaves.
Let M ′ be a flat A′-module endowed with a descent data to A, i.e. with an isomorphism

φ : M ′ ⊗A A
′ ∼−→ A′ ⊗A M

′
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of (A′ ⊗A A
′)-modules that satisfies conditions (i) and (ii) of § A.1.c (which we leave to the reader

to write out in terms of modules). Is this data effective (relative to the fibred category of flat
quasi-coherent sheaves)? Let M be the subset of M ′ consisting of the x′ ∈M ′ such that

φ(x′ ⊗A 1A′) = 1A′ ⊗A x
′,

which is a sub-A-module of M ′. The canonical injection M → M ′ defines a homomorphism of
A′-modules M ⊗A A

′ →M ′. The effectiveness of φ then implies the following: M is a flat A-module, and
the above homomorphism is an isomorphism.

Remark. In the above, we have imposed no flatness hypotheses on the morphisms of the diagram
Equation +, and this obliges us, in order to have a technique of descent, to impose flatness hypotheses
on the objects over S and S′ that we consider. In § B.2, we will impose a flatness hypothesis on
α : S′ → S, which will allow us to have a technique of descent for objects over S and S′ that are no
longer under any flatness hypotheses. In any case, there is a flatness hypothesis involved somewhere.
This is one of the main reasons for the importance of the notion of flatness in algebraic geometry
(whose role could not be visible when we restricted to base fields, over which everything, in fact, is
flat!).

A.3. Application to étalements

Let A be a local ring, and B a local algebra over A whose maximal ideal induces that of A.
We say that B is étalé over A (instead of “unramified”, as used elsewhere) if it satisfies the

following conditions:

i. B is flat over A; and

ii. B/mB is a separable finite extension of A/m = k (where m denotes the maximal ideal of A).

IfA andB are Noetherian, and k is algebraically closed, then this implies that the homomorphism
A→ B between the completions that extends A→ B is an isomorphism. A morphism f : T → S
of finite type is said to be étale at x ∈ T , or T is said to be étalé over S at x, if Ox is étalé over Of(x);
f is said to be étale, or an étalement, or T is said to be étalé over S, if f is étale at all x ∈ T . Note
that, if S is locally Noetherian, then the set of points of T where f is étale is open, and Zariski’s
“main theorem” allows us to precisely state the structure of T/S in a neighbourhood around such a
point (by an equation of well-known type).

If S is a scheme of finite type over the field of complex numbers, then there exists a corresponding
analytic space S (in the sense of Serre [Ser1956]), except for the fact that S can have nilpotent
elements in its structure sheaf, which changes nothing essential in [Ser1956]. We then easily see
that f is an étalement if and only if f : T → S is an étalement, i.e. if every point of T admits a
neighbourhood on which f induces an isomorphism onto an open subset of S. In particular, to
every étale covering T of S (i.e. every finite étale morphism f : T → S), there is a corresponding
étale covering T of S, which is connected if and only if T is connected [Ser1956]. We can also easily
see that, if T and T ′ are étale schemes over S, then the natural map

HomS(T, T
′)→ HomS(T , T

′′
)

is bijective, i.e. the functor T 7→ T from the category of étale schemes over S to the category of
analytic spaces over S is “fully faithful”, and thus defines an equivalence between the first category
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and a subcategory of the second. A theorem of Grauert–Remmert [GR1958] implies that, if S is
normal, then we thus obtain an equivalence between the category of étale coverings of S and the
category of (finite) étale coverings of S, i.e. every étale covering C of S is S-isomorphic to some
T , where T is an étale covering of S. We will show that the Grauert–Remmert theorem remains true
without any normality hypotheses on S.

First let S′ → S be a finite strict epimorphism, and suppose that the theorem has been proven for
S′; we will show that it holds for S. Let C be an étale covering of S, and consider its inverse image
C ′ over S′, which corresponds to a coherent analytic sheaf A′ of algebras on S′ that is the inverse
image of a sheaf of algebras A on S defining C . By hypothesis, on S′, C ′ comes from an étale
covering T ′ of S′, i.e. A′ comes from a coherent sheaf of algebras A ′ on S′. Also, A′ is endowed
with a canonical descent data with respect to S

′ → S, i.e. with an isomorphism between its two
inverse images on S

′ ×S S
′
= S′ ×S S′ (satisfying conditions (i) and (ii)), and this isomorphism

comes from, by what has already been said, an isomorphism between the corresponding algebraic
sheaves, i.e. from a descent data on A ′ with respect to S′ → S. We can easily show that the latter
is effective (since it is effective on A′, and the effectiveness of a descent data, as described explicitly
in the previous section, is something that can be checked locally on the completions of the modules
that are involved). From this, we obtain a coherent sheaf of algebras A on S that defines a covering
T of S, and this is the desired covering. The above result then obviously holds true if S′ → S is
just a composition of a finite number of finite strict epimorphisms, i.e. is just an arbitrary finite
epimorphism (by the factorisation result stated in § A.2). It thus follows that the Grauert–Remmert
theorem holds true if S is a reduced scheme, i.e. such that OS has no nilpotent elements, as we can
see by introducing its normalisation S′. We can easily pass to the general case.

A completely analogous argument, again using the factorisation result for finite strict epimor-
phisms, and the “formal” nature of the effectiveness of descent data, allows us to prove the following
result: let S be a locally Noetherian prescheme, and let S′ → S be a finite, surjective, and radicial
morphism (or, equivalently, a morphism of finite type such that, for every T over S, the morphism
T ′ = S′ ×S T → T is a homeomorphism, which we can also express by saying that S′ → S is a
universal homeomorphism). For every T étalé over S, consider its inverse image T ′ = T ×S S

′, which
is étalé over S′. Then the functor T 7→ T ′ is an equivalence between the category of preschemes T that are
étalé over S and the category of preschemes T ′ that are étalé over S′. (We use the bijectivity of

HomS(T1, T2)→ HomS′(T ′1, T
′
2)

for preschemes T1 and T2 that are étalé over S, which can be proven directly without difficulty. We
also use the fact that the stated theorem is true if S′ = (S,OS/J ), where J is a nilpotent coherent
sheaf of ideals of OS , cf. [Mur1958, Lemma 6]).

Note also that we do not suppose here that the T in question are finite over S. This result implies,
in particular, that the morphism S′ → S induces an isomorphism between the fundamental group
of S′ and the fundamental group of S (“topological invariance of the fundamental group of a prescheme”).

A.4. Relations to 1-cohomology

A.4.a.

Let C be a category such that the product of any two objects always exists, and let T ∈ C. For
every finite set I ̸= ∅, we can consider T I , and so we obtain a covariant functor from the category of
non-empty finite sets to the category C, i.e. what we can call a simplicial object of C, denoted by KT .
This object depends covariantly on T ; also, if u and v are morphisms T → T ′, then the corresponding
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morphisms KT → KT are homotopic. We say that T dominates T ′ if Hom(T, T ′) ̸= ∅, and this gives
an (upward) directed preorder on C. It follows from the above that, if T dominates T ′, then there
exists a canonical class (up to homotopy) of homomorphisms of simplicial objects KT → KT ′ ; in
particular, if KT and KT ′ are such that T and T ′ dominate one another, then KT and KT ′ are
homotopically equivalent. Now let F be a (contravariant, to be clear) functor from C to an abelian
category C′. Then

C•(T, F ) = F (KT )

is a cosimplicial object of C′, and thus defines, in a well-known way, a (cochain) complex in C′, of
which we can take the cohomology:

H•(T, F ) = H•(C•(T, F )) = H•(F (KT ))

(we may write a subscript “C” on the H• if there is any possibility for confusion). This is a
cohomological functor in F , of which the variance for T varying follows from what has already been
said about the KT ; more precisely, for fixed F and varying T in C (preordered by the domination
relation), the H•(T, F ) form an inductive system of graded objects of C′; in particular, if T and T ′ are
such that each one dominates the other, then H•(T, F ) and H•(T ′, F ) are canonically isomorphic.

Suppose that C has all fibre products. Then we can, for fixed S ∈ C, apply the above to the
category CS of objects of C over S; we then write C•(T/S, F ) and H•(T/S, F ) instead of C•(T, F )
and H•(T, F ) if we wish to make clear that we are working in the category CS ;

then C•(T/S, F ) is a cochain complex in C′ that, in degree n, is equal to F (T ×S T ×S . . .×S T )
(where there are n+ 1 factors T ).

Note that, as per usual, we can define H0(T/S, F ) without assuming the category C′ to be
abelian: it is the kernel (Definition 2.1), if it exists, of the pair (F (p1), F (p2)) of morphisms

F (T )→ F (T ×S T )

corresponding to the two projections p1, p2 : T ×S T → T . In particular, we then have the natural
morphism (called the augmentation)

F (S)→ H0(T/S, F )

which is an isomorphism in nice cases (in particular, in the case where T → S is a strict epimorphism
and F is “left exact”). Similarly, if F takes values in the category of groups in a category C′′, then
we can also define H1(T/S, F ); in the case where C′′ is the category of sets (i.e. when F takes values
in the category of non-necessarily-commutative groups), H1(T, F ) is the quotient of the subgroup
Z1(T/S, F ) of C1(T/S, F ) = F (T ×S T ) consisting of the g such that

F (p31)(g) = F (p32)(g)F (p21)(g)

by the group with operators F (T ) acting on C1(T/S, F ), and thus, in particular, on the subset
Z1(T/S, F ), by

ρ(g′) · g = F (p2)(g
′)gF (p1)(g

′)−1.

A.4.b.

For example, let F be a fibred category with base C. Let ξ, η ∈ FS , and, for all S′ over S, let

Fξ,η(S
′) = Hom(ξ ×S S

′, η ×S S
′).
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Then Fξ,η is a contravariant functor from CS to the category of sets. With this setup, saying that the
augmentation morphism

Fξ,η(S)→ H0(S′/S, Fξ,η)

is an isomorphism for every pair of elements ξ, η ∈ FS implies that α : S′ → S is an F-descent morphism
(Definition 1.7).

A.4.c.

Similarly, for ξ ∈ FS and any object S′ of C over

Gξ(S
′) = Aut(ξ ×S S

′),

we thus define a contravariant functor Gξ from CS to the category of groups.
With this setup, we claim that Z1(S′/S,G) is canonically identified with the set of descent data on

ξ′ = ξ ×S S
′ with respect to S′ → S (Definition 1.6), and that H1(S′/S,G) can be identified with the

set of isomorphism classes of objects of FS′ endowed with a descent data relative to α : S′ → S that are
isomorphic, as objects of FS′ , to ξ′ = ξ×S S

′. Then, if α : S′ → S is an F-descent morphism (cf. § A.4.b),
then H1(S′/S,G) contains as a subset the set of isomorphism classes of objects η of FS such that η ×S S

′ is
isomorphic (in FS′ ) to ξ ×S S

′; further, this inclusion is the identity if and only if every descent data on
ξ′ = ξ ×S S

′ with respect to α : S′ → S is effective. (This will be the case, in particular, if α : S′ → S
is a strict S-descent morphism).

Remark. The cochain complexes of the form C•(T/S, F ) contain, as particular cases, the majority
of standard known complexes (that of Čech cohomology, of group cohomology, etc.), and play an
important role in algebraic geometry (notably in the “Weil cohomology” of preschemes).

A.4.d.

Example 1. Let S′ be an object over S ∈ C, and let Γ be a group of automorphisms of S′ such that
S′ is “formally Γ-principal over S”, i.e. such that the natural morphism

Γ× S′ → S′ ×S S
′

(where Γ× S′ denotes the direct sum of Γ copies of S′) is an isomorphism. (We suppose that all
the necessary direct sums exist in C). Let F be a contravariant functor from C to the category
of abelian groups. Then C•(S′/S, F ) is canonically isomorphic to the simplicial group C•(Γ, F (S′)) of
standard homogeneous cochains, and so H•(S′/S, F ) is canonically isomorphic to H•(Γ, F (S′)).

A.4.e.

Example 2. Let C be the category of preschemes. We denote by Ga (for “additive group”) the
contravariant functor from C to the category of abelian groups, defined by

Ga(X) = H0(X,OX).
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We similarly define the functor Gm (for “multiplicative group”) by

Gm(X) = H0(X,OX)×

(i.e. the group of invertible elements of the ring H0(X,OX)), and, more generally, the functor
GL(n) (for “linear group of order n”) by

GL(n)(X) = GL(n,H0(X,OX)),

which is a functor from C to the category of (not-necessary-commutative, if n > 1) groups; for
n = 1 we recover Gm. We can also think of GL(n) as an automorphism functor (cf. § A.4.c) by
considering the fibred category F with base C such that FX is the category of locally free sheaves on
X, for X ∈ C, since then GL(n)(X) = AutFX

(On
X). By § A.4.b, it follows that, if α : S′ → S is an

F-descent morphism (cf. § A.2.c), then H1(S′/S,GL(n)) contains the set of isomorphism classes of
locally free sheaves on S whose inverse image on S′ is isomorphic to On

S′ , and this inclusion is an
equality if and only if every descent data on On

S′ (with respect to α : S′ → S) is effective. If S is
the spectrum of a local ring, then this implies that H1(S′/S,GL(n)) = (e), since every locally free
sheaf on S is then trivial.

We note that the following conditions concerning a morphism α : S′ → S are equivalent:

i. The augmentation homomorphism H0(S,OS) = Ga(S)→ H0(S′/S,Ga) is an isomorphism.

ii. α : S′ → S is an F-descent morphism (where F is the fibred category over C described above).

iii. α : S′ → S is a strict epimorphism (cf. § A.2.c).

Now suppose that S = Spec(A) and S′ = Spec(A′); then

Cn(S′/S,Ga) = Cn(A′/A,Ga) = A′ ⊗A A
′ ⊗A . . .⊗A A

′︸ ︷︷ ︸
n+1 copies of A′

with the coboundary operator Cn(A′/A,Ga)→ Cn+1(A′/A,Ga) being the alternating sum of the
face operators

∂i(x0 ⊗ x1 ⊗ . . .⊗ xn) = x0 ⊗ . . .⊗ xi−1 ⊗ 1A′ ⊗ xi ⊗ . . .⊗ xn.

Similarly, Cn(S′/S,Gm) = Cn(A′/A,Gm) can be identified with (
⊗n+1

A A′)×, with the simplicial
operations for C•(A′/A,Gm) being induced by those in C•(S′/S,Ga). We can write down the
simplicial operations for C•(A′/A,GL(n)) in the same explicit manner. In all the cases known
to the speaker, Hi(A′/A,Ga) = 0 for i > 0, and, if A is local, then H1(A′/A,Gm) = 0, and, more
generally, H1(A′/A,GL(n)) = (e) (if S′ → S is an F-descent morphisms, i.e. if the diagram
A→ A′ ⇒ A′ ⊗A A

′ is exact, then compare this with § A.2.c).
We note that Hilbert’s “Theorem 90” is exactly the fact that H1(S′/S,Gm) = 0 if A is a field and A′

is a finite Galois extension of A (cf. Example 1), and we can also express it by saying that, in the case
in question, S′ → S is a strict descent morphisms for the fibred category of locally free sheaves of rank 1.
This latter statement is the one that is most suitable to generalise Hilbert’s theorem, by varying the
hypotheses both on the morphism S′ → S and on the quasi-coherent sheaves in question.

Finally, we note that, for a local Artinian A with maximal ideal m, and an A-algebra A′ (where we
denote, for any integer k > 0, the ring A/mk+1 (resp. A′/mk+1A′) by Ak (resp. A′k)), the following
properties are equivalent:

i. H1(A′k/Ak,Ga) = 0 for all k.
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ii. H1(A′k/Ak,Gm) = 0 for all k.

iii. H1(A′k/Ak,GL(n)) = (e) for all k and all n.

If S′ → S is a strict epimorphism, then the above conditions imply that it is a strict descent
morphism for free modules (not necessarily of finite type) over A′.

Remark. The definition of the groups Hi(S′/S,Gm) in the case where S (resp. S′) is a scheme over
the field A (resp. A′) is due to Amitsur. The group H2(S′/S,Gm) is particularly interesting as a
“global” variant of the Brauer group, for which we can refer to [GD1960, VII].

B. Descent by faithfully flat morphisms

B.1. Statement of the descent theorems

Definition 1.1. A morphism α : S′ → S of prescheme is said to be flat if Ox′ is a flat module over
the ring Oα(x′) for all x′ ∈ S′ (i.e. if Ox′ ⊗Oα(x′) M is an exact functor in the Oα(x′)-module M). A
morphism is said to be faithfully flat if it is flat and surjective.

For example, if S = Spec(A) and S′ = Spec(A′), then S′ is flat over S if and only if A′ is a
flat A-module, and S′ is faithfully flat over S if and only if A′ is a faithfully flat A-module (i.e. if
and only if A′ ⊗A M is an exact and faithful functor in the A-module M); this also implies, in the
terminology of Serre [Ser1956], that the pair (A,A′) is flat. If S′ is faithfully flat over S, then the
inverse image functor of quasi-coherent sheaves on S is exact and faithful;

in other words, for a sequence of homomorphisms of quasi-coherent sheaves on S to be exact, it is
necessary and sufficient that its inverse image on S′ be exact (in particular, for a homomorphism of
quasi-coherent sheaves on S to be a monomorphism (resp. an epimorphism, resp. an isomorphism),
it is necessary and sufficient that its inverse image on S′ be a monomorphism (resp. an epimorphism,
resp. an isomorphism)). This property holds true if we restrict to an arbitrary open subset of S′,
and then characterise faithfully flat morphisms in this form.

Definition 1.2. A morphism α : S′ → S is said to be quasi-compact if the inverse image of every
quasi-compact open subset U of S is quasi-compact (i.e. a finite union of affine open subsets).

It evidently suffices to verify this property for the affine open subsets of S. For example, an
affine morphism (i.e. a morphism such that the inverse image of an affine open subset is affine) is
quasi-compact.

The class of flat (resp. faithfully flat, resp. quasi-compact) morphisms is stable under composition
and by “base extension”, and of course contains all isomorphisms.

Theorem 1. Let α : S′ → S be a morphism of preschemes that is faithfully flat and quasi-compact. Then
α is a strict descent morphism (cf. Definition 1.7) for the fibred category F of quasi-coherent sheaves (cf.
§A, Example 2).

This statement implies two things:
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i. If F and G are quasi-coherent sheaves on S, and F′ and G ′ their inverse images on S′, then
the natural homomorphism

Hom(F,G )→ Hom(F′,G ′)

is a bijection from the left-hand side to the subgroup of the right-hand side consisting of
homomorphisms F′ → G ′ that are compatible with the canonical descent data on these
sheaves, i.e. whose inverse images under the two projections of S′′ = S′ ×S S

′ to S′ give the
same homomorphism F′′ → G ′′.

ii. Every quasi-coherent sheaf F′ on S′ endowed with a descent data with respect to the morphism
α : S′ → S (cf. Definition 1.6) is isomorphic (endowed with this data) to the inverse image of
a quasi-coherent sheaf F on S.

Setting F = OS in (i), we obtain:

Corollary 1. Let G be a quasi-coherent sheaf on S, with G ′ and G ′′ denoting its inverse images on S′ and
S′′ = S′ ×S S

′ (respectively), and let p1 and p2 be the two projections from S′′ to S.
Then the diagram of maps of sets

Γ(G )
α∗

−−→ Γ(G ′)
p∗
1

⇒
p∗
2

Γ(G ′′)

is exact (cf. Definition 1.1).

Also, the combination of (i) and (ii) with Definition 1.1 gives:

Theorem 2. Let G be as in Corollary 1. Then there is a bijective correspondence between quasi-coherent
subsheaves of G and quasi-coherent subsheaves of G ′ whose inverse images on S′′ under the two projections p1
and p2 give the same subsheaf of G .

Of course, we have an equivalent statement in terms of quotient sheaves. As we have already
seen in § A.4.e, Theorem 1 should be thought of as a generalisation of Hilbert’s “Theorem 90”, and
implies, as particular cases, various formulations in terms of 1-cohomology. For the proof, we can
easily reduce to the case where S = Spec(A) and S′ = Spec(A′), and, for (i), we can easily restrict
to proving Corollary 1, i.e. the exactness of the diagram

M = A⊗A M → A′ ⊗A M ⇒ A′ ⊗A A
′ ⊗A M

for every A-module M , which follows from the more general lemma:

Lemma 1.1. Let A′ be a faithfully flat A-algebra. Then, for every A-module M , the M -augmented complex
C•(A′/A,Ga)⊗A M (cf. § A.4.e) is a resolution of M .

Proof. It suffices to prove that the augmented complex induced from the above by extension of the
base A to A′ satisfies the same conclusions. This leads to proving the statement when we replace
A by A′, and A′ by A′ ⊗A A

′, and so we can restrict to the case where there exists an A-algebra
homomorphism A′ → A (or, in geometric terms, the case where S′ over S admits a section). In this
case, the claim follows from the generalities of § A.4.a.

We note, in passing, the following corollary, which generalises a well-known statement in Galois
cohomology (compare with § A.4.e):
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Corollary. If A′ is faithfully flat over A, then H0(A′/A,Ga) = A, and Hi(A′/A,Ga) = 0 for i ⩾ 1.

To prove part (ii) of Theorem 1, we proceed, as for (i), by restricting to the case where S′ over
S admits a section, where the result then follows from (i) (cf. § A.1.c).

We can evidently vary Theorem 1 and its corollaries ad libitum by introducing various additional
structures on the quasi-coherent sheaves (or systems of sheaves) in question.

For example, the data on S of a quasi-coherent sheaf of commutative algebras “is equivalent
to” the data on S′ of such a sheaf endowed with a descent data relative to α : S′ → S. Taking
into account the functorial correspondence between such quasi-coherent sheaves on S and affine
preschemes over S, we obtain the second claim of the following theorem:

Theorem 2. Let α : S′ → S be as in Theorem 1. Then α is a (non-strict, in general) descent morphism
(cf. §A, Definition 2.4), and it is a strict descent morphism for the fibred category of affine schemes over
preschemes (cf. §A, Definition 1.7).

The first claim of the theorem implies this: let X and Y be preschemes over S, with X ′ and
Y ′ their inverse images over S, and X ′′ and Y ′′ their inverse images over S′′ = S′ ×S S

′; then the
diagram of natural maps

HomS(X,Y )
α∗

−−→ HomS′(X ′, Y ′)
p∗
1

⇒
p∗
2

HomS′′(X ′′, Y ′′)

is exact, i.e. α∗ is a bijection from HomS(X,Y ) to the subset of HomS′(X ′, Y ′) consisting of
homomorphisms that are compatible with the canonical descent data on X ′ and Y ′ (i.e. whose
inverse images under the two projections from S′′ to S′ are equal). This follows easily from Theorem 1
and Corollary 1, if we restrict to Y being affine over S; in the general case, we need to combine
Theorem 1 with the following result:

Lemma 1.2. Let α : S′ → S be a faithfully flat and quasi-compact morphism. Then S can be identified
with a topological quotient space of S′, i.e. every subset U of S such that α−1(U) is open, is open.

To complete Theorem 2, we must give effectiveness criteria for a descent data on an S′-prescheme
X ′ (in the case where X ′ is not assumed to be affine over S′). Note first of all that such a descent
data is not necessarily effective, even if S is the spectrum of a field k, S′ the spectrum of a quadratic
extension k′ of k, and S′′ a proper algebraic scheme of dimension 2 over S′ (as we can see, due
to Serre, by using the non-projective surface of Nagata). For a descent data on X ′/S′ with respect to
α : S′ → S (assumed to be faithfully flat and quasi-compact) to be effective, it is necessary and sufficient that
X ′ be a union of open subsets X ′i that are affine over S′ and “stable” under the descent data on X ′. This
is certainly the case (for any X ′/S′ and any descent data on X ′) if the morphism α : S′ → S is
radicial (i.e. injective, and with radicial residual extensions).

We can also show that this is the case if α : S′ → S is finite, and every finite subset of X ′ that is
contained in a fibre of X ′ over S is also contained in an open subset of X ′ that is affine over S (this
is the Weil criterion). It is, in particular, the case if X ′/S′ is quasi-projective, and, in this case, we
can show that the “descended” prescheme X/S is also quasi-projective (and projective if X ′/S′ is
projective). In summary:

Theorem 3. Let α : S′ → S be faithfully flat and quasi-compact morphism of preschemes. If α is radicial,
then it is a strict descent morphism. If α is finite, then it is a strict descent morphism with respect to the
fibred category of quasi-projective (or projective) preschemes over preschemes.

Remark. I do not know if, in the second claim above, the hypothesis that α be finite is indeed
necessary; we can prove that, in any case, we can “formally” replace it by the following, seemingly
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weaker, hypothesis: for every point of S there exists an open neighbourhood U , a finite and faithfully flat U ′

over U , and an S-morphism from U ′ to S′. A type of case that is not covered by the above is that where
S = Spec(A) and S′ = Spec(A), with A a local Noetherian ring and A its completion; or even that
where S′ is quasi-finite over S (i.e. locally isomorphic to an open subset of a finite S-scheme) but not
finite. In these two cases, the speaker also does not know the answer to the following question: let
X be an S-scheme such that X ′ = X ×S S

′ is projective over S′; is it then true that X is projective
over S?

[Comp.] A morphism S′ → S that is quasi-finite, étale, surjective, or a morphism of the form
Spec(A) → Spec(A), is not always a strict descent morphism, even if A is the local ring of an
algebraic curve over an algebraically closed field k and S = Spec(A). We can thus find a proper
simple morphism f : X → S that makes X into a principal E-bundle over S, with E an elliptic
curve, such that f ′ : X ′ → S′ is projective, but f is not projective. So this is also an example of a
homogeneous principal bundle that is non-isotrivial under an abelian scheme.

B.2. Application to the descent of certain properties of morphisms

Let P be a class of morphisms of preschemes. Let α : S → S′ be a morphism of preschemes,
and let f : X → Y be a morphism of S-preschemes, with f ′ : X ′ → Y ′ the inverse image of f under
α. We can then ask if the relation “f ′ ∈ P ” implies that “f ∈ P ”. It appears that the answer is
affirmative in many important cases, if we suppose that α is faithfully flat and quasi-compact (this
latter hypothesis sometimes being overly strong). We can see this directly without difficulty if P is
the class of surjective (resp. radicial) morphisms (with these two cases following from the surjectivity
of α), or flat (resp. faithfully flat, resp. simple) morphisms (with these three cases following from the
faithful flatness of α), or morphisms of finite type. Using Theorem 1, Theorem 2, and Lemma 1.2,
we see that it is also true if P is one of the following classes: isomorphisms, open immersions,
closed immersions, immersions (if f is of finite type, and Y is locally Noetherian), affine morphisms,
finite morphisms, quasi-finite morphisms, open morphisms, closed morphisms, homeomorphisms,
separated morphisms, or proper morphisms.

The only important case not covered here is that of projective or quasi-projective morphisms,
which has already been discussed in the remark in § B.1.

B.3. Decent by finite faithfully flat morphisms

Let α : S′ → S be a finite morphism, corresponding to a sheaf of algebras A ′ on S that is
locally free and of finite type as a sheaf of modules, and everywhere non-zero. Then α is a faithfully
flat and quasi-compact morphism, to which we can thus apply the above results. The data of a
quasi-coherent sheaf F′ on S′ is equivalent to the data of the quasi-coherent sheaf α∗(F′) on S
endowed with its A ′-modules structure (noting that A ′ = α∗(OS′)). For simplicity, we also denote
this sheaf on S by F′. The two inverse images p∗i (F

′) of F′ on S′ ×S S
′ similarly correspond to

the quasi-coherent sheaves of (A ′ ⊗OS
A ′)-modules F′ ⊗OS

A ′ and A ′ ⊗OS
F′. The data of an

(S′×S S
′)-homomorphism from the former to the latter is equivalent to the data of a homomorphism

of (A ′ ⊗A ′)-modules, and, taking into account the fact that A ′ is locally free, this is equivalent to
the data of a homomorphism of (A ′ ⊗A ′)-modules:

U = HomOS
(A ′,A ′) = A ′ ⊗ Ǎ ′ →HomOS

(F′,F′)
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i.e. to the data, for every section ξ of U over an open subset V , of a homomorphism of OS -modules
Tξ : F

′|V → F′|V that satisfies the conditions

Tfξ(x) = fTξ(x),

Tξf (x) = Tξ(fx),
(3.1)

where f and x are (respectively) sections of A ′ and F′ over an open subset of S that is contained
inside V . Conditions (i) and (ii) of a descent data (cf. § A.1.c) can then be written (respectively) as

T1U (x) = x i.e. T1U = idF′ (3.2)

Tξη = TξTη. (3.3)

In other words, a descent data onF′ is equivalent to a representation of the sheaf U = HomOS
(A ′,A ′)

of OS -algebras in the sheaf HomOS
(F′,F′) of OS -algebras that satisfies the two linearity conditions

(Equation 3.1). If we have a pairing of quasi-coherent sheaves on S′:

F′1 ×F′2 → F′3

(that we can think of as a pairing of sheaves of A ′-modules on S), and gluing data on the
F′i defined by homomorphisms Ti : U → HomOS

(F′i ,F
′
i ) (for i = 1, 2, 3), then these data are

equivalent to the given pairing, in the evident meaning of the phrase, if and only if the following
condition is satisfied:

For every section ξ of U over an open subset, and denoting by ∆ξ =
∑
ξ′i⊗A ′ ξ′′i the section of

U ⊗A ′ U (where U is considered as an A ′-module with its left structure) defined by the formula

ξ · (fg) =
∑
i

ξ′i(f)ξ
′′
i (g)

(where f and g are sections of A ′ over a smaller open subset), we have the formula

T
(3)
ξ (x · y) =

∑
i

T
(1)
ξ′i
x · T (2)

ξ′′i
y (3.4)

for every pair (x, y) of sections of A ′ over a smaller subset. (We can express this property by
saying that the homomorphisms T (i) are compatible with the diagonal map of U , with respect to the
given pair). In particular, Equation 3.1, Equation 3.2, Equation 3.3, and Equation 3.4 allow us
to understand, in terms of representations of algebras via diagonal maps, the descent data on a
quasi-coherent sheaf of algebras on S′, and thus also (by restricting to commutative algebras) the
descent data on an affine S′-scheme.

From here, we obtain an analogous interpretation of descent data on an arbitrary S′-prescheme
X ′: the data of such an X ′ is equivalent to the data of a prescheme X ′ over S endowed with a
homomorphism of OS -algebras

A ′ → OX′ ,

and a descent data on X ′ is equivalent to the data of a sheaf homomorphism

U →Homh−1(OS)(OX′ ,OX′)

that is compatible with the morphism h : X ′ → S′ and that satisfies the conditions analogous to
Equation 3.1, Equation 3.2, Equation 3.3, and Equation 3.4 above.
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Example 1 (Weil’s example). Suppose that S′/S is a Galois étale covering with Galois group Γ (cf.
§ A.3 and § A.4). Then a descent data on a quasi-coherent sheaf F′ on S′ (resp. on an S′-prescheme
X ′) is equivalent to the data of a representation of Γ by automorphisms of (S′,F′) (resp. of (S′, X ′))
that is compatible with the action of Γ on S′.

This result is “formal”, i.e. it can be proven in terms of categories, but, from the point of view
of this section, we also obtain the explicit structure of U (endowed with its ring structure, the
ring homomorphism A ′ → U , and the diagonal map), which is completely known thanks to the
following result: U admits, as a left A′-module, a basis given by the sections of U that correspond to
elements of Γ.

Example 2 (Cartier’s example). Let p be a prime number, and suppose that pOS = 0 (i.e. that
OS is of characteristic p), that (A ′)p ⊂ OS = A (i.e. that S′/S is radicial of height 1), and that the
sheaf of algebras A ′ over A locally admits a p-basis (i.e. a family (xi) of sections such that A ′ is
generated as an algebra by the xi under the sole condition that xpi = 0). We suppose that the set of
the i is finite, of cardinality n. Let C be the sheaf of A-derivations of A′, which is a locally free sheaf
of rank n of A′-modules, and, furthermore, a sheaf of Lie p-algebras over A (but not over A ′) that
satisfies the following condition:

[X, fY ] = X(f)Y + f [X,Y ]. (3.5)

Lemma. U = HomOS
(A ′,A ′) is generated, as an OS -algebra endowed with an algebra homomorphism

A ′ → U , by the sub-left-A′-module C, with the following additional relations:
Xf − fX = X(f)

XY − Y X = [X,Y ]

Xp = X(p).

(3.6)

It follows from the above lemma that a descent data on the quasi-coherent sheaf F′ on S′ is
equivalent to the data, for all X ∈ C, of an OS -endomorphism X of F′ that satisfies the following
conditions:

fX = fX (3.7)

X(fx) = X(f)x+ fX(x) (3.8)

[X,Y ] = [X,Y ] (3.9)

X(p) = X
p
. (3.10)

(This is what we may call a linear connection on F, which is further flat and compatible with the
p-th powers). We can similarly write down the notion of a descent data on an S′-prescheme X ′, with
Equation 3.4 being replaced by the condition that the X are derivations of OX′ .

Since the morphism S′ → S is radicial, Theorem 3 ensures that every such descent data is
effective, and thus defines an S-prescheme X .

Note that we have not needed to impose any flatness, non-singular, or finiteness hypotheses on
F′ or X ′.
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B.4. Application to rationality criteria

Let X be an S-prescheme such that the direct image of OX on S is OS ; this property remains
true for any flat base extension S′ → S. If F is an invertible sheaf (i.e. locally free of rank 1) on X,
then there is a bijective correspondence between automorphisms of F (identified with the invertible
sections of OX) and invertible sections of OS . So let s be a section of X over S; we define a section
of F over s to be a section of the invertible sheaf s∗(F) on S. It follows from the above that, if Fi

(for i = 1, 2) are invertible sheaves on X, each endowed with a section over s, and if F1 and F2 are
isomorphic, then there exists exactly one isomorphism from F1 to F2 that is compatible with the sections in
question (i.e. sending the first to the second). We also, independently of the section s, regard two
invertible sheaves F1 and F2 on X as equivalent if every point of S has an open neighbourhood U
such that the restrictions of F1 and F2 to X|U are isomorphic. Then every invertible sheaf F on X is
equivalent to an invertible sheaf F1 endowed with a marked section over s (we take F1 = Fs∗(F)−1), and
F1 is determined up to isomorphism. In other words, the classification up to equivalence of invertible
sheaves on X is the same as the classification up to isomorphism of invertible sheaves endowed with a
marked section.

Since these properties remain true under flat extensions α : S′ → S of the base (by replacing the
section s with its inverse image s′ under α), we thus conclude, taking Theorem 1 into account:

With the prescheme X/S being as above, and admitting a section s, let α : S′ → S be a faithfully flat
and quasi-compact morphism; let F′ be an invertible sheaf on X ′ = X ×S S

′. For F′ to be equivalent to
the inverse image on X ′ of an invertible sheaf F′ on X , it is necessary and sufficient that its inverse images
p∗1(F

′) and p∗2(F
′) on X ′×XX

′ = X×S (S
′×S S

′) be equivalent. If this is the case, then F is determined
up to equivalence. (We then say that F′ is rational on S).

Considering this principle in the case where α : S′ → S is as in Example 1 and Example 2 in
the previous section, we recover the rationality criteria of Weil and of Cartier.

(We note that the authors restrict to the case where S and S′ are spectra of fields; a fortiori,
S is then the spectrum of a local ring, and the equivalence relation introduced above is exactly
the relation of being isomorphic). The the first case, F′ is rational on S if and only if its images
under Γ are all equivalent to F′. To express the rationality criterion in the second case, we consider,
more generally, the diagonal morphism X ′ → X ′′ = X ′ ×X X ′ of X ′/X, with the corresponding
sheaf of ideals I on X ′ ×X X ′, and the sheaf I /I 2, which can be identified with its inverse
image Ω1

X′/X on X (the sheaf of 1-differentials of X ′ with respect to X). Since the restrictions of the
F′′i = pi(F

′) (for i = 1, 2) to the diagonal are isomorphic (since they are both isomorphic to F′),
i.e. F′′1 (F

′′
2 )
−1 = F′′ has a restriction to the diagonal which is trivial, it follows that the restriction

of F′′ to (X ′′,OX′′/I 2) is given, up to isomorphism, by a well-defined element ξ of

H1(X ′′,I /I 2) = H1(X ′,Ω1
X′/X).

Also, being precise, we have Ω1
X′/X = Ω1

S′/S ⊗OS
OX , and thus, if Ω1

S′/S is locally free on S (as in

the Cartier case), then ξ defines a section of R1 f ′(OX′)⊗ Ω1
S′/S on S′ (called the Atiyah–Cartier class

of the invertible sheaf F on X ′/S) whose vanishing is necessary and sufficient for the inverse images of F′

under the two projections of

(X ′′,OX′′/I 2) = X ×S (S′′,OS′′/J 2)

to X ′ to be equivalent (where J is the sheaf of ideals on S′′ = S′ ×S S
′ defined by the diagonal

morphism S′ → S′ ×S S
′). This vanishing is thus trivially necessary for the inverse images of F′ on

X ′′ = X ×S S
′′ itself to be equivalent, and thus also for F to be equivalent to the inverse image of

an invertible sheaf F on X . The Atiyah–Cartier class can also be understood as the obstruction to
the existence, locally over S′, of a connection of F′ relative to the derivations of X ′/X, with such
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a connection further being determined when we know the derivations of F′ corresponding to the
natural extensions of derivations of S′/S to X ′. From this, and the results of the previous section,
we easily conclude that, in the case of the aforementioned Example 2, and when X/S admits a
section, the vanishing of the Atiyah–Cartier class is also sufficient for F′ to be rational on S.

B.5. Application to the restriction of the base scheme to an abelian scheme

Let S be a prescheme.
We define an abelian scheme over S to be a simple proper scheme X over S whose fibres at

the points x ∈ S are schemes of abelian varieties over the k(x). Suppose that S is Noetherian
and regular (i.e. that its local rings are regular), then we can show, using the connection theorem of
Murre [Mur1958] (at least in the case “of equal characteristics”, where the cited theorem is currently
proven) that every rational section of X over S is everywhere defined (i.e. is a section) (which generalises
a classical theorem of Weil). It then follows, more generally, that, if X ′ is a simple scheme over S,
then every rational S-map from X ′ to X is everywhere defined. From this, we obtain the following,
which generalises a result of Chow–Lang: with S Noetherian and regular, and K denoting its ring of
rational functions (a direct sum of fields), let X be an abelian scheme over K; if X is isomorphic to a
K -scheme of the form X0 ×S Spec(K), where X0 is an abelian scheme over S, then X0 is determined up to
unique isomorphism.

Using the above uniqueness result, we see that the question of restriction of the base to X is
local on S (and thus that it suffices to know how to do the restriction to Spec(Ox), where x ∈ S). In
the same way, we see that, if S′ → S is a simple morphism of finite type, if Y ′ is the ring of rational
functions of S′, and if X ⊗K K ′ is of the form X ′0 ×S′ Spec(K ′), then X ′0 is endowed with a canonical
descent data with respect to α. Taking Theorem 3 into account, we thus conclude:

Proposition 5.1. Let S be an irreducible regular Noetherian prescheme, with field of rational functions
Y , let K ′ be a finite extension of K that is unramified over S, let S′ be the normalisation of S in K ′

(which is thus an étale cover of S), and let X be an abelian scheme over K such that X ⊗K K ′ is of the form
X ′0×S′ Spec(K ′), where X ′0 is a projective abelian scheme over S′. Then X is of the form X0×S Spec(K),
where X0 is a projective abelian scheme over S.

Remark. The speaker does not know if we can replace the hypothesis that S′ → S be a surjective
étale cover (which allows us to apply Theorem 3) with the hypothesis that it is instead a simple
and surjective morphism of finite type (not even if we suppose that it is an étalement), or if the
proposition still holds true without supposing that X ′0 is projective over S′ (a condition which could
be automatically satisfied).

B.6. Application to local triviality and isotriviality criteria

Let S be a prescheme, G a “prescheme of groups” over S, P a prescheme over S on which “G acts”
(on the right). We say that P is formally principal homogeneous for G if the well-known morphism

G×S P → P ×S P

(induced from the actions of G on P ) is an isomorphism. From now on, we assume G to be flat
over S (and thus faithfully flat over S), and we reserve the name of principal homogeneous bundle
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for G for a formally principal homogeneous bundle P that is faithfully flat and quasi-compact over
S. It is immediate that this is equivalent to being able to find a faithfully flat and quasi-compact
extension S′ → S of the base S such that the formally principal homogeneous bundle P ′ = P ×S S

′

for G′ = G×S S
′ is trivial, i.e. isomorphic to G′ (i.e. admitting a section); we can take, in particular,

S′ = P . Note also that, if S is locally Noetherian, then the faithfully-flat hypothesis on P is equivalent
to the hypothesis that PS = P ×S Spec(Os) be faithfully flat over Os for all s ∈ S (where Os

denotes the completion of the local ring Os), as follows from the fact that Os is faithfully flat over
Os. Also, if P is of finite type over S, and S is locally Noetherian, then the set of points s satisfying
the above condition is constructible, and so, if S is a “Jacobson prescheme” (for example, a scheme
of finite type over a field, or, more generally, over a Jacobson ring), then it suffices to verify the
condition in question for the closed points of S. This leads us to the case where the base is the
spectrum of a complete local ring A. If S = Spec(A) (with A a complete Noetherian local ring),
and if P is of finite type over S, then the faithful flatness of P/S is also equivalent to the existence of
an S′ that is finite and flat over S such that P ′ is trivial, and, if, further, G is simple over S, then we
can suppose S′ to be étale over S. Then, if, further, the residue field of A is algebraically closed (the
“geometric case”), then P is faithfully flat over A if and only if it is trivial. Thus, if S is an algebraic
prescheme over an algebraically closed field, and if G is simple and of finite type over S, then we
see that the faithfully-flat condition on S is equivalent to the condition of being analytically trivial
(SLF) of Serre [Ser1958a, pp.1–12].

We can consider other, stronger, types of conditions on P , that have a “local triviality” nature.
In particular, we say that P is isotrivial (resp. strictly isotrivial) if, for all s ∈ S, there exists an open
neighbourhood U of S, and a finite and faithfully flat morphism (resp. a surjective étale covering)
U ′ → U such that P ′ = P ×S U

′ is trivial. (We stray from the terminology of Serre [GD1960], which
uses “locally isotrivial” for what we call “strictly isotrivial”). Strict isotriviality is mainly useful if G
is simple over S, but is, however, an inadequate notion in other cases.

If G is affine over S, then every principal homogeneous bundle P for G is affine, by § B.2,
whence the possibility, thanks to Theorem 2, to “descend” from such bundles by faithfully flat and
quasi-compact morphisms.

Taking, in particular, G = GL(n)S , defined by the condition that the functor S′ 7→ Hom(S′, G) of
S-preschemes (with values in the category of groups) can be identified with the functor GL(n)(S′) =
GL(n,H0(S′,OS′)) described in § A.4. Using the facts

i. that every principal homogeneous bundle for G (resp. every locally free sheaf of rank n on S)
becomes isomorphic to the “trivial” object G (resp. On

S ) under a suitable faithfully flat and
quasi-compact extension of S;

ii. that we can descend the type of objects in question (principal homogeneous bundles for G,
resp. locally free sheaves of rank n) by such morphisms; and, finally

iii. that the automorphism group of the trivial bundle on any S′/S is functorially isomorphic to
the automorphism group of the trivial locally free sheaf of rank n on S′,

we “formally” conclude that it is “equivalent” to give, on S (or on some S′/S) a principal
homogeneous bundle for the group G, or to give a locally free sheaf of rank n. (More precisely, we
have an equivalence of fibred categories). We thus conclude, in particular:

Proposition 6.1. Every principal homogeneous bundle for the group GL(n)S is locally trivial.

By known arguments, we thus conclude the same result for others structure groups such as
SL(n)S , Sp(n)S , and products of such groups. We thus also conclude that, if F is a closed subgroup
of G = GL(n)S that is flat over S, and such that the quotient G/F exists, and such that G is
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an isotrivial (resp. strictly isotrivial) principal homogeneous bundle on G/F , of structure group
F ×S (G/F ), then every principal homogeneous bundle of structure group F is isotrivial (resp.
strictly isotrivial). This applies to all the “linear groups” on S that have been used up until now,
and, in particular, to the case where G = S ×k Γ, with S a prescheme over the field k, and Γ a
linear group (in the classical sense) over k (and thus in particular simple). This thus answers, for
such groups, a question of Serre (loc. cit.).

We also point out that, for most groups (linear or not) that are simple over S that we know of,
and certainly for all those of the form S ×k Γ as above, we can show that every isotrivial principal
homogeneous bundle is strictly isotrivial, which answers, in particular, another question of Serre
(loc. cit. pp.1–14), taking into account the fact that a homogeneous principal bundle obtained by a
descent à la Cartier (cf. Example 2) is obviously isotrivial.

Remark. One of the essential difficulties in these questions (setting aside the question of the
existence of quotient schemes) is the lack of effectiveness criteria for a descent data along a faithfully
flat non-finite morphism.
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FGA 3.II

The existence theorem and the formal theory of
modules

A. Grothendieck. “Technique de descente et théorèmes d’existence en géométrie algébrique, II: Le
théorème d’existence et théorie formelle des modules”. Séminaire Bourbaki 12 (1959–60), Talk no.
195. http://www.numdam.org/book-part/SB_1958-1960__5__369_0/

A. Representable and pro-representable functors

A.1. Representable functors

Let C be a category.
For all X ∈ C, let hX be the contravariant functor from C to the category Set of sets given by

hX : C → Set

Y 7→ Hom(Y,X).

If we have a morphism X → X ′ in C, then this evidently induces a morphism hX → hX′ of functors;
hX is a covariant functor in X, i.e. we have defined a canonical covariant functor

h : C → Hom(C◦, Set)

from C to the category of covariant functors from the dual C◦ of C to the category of sets. We then
recall:

Proposition 1.1. This functor h is fully faithful; in other words, for every pair X,X ′ of objects of C, the
natural map

Hom(X,X ′)→ Hom(hX , hX′)

is bijective.

In particular, if a functor F ∈ Hom(C◦, Set) is isomorphic to a functor of the form hX , then
X is determined up to unique isomorphism. We then say that the functor F is representable. The above
proposition then implies that the canonical functor h defines an equivalence between the category C

and the full subcategory of Hom(C◦, Set) consisting of representable functors. This fact is the basis
of the idea of a “solution of a universal problem”, with such a problem always consisting of examining if a
given (contravariant, as here, or covariant, in the dual case) functor from C to Set is representable.
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Note further that, just by the definition of products in a category [Gro1957], the functor h : X 7→
hX commutes with products whenever they exist (and, more generally, with finite or infinite projective
limits, and, in particular, with fibred products, taking “kernels” [FGA 2], etc., whenever such things
exist): we have an isomorphism of functors

hX×X′
∼−→ hX × hX′

whenever X ×X ′ exists, i.e. we have functorial (in Y ) bijections

hX×X′
∼−→ hX(Y )× hX′(Y ).

In particular, the data of a morphism

X ×X ′ → X ′′

in C (i.e. of a “composition law” in C between X , X ′, and X ′′) is equivalent to the data of a morphism
hX×X′ = hX × hX′ → hX′′ , i.e. to the data, for all Y ∈ C, of a composition law of sets

hX(Y )× hX′(Y )→ hX′′(Y )

such that, for every morphism Y → Y ′ in C, the system of set maps

hX(i)(Y )→ hX(i)(Y ′) for i = 0, 1, 2

is a morphism for the two composition laws, with respect to Y and Y ′. In this way, we see that the
idea of a “C-group” structure, or a “C-ring” structure, etc. on an object X of C can be expressed
in the most manageable way (in theory as much as in practice) by saying that, for every Y ∈ C,
we have a group law (resp. ring law, etc.) in the usual sense on the set hX(Y ), with the maps
hX(Y ) → hX(Y ′) corresponding to morphisms Y → Y ′ that should be group homomorphisms
(resp. ring homomorphisms, etc.). This is the most intuitive and manageable way of defining, for
example, the various classical groups Ga, Gm, GL(n), etc. on a prescheme S over an arbitrary base,
and of writing the classical relations between these groups, or of placing a “vector bundle” structure
on the affine scheme V (F ) over S defined by a quasi-coherent sheaf F , and of defining and studying
the many associated flag varieties (Grassmannians, projective bundles), etc.; the general yoga is purely
and simply identifying, using the canonical functor h, the objects of C with particular contravariant functors
(namely, representable functors) from C to the category of sets.

The usual procedure of reversing the arrows that is necessary, for example, in the case of affine
schemes in order to pass from the geometric language to the language of commutative algebra, leads
us to dualise the above considerations, and, in particular, to also introduce covariant representable
functors C → Set, i.e. those of the form Y 7→ Hom(X,Y ) = h′X(Y ).

A.2. Pro-representable functors, pro-objects

Let X = (Xi)i∈I be a projective system of objects of C; there is a corresponding covariant
functor

h′X = lim−→
i

h′Xi

which can be written more explicitly as

h′X(Y ) = lim−→
i

h′Xi
(Y ) = lim−→

i

Hom(Xi, Y )
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which is a functor from C to Set. A functor from C to Set that is isomorphic to a functor of this type
with I filtered is said to be pro-representable. By the previous section, these are exactly the functors
that are isomorphic to filtered inductive limits of representable functors. Let X′ = (Xj)j∈J be another
filtered projective system in C (indexed by another filtered preordered set of indices J). Then we
can easily show that we have a canonical bijection

Hom(hX′ , hX) = lim←−
j

lim−→
i

Hom(Xi, X
′
j)

(generalising Proposition 1.1). This leads to introducing the category Pro(C) of pro-objects of C, whose
objects are projective systems of objects of C (indexed by arbitrary filtered preordered sets of indices),
and whose morphisms between objects X = (Xi)i∈I and X′ = (Xj)j∈J are given by

ProHom(X,X′) = lim←−
j

lim−→
i

Hom(Xi, X
′
j),

with the composition of pro-homomorphisms being evident. By the very construction itself, X 7→ h′X
can be considered as a contravariant functor in X, establishing an equivalence between the dual category
of the category Pro(C) of pro-objects of C and the category of pro-representable covariant functors from C to
Set.

Of course, an object X of C canonically defines a pro-object, denoted again by X, so that C is
equivalent to a full subcategory of Pro(C). Then, if X = (Xi)i∈I is an arbitrary pro-object of C, then
(with the above identification) we have that

X = lim←−
i

Xi

with the projective limit being taken in Pro(C) (since hX = lim−→i
hXi

).
We draw attention to the fact that, even if the projective limit of the Xi exists in C, it will generally

not be isomorphic to the projective limit X in Pro(C), as is already evident in the case where C is
the category of sets. We note that, by the definition itself, lim←− CXi = L is defined by the condition
that the functor

lim←−
i

HomC(Y,Xi) = HomPro(C)(Y,X)

in Y ∈ C and with values in Set be representable via L, i.e. that it be isomorphic to HomC(Y,L);
then lim CXi is already defined in terms of the pro-object X, and, in a precise way, depends functorially
on the pro-object X whenever it is defined; there is therefore no problem with denoting it by
lim C(X). If projective limits in C always exist, then lim C(X) is a functor from Pro(C) to C, and
there is a canonical homomorphism of functors limC(X) → X. Since every (covariant, say, for
simplicity) functor

F : C → C′

can be extended in an obvious way to a functor

Pro(F ) : Pro(C)→ Pro(C′),

it follows that, if projective limits always exist in C′, then F also canonically defines a composite
functor

F = lim←− C′ : Pro(C)→ C′
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sending X = (Xi)i∈I to lim←− C′F (Xi).
A pro-object X is said to be a strict pro-object if it is isomorphic to a pro-object (Xi)i∈I , where

the transition morphisms Xi → Xj are epimorphisms; a functor defined by such an object is said
to be strictly pro-representable. We can thus further demand that I be a filtered ordered set, and that
every epimorphism Xi → X ′ be equivalent to an epimorphism Xi → Xj for some suitable j ∈ I
(uniquely determined by this condition).

Under these conditions, the projective system (Xi)i∈I is determined up to unique isomorphism (in
the usual sense of isomorphisms of projective systems). It thus follows that the projective limit of a
projective system X(α) of strict pro-objects always exists in Pro(C), and that, with the above notation of
F and F , we have that

F lim←−
α

X(α) = lim←−
α

C′F (X(α)).

In particular, if every pro-object of C is strict (cf. the previous section), then the extended functor
F commutes with projective limits.

A.3. Characterisation of pro-representable functors

Let C and C′ be categories in which all finite projective limits (i.e. limits over finite, not necessarily
filtered, preordered sets) exist, or, equivalently, in which finite products and finite fibred products
exist (which implies, in particular, the exists of a “right-unit object” e such that Hom(X, e) consists
of only on element for all X). Let F be a covariant functor from C to C′. Then the following
conditions are equivalent:

i. F commutes with finite projective limits;

ii. F commutes with finite products and with finite fibred products;

iii. F commutes with finite products, and, for every exact diagram

X → X ′ ⇒ X ′′

in C (cf. FGA 3.I, A, Definition 2.1), the image of the diagram under F

F (X)→ F (X ′) ⇒ F (X ′′)

is exact.

We then say that F is left exact.
In what follows, we assume that finite projective limits always exist in C. It is then immediate

from the definitions that a representable functor is left exact, and, by taking the limit, that a
pro-representable functor is left exact.

To obtain a converse, let

F : C → Set

be a covariant functor, and let X ∈ C and ξ ∈ F (X).
We say that ξ (or the pair (X, ξ)) is minimal if, for all X ′ ∈ C and all ξ′ ∈ F (X ′), and for every

strict monomorphism (cf. FGA 3.I, §A.2) u : X ′ → X such that ξ = F (u)(ξ′), u is an isomorphism.
We also say that a pair (X, ξ) dominates (X ′′, ξ′′) (where ξ ∈ F (X) and ξ′′ ∈ F (X ′′)) if there exists
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a morphism v : X → X ′′ such that ξ′′ = F (v)(ξ); if ξ is minimal, and if F is left exact, then this
morphism v is unique; if ξ′′ is minimal, then v is surjective. From this we easily deduce the following
proposition:

Proposition 3.1. For F to be strictly pro-representable, it is necessary and sufficient that it satisfy the
following two conditions:

i. F is left exact; and

ii. every pair (X, ξ), with ξ ∈ F (X), is dominated by some minimal pair.

This second condition is trivial if every object of C is Artinian (by taking a sub-object X ′ of X
that is minimal amongst those for which there exists some ξ′ ∈ F (X ′) such that ξ is the image of
ξ′). Whence:

Corollary. Let C be a category whose objects are all Artinian and in which all finite projective limits exist.
Then the pro-representable functors from C to Set are exactly the left exact functors, and they are in fact
strictly pro-representable.

This last fact also implies that every pro-object of C is then strict.

A.4. Example: groups of Galois type, pro-algebraic groups

If C is the category of ordinary finite groups, then Pro(C) is equivalent to the category of totally
disconnected compact topological groups. ([Trans.] Here the word “Hausdorff” is implicit.) It is groups
of this type, and their generalisations, obtained by replacing ordinary finite groups with schemes
of finite groups over a given base prescheme (for example, finite algebraic groups over a field k),
that serve as fundamental groups, homotopy groups, and absolute and relative homology groups
for preschemes. In all these examples, the corollary to Proposition 3.1 applies, and it is indeed by
the associated functor that the π1 should be defined [FGA 2]. It is the same if we start with the
category of algebraic or quasi-algebraic groups over a field (or, more generally, over a Noetherian
prescheme): we recover the “pro-algebraic groups” of Serre [Ser1958].

A.5. Example: “formal varieties”

Let Λ be a Noetherian ring, C the category of Λ-algebras that are Artinian modules of finite type
over Λ (or, more concisely, Artinian Λ-algebras).

The conditions of the corollary to Proposition 3.1 are then satisfied. Here, the category Pro(C)
is equivalent to the category of topological algebras O over Λ that are isomorphic to topological
projective limits

O = lim←−Oi

of algebras Oi ∈ C, i.e. those whose topology is linear, separated, and complete, and such that, for
every open ideal Ji of O, the algebra O/Ji is an Artinian algebra over Λ. The functor C → Set
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associated to such an algebra is exactly

F (A) = h′O(A)

= {continuous homomorphisms of topological Λ-algebras O → A}
= lim−→

i

HomΛ-algebras(Oi, A).

Note also that the category C is essentially the product of analogous categories, corresponding to
the local rings that are the completions of the Λm for the maximal ideals m of Λ; we can thus, if
so desired, restrict to the case where A is such a complete local ring. In any case, O decomposes
canonically as the topological product of its local components, which correspond to the “points” of
the formal scheme [FGA 2] defined by O. Such a point is defined by an object ξ of some F (K), where
K ∈ C is a field (for example, the residue field of the local component in question), and where two
pairs (ξ,K) and (ξ′,K ′) define the same point if and only if they are both dominated by the same
(ξ′′,K ′′), or if they both dominate the same (ξ′′′,K ′′′). (If the Λ/m are algebraically closed, then it
suffices to take the set given by the sum of the F (Λ/m)).

It is important to give conditions that ensure that the local component Oξ of O corresponding to
some ξ ∈ F (K) be a Noetherian ring. If Λ is a complete local ring (Noetherian, we recall), then it is
equivalent to say that Oξ is isomorphic to a quotient ring of a formal series ring Λ[[t1, . . . , tn]]. To give
such a criterion, we introduce (for every ring A) the A-algebra IA of “dual numbers” of A, defined
by

IA = A[t]/t2A[t].

Let ε : IA → A be the augmentation homomorphism, which defines (if A ∈ C) a map

F (ε) : F (IA)→ F (A).

Using the fact that F is left exact, we intrinsically define the structure of an A-module on the
subset

F (IA, ξ) = F (ξ)−1(ξ) ⊂ F (IA)

consisting of the ξ′ ∈ F (IA) that are “reducible along ξ”; using the explicit form of F in terms of O,
we find that this K-module can be identified with HomΛ(mξ/m

2
ξ , A), where mξ is the kernel of the

homomorphism ξ : O → A, i.e. if A is a field, then the maximal ideal of the local component Oξ of
O. From this, we immediately deduce the following proposition:

Proposition 5.1. Let ξ ∈ F (K), where K ∈ C is a field. For the corresponding local component Oξ of O
to be a Noetherian ring, it is necessary and sufficient that the set F (IK , ξ) of elements of F (IK) that are
reducible along ξ be a vector space of finite dimension over K . Under these conditions, we have a canonical
isomorphism

F (IK , ξ) = Hom(mξ/m
2
ξ + nξOξ,K)

(where nξ is the maximal ideal of Λ given by the kernel of the homomorphism Λ→ K), and so, in particular,
the dimension of the K-vector space F (IK , ξ) is equal to the dimension of the vector space mξ/m

2
ξ over the

field Oξ/mξ = K(ξ).
[Comp.] The formula given above is only correct when Λ is a field; in the general case, we must replace

mξ/m
2
ξ with the quotient of this space by the image of nξ/n2ξ , where n is the maximal ideal of Λ.

Suppose that Oξ is Noetherian, and suppose, for notational simplicity, that Λ is complete and
local, and that O = Oξ. ([Comp.] The following definition is correct only when the residue extension
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k′/k is separable; for the general case, see [Gro1960b, III, 1.1].) We say that O is simple over Λ if O is
a finite and étale algebra over the completion algebra of the localisation of Λ[t1, . . . , tn] at one of its
maximal ideals that induces the maximal ideal of Λ; if the residue extension of O over Λ is trivial
(for example, if the residue field of Λ is algebraically closed), then this is equivalent to saying that
O itself is isomorphic to such a formal series algebra. Finally, if we no longer necessarily suppose
that O is Noetherian, then we again say that O is simple over Λ if O is isomorphic to a topological
projective limit of quotient Λ-algebras that are Noetherian and Λ-simple in the above sense. We can
immediately generalise to the case where Λ and O are no longer assumed to be local. With this, we
have the following proposition:

Proposition 5.2. For O to be simple over Λ, it is necessary and sufficient that the associated functor F send
epimorphisms to epimorphisms.

If this is the case, then this implies that, for every surjective homomorphism A→ A′ in C, the
morphism F (A)→ F (A′) is also surjective. Of course, it suffices to verify this condition in the case
where A is local, and (proceeding step-by-step) where the ideal of A given by the kernel of A→ A′ is
annihilated by the maximal ideal of A. This leads, in practice, to verifying that a certain obstruction,
linked to infinitesimal invariants of the situation that give us a functor F , is null; this is a problem of
a cohomological nature.

To finish, we say some words, in the above context, about rings of definition. Let F still be a
functor from C to Set, assumed to be pro-representable via a topological Λ-algebra O. Then, for
every A ∈ C and every ξ ∈ F (A), there exists a smallest subring A′ of A such that ξ is the image of
an element ξ′ of F (A′) (which is then uniquely determined): indeed, it suffices to think of ξ as a
homomorphism from O to A, and to take A′ to be the image of O under this ξ. We then say that
A′ is the ring of definition of the object ξ ∈ F (A). If u : A → B is an algebra homomorphism, and
if η = F (u)(ξ), then the ring of definition of η is the image under u of the ring of definition of ξ.
If we start with a functor F from C to Set, then the existence of rings of definition, along with
their properties that we have just discussed, is more or less equivalent to the condition that F be
pro-representable; that is, they are usually far from being trivial.

B. The two existence theorems

Keeping the notation of § A.5, and, given a covariant functor

F : C → Set,

we wish to find manageable criteria for F to be pro-representable, i.e. expressible via a Λ-algebra O
as above. By the corollary of §A, Proposition 3.1, to ensure this, it is necessary and sufficient that F
be left exact. In the current state of the technique of descent (cf. the questions asked in FGA 3.I,
§A.2.c), this criterion is not directly verifiable, in this form, in the most important cases, and we
need criteria that seem less demanding.

Theorem 1. For the functor F to be pro-representable, it is necessary and sufficient that it satisfy the two
following conditions:

i. F commutes with finite products;
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ii. for every algebra A ∈ C and every homomorphism A→ A′ in C such that the diagram

A→ A′ ⇒ A′ ⊗A A
′

is exact (cf. FGA 3.I, §A, Definition 1.2), the diagram

F (A)→ F (A′) ⇒ F (A′ ⊗A A
′)

is also exact.

Furthermore, it suffices to verify condition (ii) in the case where A is local, and when, further, we are in
one of the two following cases:

a. A is a free module over A;

b. the quotient module A′/A is an A-module of length 1.

Proof. The proof of this theorem is rather delicate, and cannot be sketched here. We content
ourselves with pointing out that it relies essentially on a study of equivalence relations (in the sense
of categories) in the spectrum of an Artinian algebra (the study of which poses even more problems,
whose solutions seems essential for the further development of the theory).

In applications, the verification of condition (i) is always trivial. The verification of condition
(ii) splits into two cases: case (a), where A′ is a free A-module, can be dealt with using the technique
of descent by flat morphisms (cf. FGA 1, Theorems 1, 2, and 3), which offers no difficulty; to deal with
case (b), we will use the following result:

Theorem 2. Let A be a local Artinian ring with maximal ideal m, and let A′ be an A-algebra containing A,
and such that mA′ ⊂ A, and A→ A′ ⇒ A′ ⊗A A

′ is exact (which is the case, in particular, if A′/A is an
A-module of length 1). Let F be the fibred category (cf. FGA 3.I, §A, Definition 1.1) of quasi-coherent sheaves
that are flat over varying preschemes. Then the morphism Spec(A′) → Spec(A) is a strict F-descent
morphism (cf. FGA 3.I, §A, Definition 1.7).

Proof. We prove this by first proving that

Hi(A′/A,Ga) = 0 for i ⩾ 1

(cf. FGA 3.I, §A.4.e), with the hypothesis that mA′ ⊂ A allowing us to easily reduce to the case where
A is a field (namely A/m). We can then apply the equivalences described in FGA 3.I, §A.4.e.

In other words, the data of a flat A-module M is completely equivalent to the data of a flat
A′-module M ′ endowed with an (A′ ⊗A A

′)-isomorphism from M ′ ⊗A A
′ to A′ ⊗A M

′ satisfying
the usual transitivity condition for a descent data (loc. cit.).

C. Applications to some particular cases

C.1. General remarks on functors represented by preschemes

Let S be a locally Noetherian prescheme.
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A prescheme X over S is said to be locally of finite type over S if, for all x ∈ X that project to
y ∈ Y , there exists an affine neighbourhood of y of ring A, and an affine neighbourhood of x (over
the aforementioned affine neighbourhood of y) of ring B, such that B is an A-algebra of finite type.
There are many important examples of preschemes locally of finite type over S, that are not of finite
type over S, given by solutions of classical universal problems; thus it is important to be able to
consider the Picard scheme of a curve as a union of infinitely-many connected components (that
we must avoid confusing with the connected component of the identity element, i.e. the “Picard
variety”). It is thus sometimes useful to place ourselves in the category C of preschemes locally of
finite type over S, in order to study the question of representability of a contravariant functor F .
The main goal of these articles is to develop a general technique that allows us to recognise when such a functor
F is representable, and to study the properties of the corresponding S-prescheme X by means of the properties
of F . We note in passing that, in this study, we find non-pathological examples of preschemes over
S that are not separated over S, notably as “Picard preschemes” of excellent S-schemes; we must
thus refrain from banishing preschemes that are not schemes from algebraic geometry.

Let X be a prescheme locally of finite type over S, and let

F : Y 7→ HomS(Y,X)

be the associated contravariant functor. We can consider the restriction F0 of F to the subcategory
C0 of C consisting of preschemes Y over S that are Artinian and finite over S: if S = Spec(Λ),
then C0 is the category dual to the category of Artinian Γ-algebras considered in Chapter B. If
Y = Spec(A), where A is a local Artinian ring, then Y consists of a single point y living above a
closed point s of S, and an S-homomorphism from Y to X (i.e. an element of F (Y )) is defined by
the data of a point x ∈ X over s, along with an Os-homomorphism from Ox to A. If there exists
such a homomorphism, then x is necessarily a closed point of X (since its residue field is algebraic
over the residue field of s). This thus shows that the restriction F0 of F to “Artinian Y -algebras” is
pro-representable, and is represented by the topological Y -algebra whose local components are the completions
Ôx of the local rings of X at the points x of X that are closed and live above closed points of Y . This shows
that only knowing F0 gives precise information about the structure of X (that is, the structure of
the completions of its local rings at the aforementioned points).

We note that, even in the case where S is the spectrum of an algebraically closed field, it is only
thanks to the systematic consideration of “varieties” Y such that OY may admit nilpotent elements
(and, in particular, working with the spectra of local Artinian rings) that we can arrive at the “good
formulation” of classical universal problems, and understand the “infinitesimal” aspect.

If we start with a given functor F , and we want to know whether or not it is representable, then
studying the functor F0 (using Theorem 1 and Theorem 2) will give quasi-complete hints; either, as
is often the case (by simply testing, for example, the nature of the sets F (IK , ξ) and their functorial
behaviour, cf. Chapter A), F0 is already not pro-representable (which explains the failure of attempts
made up until now to define varieties of modules in a reasonably natural way for the classification of
vector bundles of rank > 1); or we might be able to show that F0 is indeed representable, but that
that vector spaces F (IK , ξ) are not of finite dimension, in which case we must be content with the
“formal” solution; or it could be the case that F0 is indeed representable by a product of complete
Noetherian local rings, which gives very strong assumptions for F itself to be representable, and,
combined with the analogous properties (but of a more global nature) that we will later develop, will
in all likelihood suffice to imply that it is indeed so. Finally, we come across interesting geometric
problems (see § C.4 and § C.5 below) where we have only the functor F0 (not coming from any
“global” functor F ), and where we will consider ourselves content if we can associate to it a “formal
scheme of modules”.

To finish these generalities, we note how the theory of schemes explains some apparent anomalies,
such as the Igusa surface V whose “Picard variety” P consists of a single point, and for which,
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however, H1(V,OV ) ̸= 0; in this case, P is a non-trivial “purely infinitesimal” group, i.e. defined by a
local algebra O of finite rank over the base field k and endowed with a diagonal map corresponding
to the multiplicative structure of P ; if m is the maximal ideal of O, then the dual of m/m2 is
canonically isomorphic to H1(V,OV ) (cf. § C.3 below). It is only when the Picard group is an
algebraic group in the classical sense (i.e. simple over the base field k) that the dimension of
H1(V,OV ) (which is always equal to that of m/m2) is equal to that of the Picard group.

C.2. The schemes HomS(X, Y ),
∏

X/S Z, Aut(X), etc.

Let X and Y be preschemes over S;
for every prescheme T over S, let XT = X ×S T and YT = Y ×S T , and consider the set

F (T ) = HomT (XT , YT ) = HomS(XT , Y ) = HomS(X ×S T, Y )

as a contravariant functor in T . If it is representable, then we denote by HomS(X,Y ) the prescheme
over S that represents it, and we then have a functorial isomorphism

HomS(T,HomS(X,Y ))
∼−→ HomS(T ×S X,Y ).

There are variants of this universal problem, the solutions to which can be summarised as follows:
a prescheme of S-automorphisms of an S-prescheme X (which will be a prescheme in groups), a
prescheme of S-homomorphisms from an S-prescheme in groups to another (which will be a prescheme
in commutative groups if the latter scheme in groups is commutative), etc. We can also generalise
the definition of HomS(X,Y ) by considering a prescheme Z over the prescheme X over S, and the
functor

F (T ) = HomXT
(XT , ZT )

(the set of “sections” of ZT over XT ); if this functor is representable, then the S-prescheme that
represents it will be denoted by ΠX/SZ, and we will thus have, by definition, a functorial isomorphism

HomS(T,ΠX/SZ) = HomXT
(XT , ZT ).

Setting Z = Y ×S X, we recover HomS(X,Y ). From these definitions follows a formula for the
new preschemes thus introduced that is as trivial as it is useful, that we will not give here (given
that it holds in every category where products and fibred products exist). More serious is the
question of existence of schemes of the type HomS(X,Y ). We note first of all that, for fixed X,
HomS(X,Y ) (resp. ΠX/SZ) can only exist for all Y over S (resp. for all Z over X) if X is flat
over S. Furthermore, we can convince ourselves that it is not reasonable to expect the existence
of a solution, for general enough Y , except in the case where X is further proper over S. It seems,
however, that these conditions are sufficient for the existence of HomS(X,Y ) and ΠX/SZ, with
the condition that, if necessary, we make some sort of “quasi-projective” hypothesis on Y/S (resp.
Z/X); this is what we can verify anyway in numerous cases (for example, when Y is affine over S,
or, by direct elementary constructions, when X is finite over S). Then Theorem 1 and Theorem 2
give:

Proposition 2.1. Let Λ be a Noetherian ring, and X and Y arbitrary preschemes over Λ. Consider the
functor

F (A) = HomA(XA, YA)
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on the category C0 of Artinian Λ-algebras. If X is flat over Λ, then this functor is pro-representable.

Furthermore, we can show that, for allA ∈ C0 and all ξ ∈ F (A), we have a canonical isomorphism

F (IA, ξ) = H1
(
XA,HomOXA

(
ξ∗(Ω1

YA/A),OXA

))
where Ω1

YA/A is the sheaf of Kähler 1-differentials of YA with respect to A. Taking A to be a field,
we find, using §A, Proposition 5.1 and the finiteness theorem from FGA 2, the following corollary:

Corollary. Suppose that X is flat and proper over S, and that Y is of finite type over S. Then F is
pro-representable, and the local components of the corresponding topological Λ-algebra are Noetherian rings.

Remarks. The problems considered in this section, and many others, having been generally studied,
in the framework of classical algebraic geometry, via the “Chow coordinates” of cycles in projective
space, allow us to consider these cycles as points of suitable projective varieties. This procedure,
and, more generally, the use of Chow coordinates, seems irredeemably insufficient from the point
of view of schemes, since it destroys the nilpotent elements in the parameterised varieties, and, in
particular, do not lend themselves to a satisfying study of infinitesimal variations of cycles (without
taking its non-intrinsic nature, linked to the projective space, into account). The language of Chow
coordinates has sadly been the only one used by many algebraic geometers for the study of families
of varieties or families of cycles, which seems to have been a serious obstacle to the understanding
of these notions, despite its certain technical interest (probably temporary). If we wish to obtain the
analogue of Chow varieties in the theory of schemes, we are led to the following universal problem:
let X be a prescheme over S, and, for every prescheme T over S, consider the set F (T ) of closed
sub-preschemes of XT = X ×S T that are flat over T ; we want to represent this functor in T via
some prescheme over S.

More generally, we can start with a quasi-coherent sheaf G on X , and take F (T ) to be the set of
quotient sheaves of GT that are flat over T . It seems that there exists a solution to this problem, with
a scheme C that is locally of finite type over S, if X is proper over S, if S is locally Noetherian, and
if F is furthermore coherent. In any case, supposing only that S is locally Noetherian, the restriction
of F to “Artinian S-algebras” is pro-representable, and, if, furthermore, X is proper over S, and F
is coherent, then the local components of the corresponding topological ring O are Noetherian. Of
course, even after having proven the existence of the “Chow scheme” of X over S, it remains to find
a decomposition of it into disjoint open subsets Ci (corresponding to fixing continuous invariants,
such as degree and dimension of the cycles that we vary) over S, as well as to make precise the
relations between this scheme with the classical Chow varieties, and to make precise when a Ci is
projective (or at least quasi-projective) over S.

Remark. [Comp.] The problems described here are completely resolved in the projective case by
“Hilbert schemes” (cf. FGA 3.IV). Examples by Nagata and Hironaka show, however, that the
functors described are not necessarily representable if we do not make the projective hypothesis,
even if we restrict to the classification of subvarieties of dimension 0 of a complete non-singular
variety of dimension 3; this is linked to the fact that the symmetric square of such a variety does not
necessarily exist.

C.3. Picard schemes

[Comp.] For a more complete study, see FGA 3.V.
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Let f : X → S be an S-prescheme, and consider the multiplicative sheaf O×X of units of the
structure sheaf of X, along with the group

P (X/S) = H0(S,R1 f∗(O
×
X)),

called the relative Picard group of X/S. An element of this group is thus defined by giving an open
cover (Ui) of S, along with an invertible sheaf Li on each f−1(Ui), such that Li|f−1(Ui ∩ Uj) is
isomorphic to Lj |f−1(Ui ∩Uj) for all i, j, or, at least locally over Ui ∩Uj (i.e. these two sheaves are
“equivalent” in the sense of FGA 3.I, §B.4). If X/S admits a section, then P (X/S) is exactly the set
of classes of invertible sheaves on X/S up to “equivalence” (loc. cit.). We now set, for all T over S,

F (T ) = P (XT /T )

which gives a covariant functor in T , that we call the Picard functor of X/S; if this functor is
representable, then the prescheme over S that represents it is called the Picard prescheme of X/S,
and denoted by P(X/S). In this case, we then have an isomorphism of functors:

HomS(T,P(X/S))
∼−→ P (XT /T ).

Taking the Picard prescheme is compatible with extension of the base, and, in particular, the Picard
preschemes of the fibres of X over S (which are preschemes over the residue fields K(s) of the
s ∈ S) are the fibres of P(X/S).

Of course, since P (XT /T ) = F (T ) is a commutative group, the Picard preschemes are
preschemes in groups. Note as well that the generalised Jacobians of Rosenlicht are exactly the
connected components of the identity in the Picard schemes of complete curves (possibly with
singularities), which should make most of their properties clear (once their existence has been
proven).

Remark. The definition adopted here is only reasonable when every point of Y admits an open
neighbourhood U over which X admits a section. In the general case, it is necessary to slightly
modify the definition of the Picard functor in order to still obtain an existence theorem.

Here, the plausible existence conditions for a Picard prescheme are the following: X is proper
and flat over S; f∗(OX) = OS ; and X locally admits a section over S. This condition naturally
arises in the application of the technique of descent, in eliminating the automorphisms of an invertible
sheaf L on X by endowing them with a marked section over the section s (FGA 3.I, §B.4). Notably, we
find the following:

Proposition 3.1. Suppose that X is flat over S = Spec(Λ), where Λ is Noetherian, and suppose that,
for all T of finite type over S, we have fT ∗(OXT

) = OT (if f is proper and separable and has separable
fibres, or if S is the spectrum of a field, then it follows from Künneth that the latter condition is equivalent to
f∗(OX) = OS ). Then the Picard functor of X/S on the category of Artinian Λ-algebras is pro-representable.

Furthermore, we then have

F (IA, ξ) = H1(XA,OXA
),

and, in particular:

Corollary. If X is proper over S, then the local components of the topological Λ-algebra corresponding to the
Picard functor are Noetherian.

Remarks. We can generalise the definitions and results from this section to the classification of
principal bundles on X, with structure group G being a scheme in groups over S that is affine and
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flat over S, and also commutative. In the case where G would not be commutative, and thus where
the adjoint bundle in groups of a principal bundle (whose sections of the automorphisms of the
principal bundle) would no longer be trivial, Proposition 3.1 no longer holds true as it is stated. We
can, however, modify the universal problem in such a way that we again obtain a solution (at least,
for now, in formal geometry).

The golden rule to remember, in the context of the current section and in the following, and every time we
are looking for “schemes of modules” for classes of objects that are only defined up to isomorphism, is always
the following: eliminate the possible automorphisms of the objects that we want to classify, by introducing, if
necessary, auxiliary structures (points or elements of marked sections, fixing differential forms, etc.) that we
take to be insignificant enough that we do not substantially modify the initial problem.

Remarks. [Comp.] I have recently shown that the formal scheme of modules for an abelian variety
over a field is indeed simple over the Witt ring, or, in other words, that every abelian scheme X
over a local Artinian ring that is the quotient of another such scheme Y comes, by reduction, from
an abelian scheme over Y . The proof simply uses the variance properties of the obstruction class of
the covering, introduced in FGA II, §6. Recall also that the schemes of modules for curves of genus
g or for polarised abelian schemes have been constructed by Mumford (cf. Séminaire Mumford–Tate,
Harvard University (1961–62)).

C.4. Formal modules of a variety

Let Λ be a local Noetherian ring of residue field k (more often than not, Λ will be equal to k,
or to a Cohen p-ring), and let X0 be a prescheme over k. For every local Artinian Λ-algebra A,
consider the set F (A) of isomorphism classes of A-preschemes X that are flat over A, endowed
with an isomorphism

X ⊗A k(A)
∼←− X0 ⊗k k(A) (*)

where k(A) is the residue field of A; of course, the isomorphisms between such flat A-preschemes
should respect the above isomorphism given in the structure. If A is a (not necessary local) Artinian
Λ-algebra, with local components Ai, then we take F (A) to be the product of the F (Ai). Then F
becomes a multiplicative functor in A, and we call it the functor of modules for X0 (and Λ). If this
functor is representable, then it has a corresponding local topological Λ-algebra O, of residue field
k, and the formal spectrum of O is called the formal scheme of modules for X0 (and Λ) (cf. FGA 2 for
some details on this).

Here, if we wish to apply the technique of descent, the “finite” automorphisms of X0 are
inoffensive, since they have no influence on the existence of automorphisms (in the precise sense
above) of A-preschemes X; the necessary and sufficient condition, if A is not simply a field, for X
to not have any non-trivial A-automorphisms is that

H0(X0,GX0/k) = 0

where GX0/k denotes the sheaf of k-derivations (i.e. the tangent sheaf) of X0. We can easily show
(at least, if X0 is simple over k) that

F (IA, ξ) = H1(XA,GXA/A).

We thus conclude, as per usual:
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Proposition 4.1. Suppose that H0(X0,GX0/k) = 0.
Then the formal scheme of modules for X0 exists. If, furthermore, X0 is proper over k, then the formal

scheme of modules is Noetherian.

Remarks.

1. If X0 is not assumed to be simple over k, then F (IA, ξ) can be identified with a sub-A-module
of

Ext1OPA
(PA;IXA

,OXA
)

where we set PA = XA ×A XA, where OXA
is considered as a coherent sheaf on PA via

the diagonal morphism XA → PA, and where IXA
denotes the coherent sheaf of ideals on

PA defined by the diagonal morphism. More precisely, an easy globalisation of Hochschild
theory shows that the Ext1 above can be identified with the set of classes, up to isomorphism,
of sheaves of IA-algebras O that are flat over XA, and endowed with an augmentation
isomorphism O ⊗IA A→ OXA

(recall that we set IA = At/(t2)). The submodule F (IA, ξ) is
that which corresponds to the sheaves of commutative algebras. The simplicity hypotheses are
thus not essential in the theory of modules, as FGA 2 implies.

2. Recall (loc. cit.) that, in particular, every simple and proper algebraic curve X0 over k admits a
formal scheme of modules that is simple over Λ, and of relative dimension equal to 3g − 3
if the genus g is ⩾ 2, and to g if g = 0, 1. These two latter cases no longer figure directly in
Proposition 4.1. We can, however, recover them in the case of elliptic curves (g = 1) thanks to
the remarks that will follow.

We can, of course, vary Proposition 4.1 ad libitum by considering systems of schemes over k
endowed with various structures. Suppose, for example, that X0 is an abelian scheme over k, with
a marked origin (i.e. X0 is considered as a scheme in groups over k), and let F (A) be the set of
isomorphism classes of abelian schemes over A (i.e. of schemes in groups that are proper and
simple over A) endowed with an isomorphism as in Equation * of abelian schemes. We can show
that imposing a multiplicative structure (or even only a “unit section”) eliminates the infinitesimal
automorphisms, and that there thus exists a formal scheme of modules that corresponds to a
complete local Noetherian ring O. We can also show that, if X is a proper and simple scheme
with “absolutely connected” fibres over a locally Noetherian prescheme S, then every multiplicative
structure on X that admits a unit section is necessarily associative and commutative (provided that
it is associative and commutative on one fibre, and provided that S is connected), and is furthermore
uniquely determined by the knowledge of the unit section.

Further, supposing that S is the spectrum of a local Artinian ring A of residue field k, that
X is proper over A and endowed with a section s, and finally that X ⊗A k is endowed with the
structure of an abelian scheme over k, admitting the point of X ⊗A k corresponding to s as the
zero element, an easy calculation of obstructions, combined with an argument due to Serre, allows
us to prove that there exists on X a multiplicative structure admitting the section s as the unit
section. (From here, using the “existence theorem” of FGA 2 to pass to the case where A is complete
local Noetherian, and then the technique of descent from FGA 3.I for the general case, we can
prove the analogous claim for all locally Noetherian connected S). This proves that the functor
F (A) considered here is isomorphic to the analogous functor defined at the start of this section
by abstracting the multiplicative structure on X0. It then follows that, in particular, if m is the
maximal ideal of O, then m/m2 is canonically isomorphic to the dual of H1(X0,GX0/k), and is thus
of dimension n2, where n = dimX0. It would be very interesting to determine if O is indeed simple
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over Λ, i.e. isomorphic to an algebra of formal series in n2 variables over Λ. Now §A, Proposition
5.2 allows us to give an equivalent formulation of this problem as an existence problem of abelian
schemes that are reducible along a given abelian scheme. In any case, we see, by a transcendental way,
that the answer is affirmative if k is of characteristic 0. In characteristic p ̸= 0, it evidently suffices
to restrict to the case where Λ is the ring of Witt vectors constructed over an algebraically closed
field k. This could be the moment for the “Greenberg functor” to prove its worth...

C.5. Extension of coverings

Let X be a formal Noetherian prescheme [FGA 2], U an open subset of X defined locally by
the “non-vanishing” of a section of OX that is not a zero divisor (and thus large enough that every
section of OX over an open subset V that is zero on U ∩ V is zero). ([Comp.] It is also necessary to
assume that the section defining U is not a zero divisor not only on X, but also on every Xn.) Let J
be an “ideal of definition” for X, and let Xn = (X,OX/J

n+1), which is thus a ordinary Noetherian
prescheme. Then, if X′ and X′′ are flat coverings of X (i.e. preschemes over X defined by sheaves of
algebras that are coherent and locally free as sheaves of modules) that are unramified over U , the
evident map

HomX(X
′,X′′)→ HomX0(X

′
0, X

′′
0 )

is injective; in particular, an automorphism of X′ that induces the identity on X ′0 is the identity. This
allows us to apply the technique of descent to the situation.

We start, in particular, with a flat covering X ′0 of X0, unramified over U0, and let G(X) be the
set of classes, up to isomorphism (inducing the identity on X ′0), of flat coverings X′ of X that induce
X ′0 on X0 (and that are thus necessarily unramified over U). We similarly define G(V ) for every
open subset V of X, and, more generally, G(Y) for every formal prescheme Y over X. With this,
the results of FGA 2 and FGA 3.I imply, first of all, the following results:

a. If V varies amongst open subset of X, then the G(V ) form a sheaf on X, say GX = G . The
restriction of this sheaf to U is the constant sheaf whose fibres consist of a single element.

More generally, describing the fibres of GX is a question of complete local rings, in a precise
way:

b. For all x ∈ X, we have

Gx = G(Spec(OX,x)) ⊂ G(Spec(ÔX,x))

(i.e. isomorphism classes of finite free algebras B over ÔX,x endowed with an isomorphism
from B ⊗ÔX,x

OX0,x to (Ô ′0)x, where O ′0 is the sheaf of algebras on X0 that defines X ′0).

c. We have a canonical isomorphism GX = lim←−GXn
; in other words, for every open subset V of

X, we have G(V ) = lim←−G(Vn).

d. Suppose that X comes from an ordinary proper schemeX over a complete local Noetherian ring
Λ that has ideal of definition m by taking the J -adic completion of OX , where J = m ·OX .
Then G(X) is canonically isomorphic to the set of classes of flat coverings of the ordinary
scheme X that are “reducible along X ′0”.
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Figuratively speaking, we can say that (a) and (b) establish the fundamental relations between the
local and global aspects of the problem; (c) gives the relations between the “finite” and “infinitesimal”
aspects; and finally (d) remembers (under precise conditions) the identity between the “formal” and
“algebraic” aspects.

Now suppose that X is defined by a local complete Noetherian ring Λ, with J = m · OX (and
so X0 is a prescheme over Λ/m). For every algebra A that is finite over Λ, we set

F (A) = G(X×Λ A).

This is a covariant functor in A, with values in the category of sets, and, by (c), this functor is
completely determined by how it acts on Artinian algebras A; it is equivalent to say either that this
functor is pro-representable, i.e. of the form

F (A) = Homtop. Λ-algebras(O, A)

where O is a topological Λ algebra of the type described in § A.5, or that this is true when we
restrict to only Artinian algebras A. The combination of Theorem 1 and Theorem 2 then effectively
implies:

Proposition 5.1. The above functor is pro-representable.

Of course, by (a), if U = X, then G(Y) consists of a single element for all Y over X, and the
functor F is then not very interesting (we will have O = Λ). It seems that, in practically every
other case, the topological local ring O is not Noetherian. Its existence, however, shows, in a striking
manner, the “continuous” nature of the set G(X) of solutions (corresponding intuitively to the fact
that there is a “continuous” choice in the way in which the ramification spreads when we take an
extension of X ′0). We will compare this result with the point of view of J.-P. Serre [@Ser1958] via
local class field theory, drawing attention as well to the continuous character of the topological Galois
group of the maximal abelian extension of a “geometric” local field, with the dual group (in the
sense of Pontrjagin) appearing as an inductive limit of algebraic (or at least quasi-algebraic) groups;
here as well, the classification of extensions is given by infinite-dimensional “varieties”. We can also
take, in the above, X to be the formal spectrum of a complete local ring (of which Λ will be, for
example, a Cohen subring), and we might hope that the results of this section can be used in the
study of extensions of a local complete ring of dimension > 1. Just as much in the local case as in
the global case, they might allow us to formulate precise relations between the phenomena of higher
ramification and phenomena in characteristic 0 (approachable via a transcendental way). In any
case, it is the preliminary analysis of Proposition 5.1 that allows us to extend the methods described
in FGA 2 for the study of the fundamental group to the “tamely ramified” case, and to resolve, by a
transcendental way, the “problem of three points”.

To finish, we note that the situation simplifies if X0 is of dimension 1; then, by (a) and (b),
G(X) can be identified with

∏
iG(Spec(OX,xi

)), where the xi are the points of X0 \ U : we can take
arbitrary “local” extensions at the ramification points. Further, if X0 is normal, then we note that the
formal scheme of modules guaranteed by Proposition 5.1 is simple over Spec(Λ).
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FGA 3.III

Quotient preschemes

A. Grothendieck. “Technique de descente et théorèmes d’existence en géométrie algébrique, III:
Préschemas quotients”. Séminaire Bourbaki 13 (1960–61), Talk no. 212. http://www.numdam.org/
book-part/SB_1960-1961__6__99_0/

0. Introduction

Remark. [Comp.] We note that the application (of the theory developed here) in FGA 3.V (“Picard
schemes: Existence theorems”) can equally be replaced by a suitable use of Hilbert schemes (cf.
Séminaire Mumford–Tate, Harvard University (1961–62)). As mentioned in Chapter 8, the most
important gap in the theory presented here is the lack of an existence criterion for quotients by
a non-proper equivalence relation, such as the equivalence relations coming from certain actions
of the projective group. An important theorem in this direction has been obtained by Mumford
[@Mum1961]. For a refinement of his result, and various applications the the theory, see Séminaire
Mumford–Tate, Harvard University (1961–62).

The problems discussed in the current talk differ from those discussed in the two previous ones,
in that we try to represent certain covariant, no longer contravariant, functors of varying schemes.
The procedure of passing to the quotient is, however, essential in many questions of construction in
algebraic geometry, including those from FGA 3.I and FGA 3.II. Indeed, the question of effectiveness
of a descent data on a T -prescheme X, with respect to a faithfully flat and quasi-compact morphism
T → S, is equivalent to the question of existence of a quotient of X (satisfying reasonable properties
that we examine below) by the flat equivalence relation on X defined by the descent data; the
questions raised in FGA 3.I, §A.2.c can probably be answered at the same time as the questions
posed in Chapter 2 of this current talk. Similarly, the Picard scheme (for the definition, see FGA
3.II, §C.3) of an S-scheme X can be defined in many ways, such as as a quotient of certain other
schemes (with positive divisors, or immersions into a projective) by flat equivalence relations, with
the definition and construction of these auxiliary schemes being also more simple: they are basically
schemes of the type HomS(X,Y ), and variants defined in FGA 3.II, §C.2, and their construction
will be the subject of the following talk (under suitable hypotheses of projectivity). Thus, combining
the results of the current talk with those of the following, we will obtain the construction of Picard
schemes, under suitable hypotheses.

The problem of passing to the quotient in preschemes again offers unresolved questions. The most
important is mentioned in Chapter 8. It currently remains as the only obstacle to the construction
of schemes of modules over the integers for curves of arbitrary degree, polarised abelian varieties, etc. That is
to say, its solution deserves the efforts of specialists of algebraic groups.
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1. Equivalence relations, effective equivalence relations

Let C be a category, and X an object of C.
A pair of morphisms

p1, p2 : R⇒ X,

is said to be an “equivalence pair” in C, with target X and source R, if, for every object T of C, the
corresponding maps

p1(T ), p2(T ) : R(T ) ⇒ X(T )

(where we set Y (T ) = Hom(T, Y ) for any object Y of C) define a map

R(T )→ X(T )×X(T )

that induces a bijection from R(T ) to the graph of an equivalence relation on the set X(T ). We
introduce an evident equivalence relation on equivalence pairs with target X , and call an equivalence
class an equivalence C-relation on X, or simply an equivalence relation if no confusion may arise.

If X ×X exists, then the data of an equivalence relation on X is equivalent to the data of a sub-
object R of X×X such that, for every object T of C, the subset of (X×X)(T ) = X(T )×X(T ) that
corresponds to R(T ) is the graph of an equivalence relation on X(T ). Denoting the morphisms from
R to X induced by the projections pr1 and pr2 by p1 and p2 (respectively), the above condition says
that (p1, p2) is an equivalence pair. We can also express the axioms of a set-theoretical equivalence
relation for the R(T ) in the X(T ) diagrammatically in C (under the assumption that both X ×X
and the fibre product (R, p2)×X (R, p1) exist), following the general principle of FGA 3.II, §A.1.
We will not need this.

Every time that we have a pair of morphisms (p1, p2) with the same source R and the same
target X , we can define the cokernel of the pair as an object Y of C that represents the contravariant
(in Z) functor

Homp1,p2
(X,Z)

which denotes the set of morphisms u from X to Z such that up1 = up2. If Y exists, then it is
determined up to unique isomorphism.

We will denote it by Y/(p1, p2), or, by an abuse of notation, Y/R, with the latter mostly being
used when (p1, p2) is an equivalence pair: it is then common to identify, in notation, the equivalence
relation defined by the pair with the one defined by R. Note that, if we consider Y as a quotient of
X, then it depends only on the equivalence relation defined by the pair (p1, p2)

We now start with a morphism

f : X → Y

which allows us to consider X as an “object over Y ”, and we suppose that the fibre product

R(f) = X ×Y X

exists. Let p1 and p2 be its projections. Then (p1, p2) is an equivalence pair, and is said to be
associated with the morphism f . It thus defines an equivalence relation, which is said to be associated
with the morphism f .

We say that a pair of morphisms (p1, p2) with target X, and source R, is an effective equivalence
pair if
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i. the cokernel Y = X/(p1, p2) exists ;

ii. the fibre product X ×Y X exists ; and

iii. the morphism R→ X ×Y X with components p1 and p2 is an isomorphism.

Then the pair (p1, p2) is indeed an equivalence pair. We also say that the equivalence relation
that it defines is an effective equivalence relation.

We say that a morphism f : X → Y is an effective epimorphism if

i. the fibre product R = X ×Y X exists ;

ii. the quotient X/(p1, p2) exists, where p1 and p2 are the projections from R to X ; and

iii. the morphism X/(p1, p2)→ Y induced by f is an isomorphism.

Then f is indeed an epimorphism, and even a strict epimorphism (cf.FGA 3.I, §A.2.c), with the
converse being true if the fibre product X ×Y X exists. We also say that the quotient object of X
defined by the epimorphism f is an effective quotient of X .

The above definitions imply the following “Galois correspondence”:

Proposition 1.1. There is a bijective correspondence, respecting the natural orders, between the set of effective
equivalence relations R on X and the set of effective quotients Y of X , with such an R corresponding to
the effective quotient X/R, and such a Y corresponding to the effective equivalence relation defined by the
canonical projection X → Y (which is defined by the fibre product X×Y X endowed with its two projections).

In very nice categories (sets, sheaves of sets, etc.), every quotient is effective, and every equiva-
lence relation is effective. This is no longer true in categories such as the category of preschemes
over a given prescheme S, not even if S is the spectrum of field, nor even if we restrict to finite
schemes over S. The question of effectiveness, and even (in the case of non-finite preschemes over
S) the question of existence of quotients, more often than not turn out to be delicate.

2. Example: finite preschemes over S

Let C be the category of finite preschemes over S, which is assumed to be locally Noetherian.
Then C is equivalent to the opposite category of the category of coherent sheaves of commutative
algebras on S, or, if S is affine of ring A, then it is equivalent to the opposite category of the
category of finite A-algebras over A (i.e. those that are modules of finite type over A). We thus
immediately conclude that, in C, finite projective limits and finite inductive limits exist. This is well
known (without any finiteness hypotheses) for the former; the fibre product of preschemes X and Y
over S corresponds to the tensor product B ⊗A C of corresponding algebras, and the kernel of two
morphisms X ⇒ Y , defined by two A-algebra homomorphisms u, v : C ⇒ B, corresponds to the
quotient of B by the ideal generated by the u(v)− v(c), etc. For finite inductive limits, it suffices to
consider, on one hand, finite sums, which correspond to the ordinary product of A-algebras, and, on
the other hand, cokernels of pairs of morphisms X ⇒ Y , which correspond (as we can immediately
see) to the sub-ring of C given by elements where the homomorphisms u, v : C ⇒ B agree (with
this sub-ring being finite over A thanks to the Noetherian hypothesis). We also note that we can
show, using the Noetherian hypothesis, that finite inductive limits, and, in particular, quotients, thus
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constructed in the category C of finite preschemes over S are, in fact, quotients in the category of
all preschemes.

As we mentioned in FGA 3.I, there are non-effective epimorphisms in C (or even non-strict, which is
the same, since fibre products exist). I do not know if equivalence relations are still effective if we have
no flatness hypothesis. I have only obtained, in this direction, very partial, positive, results, that
are vital for the proof of the fundamental theorem of the formal theory of modules (cf. FGA 3.II,
§B, Theorem 1). We note that it is easy, in the given problem, to reduce to the case where S is the
spectrum of a local Artinian ring, with an algebraically closed residue field. But even if A is a field,
the answer is not known.

We can also consider the case of a prescheme X over S that is no longer assumed to be finite over
S, but by considering an equivalence relation R on X such that p1 : R→ X is a finite morphism.
We then say that R is a finite equivalence relation. Supposing, for simplicity, that S and X are affine
(which implies that R is affine, so that the situation is reduced to one of pure commutative algebra),
we do not know, even in this case, if there exists a quotient X/R = Y , and if the canonical morphism
X → Y is finite. (The most simple case is that where we suppose that S is the spectrum of a field
k, and where X is the spectrum of k[t], i.e. the affine line). Of course, if the two problems above
turn out to be true, then we can conclude that, in the situation described, R is effective. Note that
the problem of existence of a quotient Y and of the finiteness of f : X → Y are stated in exactly the
same terms if, instead of an equivalence graph in X , we only have an equivalence pregraph in X , in
the sense of Chapter 4.

The question of passing to the quotient by a more or less arbitrary finite equivalence relation
arises in the construction of preschemes by “gluing” given preschemes Xi along certain closed sub-
preschemes; the gluing law is expressed precisely by a finite equivalence relation on the prescheme
X given by the sum of the Xi. We also expect that the solutions of the problems stated here, as
well as of their many variations, will be a preliminary condition for the clarification of a general
technique for non-projective constructions, in the direction introduced in FGA 3.II.

The only general positive fact known to the author is the following:

Proposition 2.1. Let S be a locally Noetherian prescheme, s a point of S, and Ω an algebraically closed
extension of k(s).

Consider the corresponding “fibre functor” F , that associates, to any S-scheme X that is finite over S,
the set of points of X/S with values in Ω. This functor (which is trivially left exact) is right exact, i.e. it
commutes with finite inductive limits, and, in particular, with the cokernel of pairs of morphisms.

By using this result for all the “geometric points” of S, we thus deduce that the “quotient” category
C′ of C, given by arguing “modulo surjective radicial morphisms” (i.e. by formally adjoining inverses
for such morphisms), is a “geometric” category, i.e. it satisfies the same “finite nature” properties as
the category of sets. In particular, every equivalence relation is effective. This implies that, if R is
an equivalence relation on X , where X is finite over S, then the canonical morphism R→ X ×Y X
(where Y = X/R) is radicial and surjective (and, in fact, a surjective closed immersion, since it is a
monomorphism).

3. The case of a group with operators

We now suppose that C is an arbitrary category. Let G and X be objects of C, and suppose that
G is a C-group with operators on the object X . This implies (cf. FGA 3.II, §A.1) that, for every
object T of C, we have a group structure on G(T ), and the structure of an operator domain on
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X(T ) acting on G(T ), such that, for variable T , the structures in question “vary functorially” in T .
If the products G×G and G×X exist in C, then such a structure can also be defined as a pair of
morphisms

G×G→ G

π : G×X → X

subject to the condition that, for every object T of C, the corresponding composition laws for the
sets G(T ) and X(T ) make G(T ) into a group acting on X(T ). Translating this axiom into the
commutativity of certain diagrams in C is easy, but tedious, and, in fact, perfectly useless in all
cases known to me.

Suppose that G×X exists, and consider the two morphisms

p1, p2 : G×X ⇒ X

with

p1 = pr1

p2 = π.

We immediately note that the pair (p1, p2) is an equivalence pair if, and only if, for every object T
of C, the map

G(T )×X(T ) ∼ (G×X)(T )→ X(T )×X(T )

defined by this pair is injective, i.e. if the group G(T ) acts freely on the set X(T ), i.e. if g ∈ G(T ),
x ∈ X(T ), and g · x = x, then g is the identity element of the group G(T ). We then say that G acts
freely on X (or that X is a principal C-space under G). The equivalence relation associated to the pair
(p1, p2) is then called the equivalence relation defined by the group G acting freely on X . If X ×X also
exists, and we consider the morphism

p : G×X → X ×X

defined by the pair (p1, p2), then the condition that G acts freely implies that p is a monomorphism.
Of course, even if G dose not act freely on X, we still wish to have existence criteria for a

quotient of X by G, i.e. for the cokernel of the above pair (p1, p2).
The cokernel in question will often be denoted by X/G, or by X\G if G acts on the left (with

the previous notation being reserved for when G acts on the right). We note that, even if the “image”
of G×X under p exists (this image being defined, for example, as the smallest sub-object of X ×X
through which we can factor p), say, R, then this is usually not an equivalence relation on X . If we
then try to pass directly to the quotient under R (or, more precisely, under the pair of morphisms
from R to X induced by the two projections pri), then we lose the particular characteristics of
the original pair (p1, p2). It is thus important to find a generalisation of the notion of equivalence
relations, appealing directly to the pair defined by a C-group with operators.

4. Equivalence pre-relations

Recall that a groupoid is defined to be a category where all the morphisms are isomorphisms.
A category should be defined as consisting of two base sets, X and R, with the former being the

set of objects and the latter the set of arrows, endowed with the following structures:
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i. a pair of maps

p1, p2 : R⇒ X

called the source map and the target map ;

ii. a map

π : (R, p2)×X (R, p1)→ R

called the composition map.

These data should satisfy well-known axioms, which we will not repeat here, and which can be
expressed in terms of the commutativity of certain diagrams along with the existence of a (necessarily
unique) map D : X → R that makes two other diagrams commute, where D corresponds to passing
from an object to the corresponding identity map, and satisfies

p1 ◦D = p2 ◦D = idX .

To say that a category is a groupoid then, implies the existence of a (necessarily unique) map

s : R→ R

called the symmetry of R, that sends every arrow to an inverse arrow, which can be expressed in
terms of the commutativity of four other diagrams, built from s, ∆, and the above data, and of
which the first two can be written as

p1 ◦ s = p2

p2 ◦ s = p1.

Having recalled these notions, the general definitions in FGA 3.II, §A.1 show, in particular, what
we should mean by “the structure of a C-category” (resp. C-groupoid) on a pair of objects (X,R) of
an arbitrary category C: it is, by definition, the data, for every object T in C, of the structure of a
category (resp. groupoid) in the set-theoretic sense, whose set of objects is X(T ), and set of arrows
is R(T ), with these structures “varying functorially” in T . This thus implies the definition of two
morphisms

p1, p2 : R⇒ X

called the source morphism and the target morphism, and, if the fibre product in question exists, a
morphism

π : (R, p2)×X (R, p1)→ R

called the composition morphism; these three morphisms then suffice to determine the structure of a
category (resp. groupoid) on (X,R), with the condition to place on them being the following: for
every T , the three corresponding morphisms for X(T ) and R(T ) define the structure of a category
(resp. groupoid) on the pair of sets (X(T ), R(T )). If necessary, this can be expressed in terms of
the commutativity of certain diagrams, implying a well-determined morphism

D : X → R

and, in the case of groupoids, a well-determined morphism

s : R→ R
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where the diagrams are as in the “set-theoretic” case. This tedious interpretation of the axioms is
thankfully useless in practice, with the only theoretical interest in the possibility of being able to
express the data and the axioms using morphisms and equalities of morphisms between certain
fibre products being the following: if we have a left-exact functor F : C → C′ (i.e. a functor that
commutes with finite products and fibre products), then it sends C-categories (resp. C-groupoids) to
a C′-categories (resp. C′-groupoids) (under the condition that finite products and fibre products
exist in C).

It is important, in practice, to know how to understand the morphisms p1, p2, π, D, and s as
simplicial operations in a suitable semi-simplicial or simplicial objects of C (or, at least when fibre
products exist in C). To fix terminology, we introduce the category S of simplex types as the category
whose objects are finite sets of the form

∆n = [0, n]

for n ∈ Z, where [0, n] denotes the interval of integers from 0 to n (inclusive), and whose morphisms
are arbitrary maps between these finite sets. We note that the category S is equivalent to the category
of non-empty finite sets, where we take the morphisms to be maps between finite sets. In S, the sum
of a non-empty finite family of objects clearly exists, as does the amalgamated sum of two objects
over a third (the dual operation to the fibre product). We denote by S′ the subcategory of S that
has the same objects, but where the morphisms are increasing maps between the ∆n. This category
is equivalent to the category of non-empty finite totally ordered sets.

In this category, the sum of two objects never exists, and the amalgamated sum of two objects A
and B over a third C does not exist in general (take, for example, C = ∆0, and A = B = ∆1, with
the two structure maps u : C → A and v : C → B being the equal). However, in certain cases, the
amalgamated sum does exist; consider

A = ∆m B = ∆n C = ∆0

u(0) = m v(0) = 0

which is such that

A
∐
C

B = ∆m+n.

A simplicial object (resp. semi-simplicial object) in a category C is defined to be a contravariant
functor K from S (resp. S′) to C. A simplicial object thus defines a semi-simplicial object by
restriction, but the former differs from the latter essentially by the presence of symmetry operations
in the Kn = K(∆n), which correspond to the images under the functor K of the elements of the
symmetric group on n+ 1 elements (considered as the automorphism group of ∆n in S).

With the above, for all n, let ∆′n (resp. ∆′′n) be the finite category whose set of objects is ∆n,
and whose set of arrows is defined by the “chaotic order” relation (resp. the natural total order
relation) on ∆n (i.e. the set of arrows is the graph of the order relation). It is clear that ∆′n (resp.
∆′′n) depends functorially on the object ∆n of S (resp. S′). So if Z is a category, then Hom(∆′n, Z)
(resp. Hom(∆′′n, Z)) is, for varying ∆n, a functor from the category S (resp. S′) to the category of
sets, i.e. a simplicial set (resp. semi-simplicial set), which is said to be associated to the category Z, and
denoted by Z ′ (resp. Z ′′). We also have an obvious natural homomorphism from the semi-simplicial
set associated to Z ′ to Z ′′, and this is an isomorphism if and only if Z is a groupoid. Then:

Proposition 4.1. The functor Z 7→ Z ′′ from the category of categories to the category of semi-simplicial
sets is fully faithful, and defines an equivalence between the category of categories and the category of
semi-simplicial sets, i.e. contravariant functors K from S′ to Set that send amalgamated sums A

∐
C B

(of the type described above) to fibre products of sets.
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Similarly, the functor Z 7→ Z ′ from the category of groupoids to the category of simplicial sets is fully
faithful, and defines an equivalence between the category of groupoids and the category of simplicial sets, i.e.
contravariant functors K from S to Set that send amalgamated sums to fibre products.

We can thus consider categories as specific examples of semi-simplicial sets, and groupoids as
specific examples of simplicial sets, with, of course, the condition that we argue “up to isomorphism”,
as is rigorous when we interpret certain structures in terms of others. The usual procedure of
reduction to the set-theoretic case then implies:

Corollary 4.2. The above claim remains true when we replace categories, groupoids, and simplicial sets with
C-categories, C-groupoids, and C-simplicial objects (respectively), provided that fibre products exist in C.

The semi-simplicial object K in C associated to a category (X,R, . . .) in C can be made explicit
by considering the component Kn = K(∆n) of K as being the (n+ 1)-th fibre product of (R, p1)
over X, or, even better, by the inductive formula

K0 = R

Kn = (Kn−1, p
(n−1)
n )×X (R, p1)

where the p(n−1)i (for 0 < i < n− 1) are the natural projections from Kn−1 to X (which can also be
defined inductively). In this way, p1, p2, π, D, and s can be understood as simplicial operations that
correspond to morphisms in S, namely: the 0 face of ∆1, the 1 face of ∆1, the (0, 2) face of ∆2, the
degeneracy ∆1 → ∆0, and the symmetry of ∆1 (respectively). Every other semi-simplicial (resp.
simplicial) operation can be formally obtained from the four (resp. five) aforementioned operations
by composition and fibre products.

We now define an equivalence pre-relation on an object X of a category to be the data of a groupoid
whose object of objects is X . Such a data gives, amongst other things, an object R along with two
morphisms

p1, p2 : R⇒ X.

But we note that only these data alone do not determine the structure in question, contrary to what
happens for equivalence pairs. In this talk, we are interested in this notion with the aim of obtaining
criteria for the possibility of passing to the quotient, i.e. for being able to form the cokernel of the
pair (p1, p2). The statement of this problem thus makes no reference to the additional data inherent
to a groupoid.

In the proof of the results that will follow, we will, however, make use of this additional data,
and, in particular, of the simplicial operations (including the symmetry operations) up to dimension
3 (the fourth fibre power of R over X will appear).

An equivalence relation on an object X of C defines an equivalence pre-relation: it suffices to
show this in the set-theoretic case, and we then associate, to an equivalence relation on a set X,
the groupoid whose set of objects is X, and whose set of arrows is the graph set of the equivalence
relation.

A C-monoidG acting on an objectX of C defines a C-category whose basic objects areR = G×X
and X (under the condition that G×X exists), and that is a C-groupoid if and only if G is a group.
It again suffices to prove this in the set-theoretic case. We then define the composition of arrows
(g, a) and (g′, g · a) as being

(g′, g · a) ◦ (g, a) = (g′g, a)

i.e. if a, b ∈ X then Hom(a, b) is, by definition, the transporter of a to b, and morphisms compose
thanks to the composition of elements of G.
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Remark. We can avoid the logical difficulties that arise in a statement such as Proposition 4.1 by
implicitly assuming that all the objects in question can be found in a fixed “universe” (that is itself a
set).

5. Quotient by a finite and flat equivalence relation

Theorem 5.1. Let X = Spec(B) be an affine scheme, R an equivalence pre-relation on X , whose component
R1 is affine: say, R1 = Spec(C). We suppose that the first projection p1 : R1 → X is a finite and locally
free morphism, i.e. that the corresponding homomorphism of rings p′1 : B → C makes C a projective B-module
of finite type. Let A be the subring of B given by the kernel of the pair of homomorphisms p′1, p

′
2 : B ⇒ C (i.e.

the set of elements b such that p′1(b) = p′2(b)). Let Y = Spec(A), and f : X → Y the morphism defined by
the embedding of A into B.

Under these conditions:

i. B is integral over A, i.e. f is an integral morphism.

ii. The morphism f is surjective, and its fibres are the set-theoretic equivalence classes p2(p
−1
1 (x)) in X

modulo R, and the topology of Y is the quotient of that of X .

iii. Y is the quotient of X by R in the category of preschemes.

iv. If R comes from an equivalence relation, then the morphism f : X → Y is finite and locally free (i.e.
B is a projective A-module of finite type), and the equivalence relation is effective, i.e. R1 → X ×Y X
is an isomorphism.

This theorem generalises the well-known theorem concerning the case of a finite group G acting
by automorphisms on the ring B, and with ring A of invariants, and the proof is analogous to the
known proof. We can make (iii) more precise as follows:

Corollary 5.2. The canonical morphism R1 → X ×Y X is surjective.

Let R continue to be a “finite and locally free” equivalence pre-relation on X, but with X now
being an arbitrary prescheme. Suppose that we can find a prescheme Y and a morphism f : X → Y
such that fp1 = fp2, and further such that the sequence

OY → f∗(OX) ⇒ g∗(OR)

of homomorphisms of sheaves of rings on Y is exact (where g = fpi). It then follows from the
theorem that we have conclusions (i) to (iv) analogous to those of the theorem, and, in particular,
by (iii), Y is the quotient of X by R, and thus determined up to unique isomorphism. Under these
conditions, we say that the equivalence pre-relation R on X is admissible. With this definition:

Theorem 5.3. Let X be a prescheme, and R an equivalence pre-relation on X such that p1 : R1 → X is a
finite and locally free morphism. For R to be admissible, it is necessary and sufficient that every set-theoretic
equivalence class p2(p

−1
1 (x)) in X modulo R be contained in an affine open subset (a condition that is always

satisfied if every finite subset of X is contained in an affine open subset, for example if X is quasi-projective
over an affine scheme).
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We can in fact easily show that every equivalence class modulo R in X is then contained in
an affine open subset that is stable under R, and we construct the quotient Y by gluing the pieces
obtained by applying Theorem 5.1.

Corollary 5.4. Suppose that this condition is satisfied, and, further, that R comes from an equivalence
relation. Then the equivalence relation is question is effective, i.e. R1 → X ×Y X is an isomorphism, and
f : X → Y is a finite and locally free morphism.

We then immediately conclude, by descent, the following:

Corollary 5.5. Under the conditions of Corollary 5.4, for X to be everywhere of rank n over Y , it is necessary
and sufficient that (R1, p1) be everywhere of rank n over X . If X and R1 are Z -preschemes, and p1 and p2
are Z-morphisms (and thus Y a Z-prescheme), then X is flat over Z if and only if Y is flat over Z .

In summary:

Scholium. The data of a finite, locally free, and surjective morphism f : X → Y of preschemes
is equivalent to the data of a prescheme X endowed with an equivalence relation R such that
p1 : R→ X is finite and locally free, and such that every class p2(p−11 (x)) is contained in an affine
open subset.

Remarks 5.6.

1. We have not needed to make any Noetherian hypothesis.

2. This idea of passing to the quotient contains, as a particular case, the “inseparable descent” of
Cartier, which corresponds to the determination of finite and locally free morphisms f : X → Y
such that f∗(OX) admits a p-basis with respect to OY (where X is a given prescheme whose
sheaf OX is annihilated by the prime number p > 0). We note that this result can also be
easily expressed without any regularity hypothesis on the local rings, and without supposing
that X is an algebraic scheme over a field. The theory of Jacobson–Bourbaki is obtained by
taking X to be the spectrum of a field of characteristic p.

3. Gabriel had already obtained a particular case of Theorem 5.3 in the theory of passing to the
quotient for finite commutative groups over a field k. (Compare with Corollary 7.4).

6. Quotient by a proper and flat equivalence relation

Theorem 6.1. Let S be a locally Noetherian prescheme, X a quasi-projective S-scheme, and R an
equivalence pre-relation on X , such that:

a. p1 : R1 → X is proper and flat; and

b. R1 → X ×S X is a finite morphism (or, equivalently, by (a), a morphism with finite fibres, which is a
condition that is automatically satisfied if R comes from an equivalence relation).

Under these conditions:
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i. Y = X/R exists, and (if S is Noetherian) is quasi-projective over S. ( [Trans.] [Comp.] The fact
that Y = X/R is quasi-projective over S has only been proven, for now, in the case where R

comes from an equivalence relation.)

ii. The canonical morphism f : X → Y is surjective, proper, and open, and its fibres are the equivalence
classes p2(p

−1
1 (x)) in X modulo R, and so Y can be identified with the topological quotient space of

X by the set-theoretic equivalence relation defined by R. Finally, R1 → X ×Y X is surjective.

iii. If R comes from an equivalence relation, then the equivalence relation in question is effective, i.e.
R1 → X ×Y X is an isomorphism, and, further, f : X → Y is flat (and thus faithfully flat).

Proof. For the proof, we can reduce to Theorem 5.1 by considering suitable quasi-sections of X for
R, with the proof being analogous to the construction of algebraic quotient groups in the Séminaire
Chevalley.

In summary:

Scholium. Let X be quasi-projective over S, with S locally Noetherian. Then the data of a proper,
faithfully flat, and surjective morphism f : X → Y from X to an S-prescheme Y is equivalent to the
data of an equivalence relation R on X such that p1 : R→ X is proper and flat.

The same method gives the following result:

Theorem 6.2. Let S be a Noetherian prescheme, X a prescheme of finite type over S, and R an equivalence
pre-relation on the S-prescheme X . Suppose that

a. p1 : R1 → X is flat and of finite type; and

b. the morphism R1 → X ×S X is quasi-finite (i.e. has finite fibres).

Then there exists a dense open subset U of X that is saturated for R, such that:

i. If RU is the equivalence pre-relation induced by R on U , then U/RU exists, and is of finite type over
S.

ii. The canonical morphism U → U/RU is surjective and open, and its fibres are the set-theoretic
equivalence classes for RU (and thus U/RU is a topological quotient space of U by the set-theoretic
equivalence relation defined by RU ). Finally, the morphism (RU )1 → U ×U/RU

U is surjective.

iii. If R comes from an equivalence relation, then we can suppose that U → U/RU is faithfully flat and
that RU is effective.

This is a result of an essentially “birational” nature.

Remarks 6.3.

1. I do not know if, in Theorem 6.1 and Theorem 6.2, hypothesis (b) is useless. In practice, it
obliges us, in the passage to the quotient by groups, to restrict to he case where the stabilisers
are all finite groups.

2. We can ask if there are results analogous to Theorem 6.1 and Theorem 6.2 without any flatness
hypothesis. I have no counter example in this direction. However, even keeping the flatness
hypothesis, and restricting to equivalence relations such that p1 : R→ X is flat and quasi-finite
(but not finite), and with X affine, it can still be the case that R is not effective: take the
equivalence relations induced on the affine open subsets covering the Nagata variety (or a
group with two elements acting in a “non-admissible” way).
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7. Applications

As we said in the introduction, the most important application of Theorem 6.1 is the construction
of Picard schemes, as well as solutions to various other problems of “modules”, to which we will
later return.

We obtain a simple proof of the following result of Shimura:

Proposition 7.1. Let A be an abelian scheme defined over a discrete valuation ring V with field of fractions
K . Then every abelian scheme B′ over K that is isogenous to a quotient of A⊗V K “simplifies well for V ”,
i.e. is isomorphic to some B ⊗V A, where B is an abelian scheme over V (essentially unique, we recall).

Proof. We can suppose that B′ is the quotient of AK by a subscheme in groups C ′. (N.B. C ′ will
not, in general, be “reduced”, i.e. its local rings will have nilpotent elements). Consider the closed
subscheme C of A given by “the closure” of C ′, i.e. the smallest closed subscheme of A such that
CK contains C ′. Then CK = C ′, and, since V is a discrete valuation ring, we easily deduce that C
is a subscheme in groups of A over V . Since A is proper over Spec(V ) = S, so too is C. Further, A
is projective over S.

We can thus apply Theorem 6.1 in order to construct A/C = B, which is the desired B.

Finally, essentially known arguments allow us to extract from Theorem 6.2 the following result:

Theorem 7.2. Let S be the spectrum of an Artinian ring, F and G group schemes of finite type over S, and
u : F → G a homomorphism of group schemes over S. Suppose that

i. F is flat over S; and

ii. the kernel of u is finite.

Under these conditions, the quotient scheme G/F exists, and the canonical morphism G → G/F is
surjective and open, and its fibres are the set-theoretic equivalence classes defined by the right action of
F on G. Finally, if u is a monomorphism, then the morphism G → G/F is flat, and the morphism
G×F → G×(G/F ) G is an isomorphism, or, in other words, G is a principal homogeneous space over G/F ,
with structure group F (acting on the right), or rather F ×S (G/F ) considered as a group scheme over G/F
(cf. FGA 3.I, §B.6).

Corollary 7.3. Under these conditions, for G to be flat over S, it is necessary and sufficient that G/F be
flat over S. If this condition is satisfied, then the passage to the quotient by F commutes with every extension
of the base S, and if F is an invariant subgroup of G, then G/F can be endowed with the structure of a
quotient group of G by F .

The situation is particularly simple if S is the spectrum of a field, since then every S-prescheme
is automatically flat over S. We find:

Corollary 7.4. Let F and G be group schemes of finite type over a field k, and let u : F → G be a
homomorphism of k-groups. Then u factors as F → F ′ → G, where F → F ′ is a homomorphism given by
passing to the quotient by the closed subgroup Keru of F , and where F ′ → G is a group homomorphism that
is a closed immersion. The quotient G/F = G/F ′ exists. The usual formalism (as in the Noether theorems)
holds amongst algebraic groups over k.

This result allows us to treat the passage to the quotient in a uniform way for algebraic (in the
classical sense, i.e. irreducible over k and simple over k) groups, and the passage to the quotient by
“infinitesimal” subgroups considered by Cartier.
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It is advantageous to consider the “hyperalgebras” introduced by Cartier, following from the
work of Dieudonné on formal groups, as groups in the category of formal schemes over k, and, if
necessary (if they correspond to hyperalgebras of finite rank over k), as algebraic groups that are
finite over k.

8. A conjecture

Remark. [Comp.] It now appears that the conjectures in this section are false, even for non-singular
varieties over a field of characteristic 0, both for the existence and the quasi-projectivity of the
quotient, and even when G acts with a closed graph.

The conjecture in question concerns the need of knowing how to pass to the quotient by the
projective group acting on certain subschemes of “Hilbert schemes” (with these “Hilbert schemes”
replacing, in the theory of schemes, Chow varieties).

Let S be a prescheme, and n an integer. To every prescheme S′ over S, we associate the group
GL(n,Γ(S′,OS′)) of invertible (n× n) matrices with values in the ring of sections of OS′ . We thus
obtain a contravariant functor in S′, which can can easily show to be representable, and so the
functor corresponds to a group scheme over S (which is further affine over S) which we denote by
GL(n)s. Its construction is compatible with change of base, so that, in reality, everything comes
from a group scheme over Z, denoted by GL(n). The group GL(1), called the multiplicative group,
and often denoted by Gm, corresponds to the functor S 7→ Γ(S,OS)

∗, with the latter being the
group of “units” over S. We have an evident homomorphism GL(1)→ GL(n), and we can easily
construct the quotient group, denoted by GP(n− 1), and called the projective group of degree (n− 1)
over Z. It represents the functor that sends S to the group of sections of the sheaf GL (n)S/GL (1)S ,
where GL (n)S denotes the sheaf of germs of sections of GL(n)S over S. (Note that sections of
GP(n−1)S over S do not, in general, come from sections of GL(n)S over S!) Note that we can prove
that GL(n− 1) equally represents the functor S 7→ AutS(Pn−1

S ) (where Pn−1
S is the projective-type

scheme of relative dimension (n− 1) over S), at least when S is Noetherian. It is in this way that it
appears in the theory of modules.

Let S be a Noetherian scheme, which we can, if we want, suppose to be affine, and let X be a
quasi-projective S-prescheme endowed with an invertible sheaf L that is very ample with respect to
S.

Suppose that the group G = GP(n)S acts on X and L simultaneously (in a way that is
compatible with its action on X), and that it acts freely on S.

Conjecture 8.1. Under the above conditions:

1. The equivalence relation defined by G is effective, the quotient Y = X/G is of finite type over S,
and the canonical morphism f : X → Y is flat and surjective (and thus X becomes a homogeneous
principal bundle on Y , with group G×S Y = GP(n)Y ).

2. Let L ′ be the invertible sheaf on Y induced from L by “faithfully flat descent” under f (cf. FGA
3.I, §B, Theorem 1). Then L ′ is “pre-ample” on Y with respect to S, i.e. there exists an integer m
and a quasi-finite morphism from Y to some suitable projective-type scheme PN

S such that (L ′)⊗m is
isomorphic to the inverse image of OPN

S
(1).
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We note that, even if X is separated over S, then it can be the case that Y is not separated
over S (a situation that arises in not-at-all-pathological “module problems”). If (1) is satisfied,
then Y is separated if and only if the equivalence relation defined by G has a closed graph, i.e. if
G×X → X ×X has a closed image (and is thus a closed immersion). If Y is separated, then L ′

is pre-ample on Y with respect to S if and only if it is ample, i.e. if a suitable tensor power defines a
projective immersion. In the module problems mentioned in the introduction, we can show that the
equivalence relation to which we arrive does indeed have a closed graph.

Remarks 8.2. We have assumed that G = GP(n)S to give a concrete example, and because it is
currently the most important case in practice. The reasonable hypothesis to make on G seems
rather to be that G be one of the “forms” on S of a Tohokû group (whose construction over the
integers has also been made by Chevalley). The only positive fact that is known to me concerning
the above conjecture is the following: Let X be an affine scheme over a field k of characteristic 0, on which
the group GL(n)k or GP(n − 1)k acts freely. Then the equivalence relation defined by G is effective, the
quotient X/G is affine, and the morphism X → X/G is flat and surjective. The proof uses the following
fact (that, for now, has only been proven in characteristic 0): if we let G act on the affine ring A of
G, considered as a vector space over k, then the trivial representation of G only appears once (in a
composition series of a vector subspace of finite dimension over k that is stable under G).

It seems possible that a systematic use of the theory of linear representations of G would give a
proof of the conjecture, or at least when we work over a base field. When we are no longer working
over a base field, the author knows nothing.

Remark. [Comp.] As we note at the end of the next talk, the above conjecture is decidedly false.
The “positive fact” mentioned in the above remark seems to have been proven simultaneously by
various authors (Nagata, Rosenlicht, Grothendieck, ...).
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FGA 3.IV

Hilbert schemes

A. Grothendieck. “Technique de descente et théorèmes d’existence en géométrie algébrique, IV: Les
schémas de Hilbert”. Séminaire Bourbaki 13 (1960–61), Talk no. 221. http://www.numdam.org/
book-part/SB_1960-1961__6__249_0/

0. Introduction

The techniques described in FGA 3.I and FGA 3.II were, for the most part, independent of any
projective hypotheses on the schemes in question. Unfortunately, they have not as of yet allowed us
to solve the existence problems posed in FGA 3.II. In the current article, and the following, we will
solve these problems by imposing projective hypotheses. The techniques used are typically projective,
and practically make no use of any results from FGA 3.I and FGA 3.II. Here we will construct
“Hilbert schemes”, which are meant to replace the use of Chow coordinates, as was mentioned in
FGA 3.II, §C.2. In the next article, the theory of passing to the quotient in schemes, developed in
FGA 3.III, combined with the theory of Hilbert schemes, will allow us, for example, to construct
Picard schemes (defined in FGA 3.II, §C.3) under rather general conditions.

In summary, we can say that we now have a more or less satisfying technique of projective
constructions, apart from the fact that we are still missing a theory of passing to the quotient
by groups such as the projective group, acting “without fixed points” (cf. FGA 3.III, §8). The
situation even seems slightly better in analytic geometry (if we restrict to the study of “projective”
analytic spaces over a given analytic space), since, for analytic spaces, the difficulty of passing to
the quotient by a group that acts nicely disappears. Either way, in algebraic geometry, as well as in
analytic geometry, it remains to develop a construction technique that works without any projective
hypotheses.

1. Bounded sets of sheaves: invariance properties

Let k be a field, and X a k-prescheme (which we take to be of finite type, for simplicity). For
every extension K/k, we obtain a K -prescheme XK = X⊗kK. If F is a coherent sheaf on XK , and
if K ′ is an extension of K, then F ⊗K K ′ = FK′ is a quasi-coherent sheaf on XK ⊗K K ′ = XK′ .

So, if K and K ′ are arbitrary extensions of k, and F a quasi-coherent sheaf on XK and F ′ a
quasi-coherent sheaf on XK′ , then we say that F and F ′ are equivalent if there exists an extension
K ′′/k as well as k-homomorphismsK → K ′′ andK ′ → K ′′ such that FK′′ and F ′K′′ are isomorphic
over XK′′ . This defines an equivalence relation, and we are interested in the equivalence classes of
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sheaves under this relation, and of sets of such equivalence classes. Note that, if X0 is of finite type
over k, then every class of coherent sheaves can be defined by a coherent sheaf on XK , where K
is some extension of k of finite type. We can thus, in the definition of classes of coherent sheaves,
restrict ourselves to algebraically closed extensions of k, and we can also restrict ourselves to a fixed
algebraically closed extension Ω of k, of infinite transcendence degree; two coherent sheaves F
and F ′ on XΩ are then equivalent if and only if there exists a K-automorphism σ of Ω such that
F ⊗K (Ω, σ) is isomorphic to F ′. Note that there is a bijective correspondence between classes of
coherent sheaves under the first definition and under the second.

Let E and E′ be two sets of classes of coherent sheaves on X . Consider the classes of all sheaves
of the form F ⊗F ′, where F and F ′ are coherent sheaves on the same XK , with the class of F
being in E and the class of F ′ being in E′. We thus define a set of classes of coherent sheaves that
we denote by E ⊗E′. We can similarly define Tor i(E,E

′), etc. Generally, to every function U that
sends each sequence F1, . . . ,Fn of n coherent sheaves on one single XK to a set U (F1, . . . ,Fn)
of coherent sheaves on XK , and that has the evident property of compatibility with isomorphisms
of sheaves and inverse images under change of base, we associate a function, denoted by the same
notation U , that sends each sequence E1, . . . , En of n sets of classes of coherent sheaves to a set
U (E1, . . . , En) of classes of coherent sheaves.

Our aim in this section is to give a definition of certain sets of classes of sheaves, said to be
bounded, and to show that the most standard operations U , applied to bounded sets, give sets that
are again bounded.

Let X be a prescheme of finite type over S, with S Noetherian. For all s ∈ S, the fibre Xs is a
prescheme of finite type over k(s), and we will consider the classes of coherent sheaves on Xs, in
the above sense. This gives meaning to the phrase “class of coherent sheaves on a fibre of X/S”, as
well as to analogous phrases. Similarly, proceeding separately on each fibre, we can again consider
operations such as E ⊗ E′ etc. that send systems of sets of classes of coherent sheaves on the fibres
of X/S to sets of classes of coherent sheaves on the fibres of X/S.

Definition 1.1. Let E be a set of classes of coherent sheaves on the fibres of X/S. We say that E
is bounded if there exists a prescheme S′ of finite type over S, along with a coherent sheaf F ′ on
X ′ = X ×S S

′, such that E is contained in the set of classes of sheaves on the fibres of X/S defined
by F ′.

This construction, by definition, sends s ∈ S to the classes of sheaves F ′ ⊗S′ k(s′), where s′

runs over the points of S′ over s (so that k(s′) is an extension of k(s), and X ⊗ (Xs)k(s′) can be
identified with the fibre X ′ ⊗S′ k(s′) = X ′s′ of X ′ at s′). We can say that the bounded sets are those
that are contained in an algebraic family of coherent sheaves, parametrised by some S′ of finite type
over S.

A finite union of bounded sets is bounded (take the prescheme given by the sum of the parametris-
ing preschemes Si defining the bounding algebraic families). A base change T → S sends a family
which is bounded with respect to X/S to a family which is bounded with respect to XT /T , and the
converse is true if T → S is surjective (or, more generally, if its image contains the s which appear
in the given family E for X/S). This theoretically leads us to determine the bounded families only
in the case where S is the spectrum of an algebra of finite type over the ring of integers Z.

If E and E′ are bounded families of classes of sheaves with respect to X/S, then E ⊗E′ is also
bounded: indeed, if E (resp. E′) is bounded by the algebraic families defined by T → S and F
on XT (resp. T ′ → S and F ′ on XT ′), then E ⊗ E′ is bounded by the algebraic family defined by
T ′′ = T ×S T

′ → S and the sheaf F ′′ on XT ′′ given by the tensor product of the inverse images of
F and F ′ on XT ′′ . This argument is correct only because the functor F ⊗F ′ is right exact in
both F and F ′, and thus commutates with base extension (and, in particular, with passing to the
fibres). It is not applicable as-is to local operations, such as Tor i(E,E

′), Hom(E,E′), Ext i(E,E′).
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We can, however, show that these operations also send bounded sets to bounded sets, by proceeding
as for E ⊗ E′, but by also using results of the following type (all contained in [Gro1960b, IV 6.11]):
a bounded family E is always bounded by an algebraic family defined by a coherent sheaf F on
some XT (with T of finite type over S) that is flat with respect to T . (We “cut into bits” the initial
space of parameters).

Such flatness properties on suitable sheaves indeed ensure the commutativity of operations such
as Tor i(F ,F ′) with arbitrary base change. The same method applies to operations of a global
nature: direct images and derived direct images of coherent sheaves under proper morphisms, global
Ext with respect to proper morphisms (cf. [GD1960, III §6]), etc.; all these operations send bounded
families of sheaves to bounded families of sheaves (N.B. here the preschemes over which we are
taking the various sheaves can change under the operations in question).

The two claims that follow can be proven by essentially the same flatness technique; for the
primary decomposition on the fibres of a morphisms of finite type, see, in particular, [GD1960, IV].

Proposition 1.2. Let E and E′ be bounded sets of classes of sheaves on the fibres of X/S, with X assumed
to be proper over S. Then

i. the family of kernels, cokernels, and images of homomorphisms F → F ′ (where the class of F is in
E and the class of F ′ is in E′) is bounded;

ii. the family of extensions F ′′ of F by F ′ (where the class of F is in E and the class of F ′ is in E′) is
bounded.

Proof. After potentially applying a suitable base change, we can suppose that E and E′ are defined
by coherent sheaves G and G ′ (respectively) on some XT /T , with T of finite type over S. Further,
we can suppose that certain flatness hypotheses are satisfied, implying that constructing the sheaves
fT (HomOXT

(G ,G ′)) and Ext1fT (G ,G
′) commutes with base change by an arbitrary morphism

T ′ → T . Further, we can suppose that the coherent sheaves above are locally free on T . So let T0
and T1 be the vector bundles on T whose sheaves of germs of sections are (respectively) the above
sheaves. We can then canonically define a homomorphism GT0

→ G ′T0
of coherent sheaves on XT0

,
along with an extension

0→ GT1
→ G ′′ → G ′T1

→ 0

of coherent sheaves on XT1
that has the evident universal property. This second sheaf defines an

algebraic family that bounds the family in question in (ii).
This is also true for the kernel, cokernel, and image of the above homomorphism, and the

consideration of this proves (i) (provided that we assume the cokernel to be flat with respect to T0,
in which case we can again reduce to cutting T0 into pieces...).

Proposition 1.3. Let E be a bounded family of classes of sheaves on the fibres of X/S. Then the classes of
the structure sheaves of the (suppF )red, where F is a coherent sheaf on some XK , with K algebraically
closed, and whose class is in E, form a bounded family.

Here, (suppF )red denotes the support of F , endowed with the induced reduced structure, i.e.
its structure sheaf is the quotient of OXK

by the largest sheaf of ideals that defines suppF . We can
prove the analogous result to Proposition 1.3 for the sheaves canonically induced from F by the
theory of primary decomposition; for example, the F/Fi, where the Fi are the primary subsheaves
of F for the components of the support of F , and minimal with respect to this property; or the
OXK

/p, where p is a prime sheaf of ideals associated to F , or the OXK
/q, where q is a primary

sheaf of ideals associated to a component of the support of F (the reference field being algebraically
closed).
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2. Bounded families and the Hilbert polynomial

In the following, we assume that X is projective over S, and endowed with a very ample sheaf,
denoted by OX(1). For every extension K of a residue extension k(s) of a point s of S, we consider
the corresponding sheaf OXK

(1) on XK , which will again be very ample.
To each coherent sheaf F on XK , we associate the function

PF (n) = the Euler–Poincaré characteristic of F (n) on Xk

which is a polynomial in the integer n, and called the Hilbert polynomial of F . For large values of n,
P (n) is exactly the dimension of H0(Xk,F (n)) over K, since the Hi(Xk,F (n)) are zero for i > 0
and large enough n.

Now, if F is a coherent sheaf on X which is flat with respect to S, then the Hilbert polynomials
of the sheaves FS induced on the fibres XS (with respect to one single connected component of
S) are all equal [GD1960, III, §7]. It thus follows (without any flatness hypothesis) that the set of
Hilbert polynomials of the sheaves Fs, for s ∈ S, is finite for every coherent sheaf F on X .

Recall also that, if F is a coherent sheaf on X, then it is isomorphic to a quotient sheaf of a
sheaf of the form OX(−n)N , for some large enough n,N . So the sheaves Fs induced on the fibres
are also quotients of the sheaf O(−n) on the fibre.

From these two remarks, we reduce the “necessary” part of the following theorem:

Theorem 2.1. Let X be projective over S, with S Noetherian, and OX(1) very ample over X with respect to
S. Let E be a set of classes of sheaves on the fibres of X/S. For E to be bounded, it is necessary and sufficient
that it satisfy the following conditions:

a. There exists a coherent sheaf L on X (which we can suppose to be of the form OX(−n)N ) such that
E is contained in the family of classes of coherent sheaves given by quotients of sheaves of the form LK ;

b. The Hilbert polynomials PF of the sheaves F whose class is in E are elements of a single finite set of
polynomials.

It remains to prove the “sufficient” part, which will be a particular case of a more precise result.
For every coherent module F on a prescheme of finite type over a field K, and for every integer r,
let Nr be the submodule of F whose sections over an open subset are the sections of F over the
same subset whose support is of dimension < r. We thus have that Nr = F for r > dim suppF ,
and Nr = 0 for r ⩽ 0, and we thus obtain a finite increasing filtration of F whose factors Nr/Nr+1

are such that their associated prime cycles are exactly the associated prime cycles of F that are of
dimension r. We set

F(r) = F/Nr

so that the associated prime cycles of F(r) are exactly the associated prime cycles of F that are of
dimension ⩾ r, and, in particular, F(r) is equal to F if and only if the associated prime cycles of
F are of dimension ⩾ r. With this, we have:

Theorem 2.2. Under the conditions of Theorem 2.1, let s be an integer, and suppose that E satisfies condition
(a), as well as the following weakened form of (b):

bs. The Poincaré polynomials PF of the sheaves F whose class is in E have coefficients in degrees
⩽ (s− 1) that are bounded.
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Under these conditions, the sheaves F(s) (for the F whose class is in E) form a bounded family.
Furthermore, the coefficients in degree (s− 2) of the PF are bounded below.

Thus:

Corollary 2.3. Suppose that the sheaves F whose class is in E are such that all their associated prime cycles
are of dimension d, with s ⩽ d ⩽ r. Then, in condition (b) of Theorem 2.1, we can restrict to the coefficients
of PF between degree (s− 1) and r, inclusive.

The end of this section is dedicated to a sketch proof of Theorem 2.2. The key lemmas are the
two following lemmas, of which the first is well known (and summarises the useful mathematical
content of Chow coordinates):

Lemma 2.4. Consider the structure sheaves of the subschemes Y with fibre XK (where K is an algebraically
closed extension of the residue field of S), where Y is reduced, and all its components are of the same dimension
r (and with OY being thought of as a quotient sheaf of OX ). If the degrees of Y are bounded, then the Y
form a bounded family.

Here, the degree a of Y can be most conveniently defined as the coefficient of the dominant
term of POY

= anr/r! + . . ..

Lemma 2.5. Let L be a coherent sheaf on X , and E a set of classes of the quotient sheaves F of the sheaf
LK (where K is a residue extension of S). Suppose that the fibres of X over S are of dimension ⩽ r, and set

PF (n) = aFn
r/r! + bFn

r−1/(r − 1)! + terms of degree < r − 1.

Then the coefficient aF is bounded (above), and bF is bounded below. If bF is bounded, then the family F(r)

is bounded.

Proof. By replacing S by a union of subschemes of S that cover S, we can suppose that there exists
a finite morphism f : X → Pr

S such that OX(1) is isomorphic to the inverse image of OPr
S
(1), and

thus, for every coherent sheaf F on X , we have that PF = Pf∗(F). We can also easily show (by the
technique of the previous section) that a set of sheaves F on X is bounded if and only if the set of
f∗(F ) is bounded. Finally, we have that

f∗(F )(r) = f∗(F(r)).

This thus allows us to reduce to the case where X = Pr
S . Furthermore, we can suppose that

L = OPr
S
(k)s, for some suitable k and s. The coefficient aF satisfies

0 ⩽ aF ⩽ s

and is thus bounded. With this in mind, saying that the nr−1 coefficient PF (n) is bounded below
(resp. bounded) is equivalent to saying the same thing for the PF (n− k) = PF(−k)(n). This leads
us to the case where

L = Os
Pr
S
.

Consider the exact sequence

0→ Nr → F → F(r) → 0

whence

PF = PF(r)
+ PNr
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and, since the nr−1 coefficient of PNr is positive (since dim suppNr ⩽ r − 1), we have that

bF(r)
⩽ bF .

This allows us, in proving the lemma, to replace F by F(r), i.e. to suppose that the quotients F of
L in question are torsion free.

Since Pr
K is normal, it follows that F is locally free of rank a = aF on an open U = Pr

K \ Y ,
where Y is of codimension ⩾ 2. Thus

∧a F is a sheaf on Pr
K whose restriction to U is invertible,

and thus (since Pr
K is regular, and Y is of codimension ⩾ 2) isomorphism to the restriction of an

invertible sheaf on Pr
K , defined up to isomorphism. This latter sheaf is of the form OPr

K
(d) for some

well defined integer d. Since
∧a F is a quotient of

∧a
On

Pr
K
≃ ON

Pr
K

with N =
(
n
a

)
, it admits N

canonical sections, which thus define sections of OPr
K
(d) over U , which are restrictions of sections

si (for 1 ⩽ i ⩽ N) of OPr
K
(d) (since Pr

K is normal, and Y is of codimension ⩾ 2).
These si generate OPr

K
(d) at the points of U , and are thus not all zero, which implies that d ⩾ 0.

An easy calculation also shows that

bF = aF (r + 1)/2 + d.

This shows, in particular, that bF ⩾ 0, and so bF is bounded below. It is bounded if and only if
d is bounded; we will show that F then remains in a bounded family. We can fix aF and bF , as
well as a and b (and thus d). The data of the N sections si of OPr

K
(d), i.e. of a homomorphism

s :
∧a LK → OPr

K
(d), allows us to recover F as the co-image of the corresponding composite

homomorphism:

LK →Hom

(
a−1∧

LK′ ,

a∧
LK

)
→Hom

(
a−1∧

LK′ ,OPr
K
(d)

)

where the first arrow is the canonical homomorphism coming from the exterior product, and the
second comes from s. We then conclude by part (i) of Proposition 1.2.

The combination of the two lemmas above allows us to prove the following:

Lemma 2.6. Suppose, under the preliminary conditions of Theorem 2.1, that, for all F , we have

PF (n) = aFn
r/r! + bFn

r−1/(r − 1)! + terms of degree < r − 1

and that the coefficients aF are bounded. Then the coefficients bF are bounded below. Furthermore, if the
bF are bounded, then the F(r) are bounded.

Proof. We can suppose that the base field K of the sheaves F is algebraically closed. We endow
each suppF(r)(the union of the components of degree r) with the induced reduced structure. Then
the degrees of the suppF(r) are bounded above by a, and so, by Lemma 2.4, the suppF(r) form a
bounded set. Furthermore, for each component of suppF(r), the length of F(r) for this component
is ⩽ a, and so, if IF is the ideal that defines suppF(r), then F(r) can be considered as a module
on the subscheme YF of X defined by I a

F .
As in the previous lemma, we can also reduce to the case where F = F(r), so that F comes

from a module on YF . The YF correspond to a bounded family of quotient modules of the OXK
,

and thus come from a closed subscheme Y of some scheme X ×S T . We can then apply Lemma 2.5
to Y/T and L ⊗X Y , whence the conclusion.
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We can now prove Theorem 2.2 by induction on the upper bound r of the dim suppF . The
statement is trivial for r < 0, so suppose that r ⩾ 0 and that the statement has been proven for
r′ < r. By Lemma 2.6, the F(r) form a bounded family, and so too, by part (i) of Proposition 1.2, do
the kernels of the homomorphisms LK → F(r); there thus exists a coherent module L ′ on X such
that kernels in question, and thus also the Nr(F ) = Ker(F → F(r)), are quotients of modules L ′K .
Since the F(r) are bounded, the PF(r)

are bounded, and the formula

PF = PF(r)
+ PNr

then shows that the PNr
satisfy the same condition (bs) as the PF . Thus the Nr satisfy conditions

(a) and (bs), and so, by the induction hypothesis, the (Nr)(s) are bounded. But F(s) is an extension
of F(r) by (Nr)(s), and so, by part (ii) of Proposition 1.2, the F(s) are bounded. For the last claim of
Theorem 2.2, we note that the kernels Ns of F → F(s) are bounded, by part (i) of Proposition 1.2,
and that the coefficient of the ns−1 term in PNs

is bounded; then Lemma 2.6 proves that the
coefficient of the following term is bounded below. This finishes the proof of Theorem 2.2.

3. Hilbert schemes: definition, existence theorem

Let X be a prescheme over another prescheme S, and F a quasi-coherent module on X . We
denote by

Quot(F/X/S)

the set of quasi-coherent modules given by quotients of F that are flat over S. Now let S′ → S be a
base change morphisms, and set X ′ = X ×S S

′, and F ′ = F ⊗OS
OS′ , so that X ′ is a prescheme

over S′ endowed with a quasi coherent module F ′, and we can consider Quot(F ′/X ′/S′).
We set

QoutF/X/S(S
′) = Quot(F ′/X ′/S′)

(where X ′ = X ×S S
′, as above).

Now, if S′′ → S′ is an S-morphism, then X ′′ = X ×S S
′′ is isomorphic to X ′ ×S′ S′′, and

F ′′ is isomorphic to F ′ ⊗OS′ OS′′ , and, since the inverse image functor G ′ 7→ G ′ ⊗OS′ OS′′ from
the category of quasi-coherent modules on X ′′ is right exact, and sends S′-flat modules to S′′-flat
modules, we obtain a natural map

Quot(F ′/X ′/S′)→ Quot(F ′′/X ′′/S′′)

and so QoutF/X/S(S
′) is a contravariant functor in S′ (where S′ is a prescheme over S), with values

in the categories of sets. In what follows, we suppose that X is projective over a Noetherian S, with F
coherent; for simplicity, we will limit ourselves to considering those S′ that are locally Noetherian over
S.

Theorem 3.1. Under these conditions, the contravariant functor QoutF/X/S on the category of locally
Noetherian S-preschemes is representable by an S-prescheme Quot

F/X/S
, given by the sum of a sequence of

projective S-schemes (and a fortiori Quot
F/X/S

is locally of finite type over S).

We will obtain such a decomposition in the following way. Let OX(1) be an invertible sheaf on
X that is very ample with respect to S. For every polynomial P (n) with rational coefficients, let
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QuotP (F/X/S) be the subset of Quot(F/X/S) consisting of coherent quotients G of F that are
flat over S and whose Hilbert polynomial at each s ∈ S is equal to P . We then set

QoutPF/X/S(S
′) = QuotP (F ′/X ′/S′)

and thus obtain a subfunctor of QoutF/X/S . The invariance property of Hilbert polynomials
(recalled in §2) implies the following: For QoutF/X/S to be representable, it is necessary and sufficient
that the QoutPF/X/S be representable, and then the S-prescheme Quot

F/X/S
which represents it is isomorphic

to the prescheme given by the sum of the QuotP
F/X/S

that represent the functors QoutPF/X/S . With this,
Theorem 3.1 will be a consequence of the following theorem:

Theorem 3.2. With the above notation, the functor QoutPF/X/S is representable by a projective S-prescheme

QuotPF/X/S .

The rest of this section is dedicated to the proof of Theorem 3.2.
Let ν be an integer. For every S′ over S, we denote by Aν(S

′) the set of quotients G = F ′/H
of F ′ = F ⊗OS

OS′ that are coherent, flat over S′, and satisfy the following conditions:

a. Ri f ′∗(G (n)) = 0 for i > 0 and n ⩾ ν;

b. Ri f ′∗(H (n)) = 0 for i > 0 and n ⩾ ν;

c. f ′∗(H (ν + k)) = S′kf
′
∗(H (ν)) for k ⩾ 0.

For this last condition, we suppose that X is written as the homogeneous prime spectrum of a
quasi-coherent positively-graded algebra S• over S that is generated by S1, and we set S′ = S⊗OS

OS′ ,
so that X ′ is the homogeneous prime spectrum of S′. To prove Theorem 3.2, we can easily reduce to
the case where X = Pr

S (since S is a union of open subsets U such that X|U is a closed subscheme
of Pr

U , and OX(1) is induced by OPr
U
(1)), and where F is of the form (OPr

S
)N , and thus flat over S.

Then, in the above, the sheaves H are also flat over S′. It then follows from the Künneth relations
[GD1960, III, §7] and from (b) that the conditions (a) and (b) are stable under base change, and
imply that, for n ⩾ ν, forming f ′∗(G (n)) and F ′∗(H (n)) commutes with extension of the base (*loc.
cit.*). In other words, Aν(S

′) is a contravariant functor in S′, and in a precise sense a subfunctor of
A(S′) = QoutPF/X/S(S

′). For varying ν, we thus obtain an increasing sequence of subsets Aν(S
′)

of A(S′), whose union is A(S′) by a well known theorem of Serre [GD1960, III, §2]. Note now
that, if G is a coherent quotient of F ′ which is flat over S, and s an element of S such that the
base change Spec(k(s))→ S gives rise to a quotient Gs of Fs satisfying conditions (a), (b), and
(c), i.e. is in Aν Spec(k(s)), then there exists an open neighbourhood U of s such that these same
conditions are satisfied by G |(f ′)−1(U), i.e. this quotient is in Aν(U); for (a) and (b), this follows
in fact from the “Theorem of holomorphic functions” [GD1960, III, §7], and (c) follows from the
Nakayama lemma and the fact that we know that f ′∗(H (n+ k)) = S′kf

′
∗(H (n)) anyway for n large

enough and k ⩾ 0 [GD1960, III,§2].
From these remarks, we conclude the following (compare with [Gro1960a, IV]): For the functor A

to be representable, it is necessary and sufficient that the functors Aν be representable, and then the S-prescheme
Q that represents A is the increasing union of the opens Qν that represent the Aν .

Let

M• =
∑
n⩾0

f∗(F (n)) = SN
•

so that we have

M ′• =M• ⊗OS
OS′ =

∑
n⩾0

f ′∗(F (n)) = S′•
N
.
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It follows from (a) that we have

a’. f ′∗(G (n)) is locally free of rank P (n) for n ⩾ ν [GD1960, III, §7]

and it follows from (b),for i = 1, that we have

a”. f ′∗(G (n)) is a quotient module of M ′n.

Also, the knowledge of this quotient module, for n = ν, implies, by (c), that the knowledge of
the submodules f ′∗(H (n)) of Mn for n ⩾ ν, and thus the knowledge of H and consequently of G .
We thus obtain an injective map

Aν(S
′)→ GrassP (ν)(M

′
ν)

from Aν(S
′) to the set of locally free quotient modules of M ′ of rank P (ν), whence a functorial

homomorphism

iν : Aν(S
′)→ GrassP (ν)(Mν)(S

′)

where the functor on the right hand side is representable by the Grassmannian scheme GrassP (ν)(Mν)
(compare with [Gro1960a, V]), which is projective over S. Then

Lemma 3.3. Aν(S
′) is a representable functor, and the morphism Qν → GrassP (ν)(Mν) that represents

the homomorphism iν is an immersion (which implies that Qν is quasi-projective over S).

This claim is equivalent to the following (compare with [Gro1960a, IV]): If we have a quotient
module N of M ′ν that is locally free of rank P (ν), then there exists a subprescheme Z of S′ such that, for
every locally Noetherian prescheme T ′ over S′, the inverse image of N over T ′ is in ℑAν(T

′) if and only if
T ′ → S′ is bounded by the subprescheme Z .

Changing notation, we can suppose that S′ = S, i.e. we have a quotientNν ofMν by a submodule
Rν . For it to come from an element of A(s), it is necessary and sufficient that it satisfy the following
two conditions:

i. Mν+k/SkRν is locally free of rank P (ν + k) for k ⩾ 0.

ii. Both the subsheaf H of F defined by the graded submodule R• =
∑

k⩾0 SkRν of M• (cf.
[GD1960, II, §3]) and the quotient G = F/H satisfy conditions (a) and (b) above.

These conditions are clearly necessary, and if they are satisfied then the sheaf G defined in (ii)
above, being isomorphic to the sheaf associated to the graded S•-module N• given by the sum of the
Mn+k/SkR is flat over S (since its fibres are direct factors of localisations of N for homogeneous
prime ideals of S•), and correspond to the Hilbert polynomial P by virtue of (i). Taking (ii) into
account, we then see that (a’) and (a”) are satisfied, and thus, for n ⩾ ν, the natural homomorphism
Nn → f∗(G (n)) is a surjective homomorphism of locally free modules of equal rank, and thus an
isomorphism, and thus f∗(H (ν + k)) = SkRν for all k ⩾ 0, which proves that G ∈ Aν(S) and that
Rν is the element of GrassP (ν)(Mν) defined by G .

Criteria (i) and (ii) above apply equally to the situation obtained after a change of base S′ → S.
We will prove first of all the fact that condition (i) is satisfied after the change of base S′ → S can
be expressed by saying that S′ → S is bounded by a certain subprescheme Z of S; once we have
shown this result, we are led (replacing S with Z) to the case where condition (i) is already satisfied
on S, and since it is stable under change of base, it remains to express condition (ii). But then, if U
denotes the set of s ∈ S such that the cohomology of the sheaves induced on the fibre Xs by G (n)
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and H (n) is zero in dimension > 0 for n ⩾ ν, then we have already shown that U is open, and
condition (ii) will be satisfied after a change of base S′ → S if and only if S′ → S is bounded by U ,
which proves Lemma 3.3. It thus remains to prove the following lemma:

Lemma 3.4. Let S be a locally Noetherian prescheme, endowed with a quasi-coherent positively-graded
algebra S• generated by S1, and let M• be a quasi-coherent graded S-module of finite type, P a polynomial
with rational coefficients, and ν and integer. Then there exists a (clearly unique) subprescheme Z of S that
has the following property: for every prescheme S′ over S, for Mn ⊗OS

OS′ to be locally free of rank P (n) for
all n ⩾ ν, it is necessary and sufficient that S′ → S be bounded by Z .

We can evidently suppose that S is affine, and thus Noetherian. Then:

Lemma 3.5. For every integer N ⩾ ν, let UN be the open subset of S consisting of s ∈ S such that
rankk(s)Mns ⊗OS,s

k(s) ⩽ P (n) for all ν ⩽ n ⩽ N . Then the decreasing sequence of open subsets UN

stabilises.

Proof. We know [Gro1960b, IV] that S admits a finite partition into reduced subschemes Si such
that each M ⊗OS

OSi
is flat over S. We can thus suppose that M is flat, and thus that the Mn are

flat. Finally, we can evidently suppose that S is connected. But then [GD1960, III, §7] there exists
an integer n0 and a polynomial Q such that

rankk(s)Mns ⊗OS,s
k(s) = Q(n) for n ⩾ n0.

Suppose first of all that P < Q, and so P (n) ̸= Q(n) for large n. Then we evidently have UN = ∅
for large enough N , and thus a fortiori the sequence of UN stabilises. In the contrary case, we
have P (n) ⩾ Q(n) for large n, and so UN = Un0 for N ⩾ n0, and the sequence of the UN again
stabilises.

In particular, the set U∞ of s ∈ S such that

rankk(s)Mns ⊗OS,s
k(s) ⩽ P (n) for all n ⩾ ν (*)

is open, since it is the intersection of the UN . We can then, for the proof of Lemma 3.4 replace
S with the open subset U , which leads us to the case where the inequality in Equation * is satisfied
at all s ∈ S.

Lemma 3.6. Let M be a module on a locally Noetherian prescheme S, and r an integer. Then there exists a
(clearly unique) subprescheme Z of S that has the following property: for all S′ over S, for M ⊗OS

OS′ to be
locally free of rank r, it is necessary and sufficient that S′ → S be bounded by Z . If rankk(s)Ms⊗OS,s

k(s) ⩽
r for all s, then Z is a closed subprescheme of S (supposing that M is coherent).

Proof. Indeed, the above reasoning leads us to the case where we have the inequality Equation * for
all s ∈ S (by replacing, if necessary, S with the open subset consisting of the s where the inequality
is satisfied). We can then suppose that M fits into an exact sequence

O
q
S → Or

S →M → 0

and the condition in question on the S′ over S also implies that, in the corresponding exact sequence
O

q
S′ → Or

S′ →M ′ → 0, the second arrow is an isomorphism, i.e. the first is zero. We then see that
the closed subprescheme Z of S defined by the ideal generated by the coefficients of the matrix
defining the homomorphism O

q
S → Or

S satisfies the desired condition.
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Returning to the proof of Lemma 3.4 where we left off, we denote by Zn the closed subprescheme
of S associated, by Lemma 3.6, to the module Mn and the integer r = P (n), and by Z ′N the infimum
of the Zn for ν ⩽ n ⩽ N . Then the ZN form a decreasing sequence of closed subpreschemes of Z,
which is thus necessarily stationary. Let Z be the constant value of the ZW for large N . This is the
desired Z in Lemma 3.4. This finishes the proof of Lemma 3.4, and thus also of Lemma 3.3.

We have thus proven that QoutPF/X/S is representable by an S-prescheme Q that is an increasing
union of open quasi-projective subpreschemes Qν over S. To go further, we need to invoke Theorem 3.1,
whence we easily conclude that Q is quasi-compact (since it is the image of a prescheme S′ of finite
type over S that parametrises the family of quotient sheaves of the FK whose Hilbert polynomial is
P ). Thus Q is equal to one of the Qν , and thus quasi-projective over S. To prove that it is projective
over S, it thus remains to prove that it is proper over S, and for this it suffices to invoke the valuative
criterion of properness in the form given in [GD1960, II, 7.3.8]. It suffices to verify the following:

Lemma 3.7. Let S be the spectrum of a discrete valuation ring, s its generic point, X a prescheme over S,
F a quasi-coherent module over X , and Gs a quasi-coherent quotient module of Fs = F ⊗OS

k(s) over Xs.
Then there exists a unique quasi-coherent quotient module G of F that is flat over S and whose restriction to
Xs is Gs.

Proof. Indeed, if Gs = Fs/Hs, it suffices to consider the largest subsheaf H of F that induces Hs

([GD1960, I, 9.4.2]) and to take G = F/H . We easily verify that this sheaf works.

Theorem 3.2, and thus Theorem 3.1, is now completely proven.
The proof also shows, at the same time, the following:

Proposition 3.8. Under the conditions of Theorem 3.2, let Q = QuotP
F/X/S

, XQ = X ×s Q, FQ =

F ⊗OS
OQ, and let G be the coherent quotient of FQ, which is flat over Q, that has P as its relative Hilbert

polynomial, so that (Q,G ) represents the functor QoutPF/X/S . Then there exists an integer ν such that, for
n ⩾ ν, (fQ)∗(G (n)) is a locally free module over Q of rank P (n), and is very ample with respect to S, i.e.
it defines an immersion of Q into a Grassmannian scheme GrassP (n)(M) over S. A fortiori, for n ⩾ ν, the

sheaf
∧P (n)

(fQ)∗(G (n)) over Q is invertible and very ample with respect to S.

Proof. Indeed, we can reduce, as in Theorem 3.2, to the case where F is flat over S, and then it
suffices to take an integer ν such that Aν = A (with the notation above).

The most important application of Theorem 3.2 is in the case where F = OX . We then write

Quot
OX/X/S

= HilbX/S

QuotP
OX/X/S

= HilbPX/S

and so we have a decomposition

HilbX/S =
∐
P

HilbPX/S .

By definition, HilbX/S represents the functor H ilbX/S(S
′) which is given by the set of closed

subpreschemes of X ′ = X ×S S
′ that are flat over S; and HilbPX/S represents the subfunctor

corresponding to the closed subpreschemes that admit a given Hilbert polynomial P . These
preschemes are also called the Hilbert prescheme of X over S and the Hilbert prescheme of index P ,
respectively. The terminology is justified by the role played in the theory by the Hilbert polynomials.
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Their difference in nature with the classical Chow varieties (meant to parametrise cycles, not
varieties) is analogous to that between the Chow ring of classes of cycles of a variety and the ring of
classes of sheaves of the variety (as is introduced in the Riemann–Roch theorem [BS1958]);

we note that, when X = Pr
S , with S the spectrum of a field, the knowledge of the Hilbert

polynomial of a coherent module F over X is equivalent to that of the Chern classes of F , or even
of the class of F in the ring of classes of coherent sheaves on X .

Remarks 3.9. We also note that the construction of Quot
F/X/S

and QuotP
F/X/S

was reduced to

the case where X = Pr
S and F = ON

X , with OX(1) being the usual very ample sheaf; more precisely,
the general Quot

F/X/S
arise as closed subpreschemes of the above. Since forming the QuotP

F/X/S

is evidently compatible with base change S′ → S, we see that we can reduce to the case where
further S = Spec(Z):

QP
r,N = Quot

(OPrZ
)N/Pr

Z/ Spec(Z)

and, more particularly, the absolute Hilbert schemes:

HilbPr = QP
r,1.

A more detailed study of these schemes, starting with determining their connected components (are
they connected?), and their irreducible components (by Serre [Ser1961], there can exist irreducible
components that exist entirely over a prime number p ̸= 0), would be very interesting. Recall the
question of Weil, asking if the irreducible components of the fibres of HilbPr over the s ∈ Spec(Z)
correspond to “regular” extensions of the prime field, i.e. if they are “relatively connected”. It could
be the case that these questions are more accessible for Hilbert schemes than for “Chow varieties”.

[Comp.] The study of connected components of Hilbert schemes over an algebraically closed
field was done by Hartshorne, who proves that the HilbPr are connected, and determines the pairs
(r, P ) for which HilbPr ̸= ∅ [Har1966].

4. Variants

a. Under the conditions of Theorem 3.1, let U be open in X , and denote by A′ the subfunctor of
A = QoutF/X/S such that A′(S′) is the set of quotient modules G of F ′ that are flat over S′

and whose support is contained inside U ′. We immediately see that A′ is representable by an
open subset of the prescheme Quot

F/X/S
that represents A.

It follows that Theorems Theorem 3.1 and Theorem 3.2 remain true if we suppose that
X is quasi-projective over S instead of projective over S, as long as we also replace in the
conclusions the word “projective” by “quasi-projective”, and use QoutF/X/S(S

′) to mean the
set of coherent quotients G of F ′ that are flat over S′ and whose support is proper over S′.

b. Generally we can impose all sorts of supplementary natural conditions on the quotients G
of F ′ = F ⊗OS

OS′ that are flat over S′ and stable under base change, thus obtaining as
many subfunctors of QoutF/X/S as we want to represent. The usual criterion allow us, in
many cases, to prove that we again obtain functors that are representable by open subsets
of Quot

F/X/S
. This is, in particular, the case if we impose one of the following additional

properties:

105



FGA 3.IV
4. Variants

(a) The dimensions of the prime cycles associated to the modules Gs′ (for s′ ∈ S′) that are
induced on the fibres X ′s′ belong to a given set of integers.

(b) (In the case where F = OX , and thus G corresponds to a closed subprescheme Y of
X ′); Y is a simple prescheme [Gro1960b, IV] over S, resp. normal over S (i.e. the fibres
Ys′ are normal “over k(s)”, i.e. are normal under any extension of base field), resp. (if
X is flat over S) are local complete k-intersections in X with respect to S (i.e. the fibres
Ys′ are local complete intersections in the Xs′).

Other conditions would involve properties of a cohomological nature on the modules Gs′

induced on the X ′s′ , etc. Of course, the conjunction of conditions where each is represented by
an open Ui of Quot

F/X/S
is represented by the open intersection. For example, considering,

for all S′ over S, the set of closed subpreschemes Y of X ′ = X ×S S
′ that are étale covers

[Gro1960b, I] of a given rank r over S′, we obtain a representable contravariant functor in S′.

c. The preschemes HomS(X,Y ),
∏

X/S Z/S, and IsomS(X,Y ), defined in FGA 3.II, §C.2 exist
thanks to suitable projective hypotheses, and can be realised as opens in suitable Hilbert
preschemes. Since we have HomS(X,Y ) =

∏
X/S((X × Y )/X), the case of HomS(X,Y )

reduces to that of
∏

X/S(Z/X). We then note that, for all S′ over S, the set of sections of
Z ′ = Z×S S

′ over X ′ = X×S S
′ is in bijective correspondence with the set of subpreschemes

Γ of Z (necessarily closed if Z is separated over X) such that the morphism Γ→ X ′ induced
by Z ′ → X ′ is an isomorphism.

In this way, ifX is flat and proper over S, and Z quasi-projective over S, then
∏

X/S(Z/X) exists and
is realised as an open subprescheme of HilbZ/S . Thus if X is projective and flat over S, and Y quasi-
projective over S, then HomS(X,Y ) exists and is realised as an open subprescheme of Hilb(X×SY )/S .
IfX and Y are both projective over S, then it immediately follows that IsomS(X,Y ) also exists,
and is represented by an open subset of HomS(X,Y ). Similarly, if X is flat and projective over
S, and Y quasi-projective over S, then the S-prescheme ImmS(X/Y ) that corresponds to the
subfunctor of the functor represented by HomS(X,Y ) that corresponds to S′-homomorphisms
X ′ → Y ′ that are immersions is also representable by an open subset of HomS(X,Y ).

Let L (resp. M ) be an invertible sheaf on X (resp. Y ) that is very ample with respect
to S, whence we obtain a sheaf L ⊗OS

M on X ×S Y that is very ample with respect to
S. Then, for any polynomial P with rational coefficients, HilbP(X×SY )/S is defined and is a
quasi-projective prescheme over S. It thus induces, on HomS(X,Y ), a subset that is both
open and closed, and quasi-projective over S, which we denote by HomS(X,Y )P . Thus the
sections of HomS(X,Y )P over S are the S-morphisms g : X → Y such that, for any integer
n, we have

χ
(
(L ⊗OX

g∗(M ))⊗n
)
= P (n).

In this way we obtain generalisations of Matsusaka’s theorem, affirming that the automorphisms
of a “polarised” projective variety form an algebraic group, a claim that here has an evidently
more precise meaning, since we have a definition of this group as the solution to a universal
problem. We note also that, over an algebraically closed field, the group of automorphisms
considered in the past is that which is induced by the “true” one defined here, by dividing by
the nilpotent elements; this explains why there is little chance that the historical constructions
could be done over a non-perfect base field, since the ideal of nilpotent elements that appears
after an extension of the base field is not necessarily “defined over k”. This same remark
applies equally to the majority of historical constructions.
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5. Differential study of Hilbert schemes

We have the following result:

Proposition 5.1. Let S be a prescheme, S0 a subprescheme defined by a square-zero quasi-coherent ideal I ,
X an S-prescheme, and F a quasi-coherent module on X . Let X0 = F ×S S0 and F0 = F ⊗OS

OS0 .
Finally, let G0 = F0/H0 be a quasi-coherent quotient module of F0 that is flat over S0. For every open U
of X , let E (U) be the set of quasi-coherent quotient modules G of F |U that are flat over S and are such that
G ⊗OS

OS0
= G0; as U varies, the E (U) are the sections of a sheaf E on U . With this, the sheaf of groups

A = HomOX0
(H0,G0 ⊗OS0

I )

acts naturally on E , which thus becomes a “formally A -principal homogeneous” sheaf (i.e. for every open U
in X , E (U) is either empty or an A (U)-principal homogeneous set).

We thus conclude:

Corollary 5.2. Suppose that there exists locally on X an extension G of G0 to a quotient of F that is flat
over S (i.e. that the fibres of the sheaf E are non-empty). Then there exists a canonical obstruction class

c(G0) ∈ H1(X,A )

whose vanishing is necessary and sufficient for the existence of a global extension G of G0 to a quotient of F
that is flat over S. If this class is zero, then the set E (X) of all possible extensions is a principal homogenous
set for A (X) = HomOX

(H0,G0 ⊗OS0
I ).

The existence of a global extension is thus guaranteed, in particular, if H1(X,A ) = 0.

Corollary 5.3. Suppose that Q = Quot
F/X/S

exists (cf. §4.a) — for example, suppose that X is quasi-

projective over some locally Noetherian S, and F is coherent. Let x ∈ Q, corresponding to a residue extension
K = k(x) of some k(s) (where s ∈ S).

Then x is defined by a coherent quotient module G0 = F0/H0 of the module F0 = FK on the
K-prescheme XK . Let A be the coherent sheaf on XK defined by

A = HomOX0
(H0,G0).

Then the Zariski tangent space of the fibre Qs at the point x (given by the dual over K of m/m2, where
m is the maximal ideal of OQk,x) is canonically isomorphic to H0(Xk,A ).

The result giving the Zariski tangent space can be generalised, and gives a characterisation, for
a given S-morphism g : S′ → Q, i.e. a section g′ of Q′ = Q×S S

′ over S′, of the module

Ω = g∗(Ω1
Q/S) = g′

∗
(J /J 2)

(where J is the ideal on Q′ defined by the section g′ of Q′ over S′) by the formula

HomOS′ (Ω,M ) ≃ H0(X ′,A )

which is functorial in the coherent module M over S′, and where A is again the module on
X ′ = X ×S S

′ defined by

A = HomOX′ (H ,G ⊗OS
M )
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(G = F ′/H being the quotient module of F ′ = F ⊗OS
OS′ that corresponds to g). It suffices to

apply Proposition 5.1 by replacing S0 with S′, and S with the prescheme D(M ) = (S′,OS′ + M ),
where M is considered as a square-zero ideal.

If, in Proposition 5.1, we have F = OX , then the data of G0 corresponds to the data of a closed
subprescheme Y0 of X0 that is flat over S0, defined by the ideal J0 = M0, and then Equation *
gives

A = HomOX0
(J0/J

2
0 ,OY0

⊗OS0
J )

where J /J 2 is thought of as the conormal sheaf of Y0 in X0, which we also denote by NY0/X0
;

it is then interesting to consider A as a module over Y0, and to calculate H0 and H1 on Y . If Y0
is locally a complete intersection in X0, with X flat over S, then, in Proposition 5.1, the possibility
of a local extension is guaranteed, and J /J 2 is locally free over Y0 and we can write

A = ŇX0/Y0
⊗OS0

J

where the first factor on the right-hand side is the normal cone of Y0 insideX0. Using the fundamental
criterion of simplicity [Gro1960b, III, 3.1], we find, for example:

Corollary 5.4. Under the conditions of Corollary 5.3, suppose that F = OX , with X flat over S, and that
the closed subprescheme Y0 of X0 that corresponds to G0 is locally a complete intersection. Then the Zariski
tangent space of Qs at x is canonically isomorphic to H0(Y0, ŇX0/Y0

). If H1(Y0, ˇNX0/Y0
) = 0, then the

Hilbert prescheme X is simple over S at the point x (where ŇX0/Y0
is the normal sheaf of Y0 inside X0).

Remark 5.5. This statement applies in particular when Y0 is a complete intersection in X0 defined
by one single equation, i.e. is a positive “Cartier divisor”. Then ŇX0/Y0

is isomorphic to the sheaf
on Y0 induced by the invertible sheaf J −1 on X0 defined by the divisor Y0. This is the situation
that we find in particular in the study of families of positive divisors on a non-singular projective
variety X0. The isomorphism between the Zariski tangent space at the point x of Q (or, if one
prefers, of the open D of Q that corresponds to the divisors) and H 0(Y0, ŇX0/Y0

) was known in
classical algebraic geometry under the name of “*characteristic homomorphism*” (from the former
to the latter). It was not defined when x was a simple point of the variety of parameters T of a
“complete continuous family” of divisors, i.e. from our point of view, of an irreducible component
of the scheme D, endowed with the induced reduced structure. The tangent space of T at x is then a
subspace of the tangent space of D at x, and so the characteristic homomorphic of yore is indeed
injective, but it is not surjective except for under supplementary conditions, for example if D is
integral at x.

In fact, Zappa [Zap1945] constructed an example (with X a non-singular projective surface over
the field of complex numbers) where even at the generic point of T the characteristic homomorphism is
not surjective. This thus implies that D is not integral even at the generic point of the irreducible component
in question. This shows in a particularly striking manner how varieties with nilpotent elements are
necessary for understanding the most classical phenomena of the theory of surfaces.

[Comp.] Concerning the example of Zappa, we note that Mumford has even constructed an
irreducible component of the Hilbert scheme for P3

C (whose general points represent non-singular
curves of degree 14 and genus 24), which is non-reduced at its generic points. Blowing up the curves
obtained, he also obtains a regular projective scheme of dimension 3 over C, whose formal scheme
of modules is non-reduced at its generic point, or, equivalently, such that its local variety of modules,
in the sense of analytic geometry, over C (see Séminaire Cartan 13, 1960/61) is non-reduced at all its
points.
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Remark 5.6. We have given, in Remark 5.5, a criterion for simplicity, which applies in particular
to schemes of divisors. Kodaira gave a different criterion in [Kod1956], given by the vanishing of
H1(X0,L ), where L = J −1

0 is the invertible sheaf on X0 defined by the divisor Y0; this criterion
holds whenever S is the spectrum of a field of characteristic 0, and is proved in [Kod1956] by
transcendental methods in the case where the base field is C. We note here that, in general, S now
arbitrary, Kodaira’s condition is a sufficient condition for the canonical morphism D → PicX/S from
the prescheme of divisors to the Picard prescheme of X/S to be simple at the point x in question
(as we easily verify by the usual criterion for simplicity, once we have the existence of PicX/S). Then
if, further, PicX/S is simple over S at the point given by the image of x (for example if PicX/S is
simple over S), then D is simple over S at x. On the other hand, Cartier has shown that every
group prescheme locally of finite type over a field k of characteristic 0 is simple over k. By combining
these two results, we recover the result of Kodaira. Note that it follows from these remarks that,
over a field K of characteristic p > 0, if PicX/S is not simple over k (which is the case whenever
X is the Igusa surface), then the condition H1(X0,L ) = 0 implies to the contrary that D is not
simple at x, and even not reduced at x if K is algebraically closed.

To finish, we give the following result, which plays an important role in the differential study of
fibred spaces:

Proposition 5.7. Let X be a finite prescheme that is flat over S and locally Noetherian, and let Z be a
prescheme over S such that

∏
X/S(Z/X) exists (which is the case if Z is quasi-projective over X). If Z is

simple over X , then
∏

X/S(Z/X) is simple over S.

Proof. This is an immediate consequence of the definition, and of the usual criterion of simplicity
[Gro1960b, III, §3.1].

Note that if X is finite and flat over S, then the question of the existence of
∏

X/S(Z/X) can be
dealt with in a very elementary manner, without using the theory of Hilbert schemes.

We find, for example, that ifX is radicial over S, then
∏

X/S(Z/X) exists without any restrictions
on Z. For example, let T be an S-prescheme, and let Tn be “the infinitesimal neighbourhood of
order n” of the diagonal of T ×S T in T ×S T , endowed with the morphisms p1, p2 : Tn → T induced
by the two projections. We can consider Tn as a finite prescheme over T thanks to p1, and we
suppose further that Tn is flat over T (which is the case if T is simple over S). For every prescheme
X over T , set

(X/T/S)(n) =
∏
Tn/S

(p∗2(X/T )/Tn)

which is a prescheme over T called the bundle of germs of sections of order n of X over T (with respect
to S). This depends functorially on X, and is simple over T if X is.

6. Relation to the notion of norm and symmetric products

Let S be a prescheme, let X and Y be S-preschemes, and let

u : (X/S)n → Y
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be a symmetric S-morphism from the n-th cartesian power of X/S to Y . Suppose, for simplicity, that
S is locally Noetherian, and that X and Y are of finite type over S. We can then associate, to every
coherent module F on X with finite support on S that is furthermore flat over S and of rank equal
to n with respect to S (i.e. such that f∗(F ) is a locally free module of rank n on S), in a natural
way a section of Y over S:

N u
X/S(F ) ∈ Γ(Y/S).

We will not give here the details of the definition, but instead content ourselves with noting that
the formalism to which one arrives is a natural generalisation of the usual formalism of norms
and traces. When the symmetric n-th power of X over S exists (for example, if the orbits of the
symmetric group σn acting on (X/S)n are contained inside affine opens), we can take Y to be this
symmetric power Symmn

S(X), and we obtain a canonical element

NX/S(F ) ∈ Γ(Symmn
S(X)/S)

which allows us to recover the N u
X/S(F ). Another important case is that where X is a commu-

tative monoid over S, and X = Y , and the morphism u comes from the composition law of X . We
then simply write N (F ) for the section of X over S associated to the module F on X .

Now suppose that we have a coherent module F on X such that Quot
F/X/S

exists, or at least

such that the functor QoutnF/X/S , which associates to each S′ over S the set of coherent quotient
sheaves M of F ′ = F ⊗OS

OS′ that are flat over S and of relative rank n, is representable by an
S-prescheme Quotn

F/X/S
. (If X is quasi-projective over S, then Quotn

F/X/S
indeed exists, and is

exactly, with the notation of Chapter 3, QuotP
F/X/S

, where P is the polynomial consisting of the

constant term n). Since the formation of the N u
X/S(M ) is compatible with base change, we thus

obtain a canonical morphism

N u
X/S : Quotn

F/X/S
→ Y

and, in particular, if the n-th symmetric power of X over S exists,

NX/S : Quotn
F/X/S

→ Symmn
S(X).

The most important case is that where F = OX , which gives a morphism

NX/S : HilbnX/S → Symmn
S(X).

This is evidently an isomorphism for n = 0 and n = 1. But for n ⩾ 1, even if S is the spectrum of a
field k, and X is simple over S, it is not in general an isomorphism nor even an injective morphism,
since a sub-scheme of dimension 0 of X (corresponding, for example, to a primary ideal I for the
maximal ideal in a local ring OX,x, for a closed point x of X) is not known when we know only the
cycle that it defines (to be precise, when we know the codimension over k of I in OX,x). We can
only say the following (where S is once more arbitrary):

a. If X is simple over S, then the norm morphism defines an isomorphism from the open of
HilbnX/S that corresponds to the classification of étale covers of rank n contained inside X (cf.
§4.b) to the open of Symmn

S(X) that corresponds to the n-cycles without multiple components.

b. If furthermore X is of relative dimension 1 over S, then the norm morphism even defines an
isomorphism from HilbnX/S to Symmn

X/S .
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This second fact is due to the fact that a subscheme of dimension 0 of a non-singular algebraic
curve is known whenever we know the corresponding cycle. The same remark also applies more
generally to Cartier divisors that are positive over a non-singular algebraic scheme (and it is not
excluded that, in this very particular case, the Chow variety gives the same thing as the Hilbert
variety).

7. Supplements and questions

As remarked by J.-P. Serre, it follows from a well-known example of Nagata that we can find
a scheme S that is the spectrum of a field k, an S-scheme S′ that is the spectrum of a quadratic
extension k′ of k, and finally a simple and proper (but non-projective) S′-scheme X of dimension 3
such that

∏
S′/S(X/S) does not exist. This implies a fortiori that the Hilbert scheme Hilb2X/S does

not exist (nor even the k-scheme that would represent the étale covers of rank 2 of S contained
inside X, nor a fortiori the symmetric square of X, cf. Chapter 6). This thus imposes serious
limitations on the possibilities of non-projective constructions in algebraic geometry. (It is, however,
plausible that such limitations do not present themselves in analytic geometry, just as they do not
present themselves in formal geometry (cf. FGA 3.II)). However, if X is a proper scheme over
the spectrum S of a field k, and if Z is quasi-projective over X, then

∏
X/S(Z/X) exists, and is a

scheme, given by the sum of a sequence of quasi-projective schemes over S (as in the projective case
Theorem 3.1). To see this, we can reduce to the case where X is itself projective, by dominating X
by a projective S-scheme X ′; we will not give here the details of the proof, which also uses the result
of factorisation of a finite morphism given in FGA 3.I, §A.2.b. The success of the method is all in
the fact that, with S the spectrum of a field, the X ′ that appears in Chow’s lemma will automatically
be flat over S. I do not know if the result remains true without any hypotheses on S, supposing only
that X is proper and flat over S, and that Z is quasi-projective over X . An important case in the
applications is that where Z is a closed subscheme of X ; if then

∏
X/S(Z/X) exists, it is necessarily

a closed subscheme of S.
We can construct it directly in a relatively simple manner whenever X is projective over S,

without using the theory of Hilbert schemes, and the method used shows more generally that, if Z
is affine over X, then

∏
X/S(Z/X) exists and is affine over S. It equally shows that, if X is proper

and flat over S (but not necessarily projective over S), then, for every vector bundle Z that is locally
trivial on X ,

∏
X/S(Z/X) exists and is a vector bundle on S. It would be desirable for these results

to be studied again and unified.

111



FGA 3.V
1. Relative Picard groups and functors

FGA 3.V

Picard schemes: Existence theorems

A. Grothendieck. “Technique de descente et théorèmes d’existence en géométrie algébrique, V:
Les schémas de Picard: Théorèmes d’existence”. Séminaire Bourbaki 14 (1961–62), Talk no. 232.
http://www.numdam.org/book-part/SB_1961-1962__7__143_0/

1. Relative Picard groups and functors

For every prescheme (more generally, every ringed space) X, we define the (absolute) Picard
group of X, denoted by Pic(X), to be the group of isomorphism classes of invertible (i.e. locally
isomorphic to OX) modules on X . We thus have a canonical isomorphism

Pic(X)
∼−→ H1(X,O×X) (1.1)

where O×X denotes the sheaf of units of OX (which can be identified with the sheaf of automor-
phisms of the invertible module OX). Note that X 7→ Pic(X) is a contravariant functor in X in the
evident way, and that the isomorphism Equation 1.1 is functorial.

IfX is a prescheme over a prescheme S, then, for variable S′ in the category Sch/S of preschemes
over S, we have a contravariant functor S′ 7→ Pic(X ×S S

′) thanks to the above. This functor
has no chance of being “representable” (FGA 3.II, §A) since, as a consequence of the existence of
non-trivial automorphisms of invertible modules that we propose to classify, this functor is not of a
“local nature” ([Gro1960a, IV, 5.4]). There is thus an opportunity to “make it local”, by introducing,
for every relative prescheme X/S, a group of a relative nature

Pic′(X/S) = H0(S,R1 f∗(O
×
X)) (1.2)

(where f : X → S is the structure morphism) (cf. FGA 3.II, §C.3). In loc. cit. this group is called
the relative Picard group, but it will be preferable to call it here the restricted relative Picard group
of X/S, for reasons that will be made clear. As S′ varies over Sch/S , S′ 7→ Pic′(X ×S S

′/S′) is a
contravariant functor in S′, denote also by Pic′X/S , thus given essentially by the formula

Pic′X/S(S
′) = Pic(X ×S S

′/S′). (1.3)

This functor is now “of local nature”, given that did what was necessary to make this happen.
Intuitively, the right-hand side of Equation 1.3 can be understood as the set of “algebraic families”
of classes of invertible sheaves on (the fibres of) X/S, indexed by the parameter prescheme S′/S.
When the functor Pic′ is representable, the prescheme over S that represents it is denoted by
PicX/S , and is called the Picard prescheme of X over S, and so we then have
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HomS(S
′,PicX/S)

∼= Pic′X/S(S
′) = Pic′(X ×S S

′/S′). (1.4)

There are, however, important cases where Pic′X/S is not representable (example: the “Brauer–Severi”
variety over a field k, without a rational point over k), but where there nevertheless exists a natural
definition of a relative Picard prescheme. This is due to the fact that, in the definition of the functor
Pic′ from the absolute Picard groups Pic(X×SS

′/S′), we have not localised enough; more precisely,
Pic′ is not in general “compatible with faithfully flat descent”. We now explain the details.

Let (M ) be the set of morphisms of preschemes that are faithfully flat and quasi-compact; this set
is stable under base change and composition. Let P be a contravariant functor from Sch/S to the
category of sets, and, for every S-morphism u : T ′ → T with u ∈ (M ), consider the diagram

P (T )→ P (T ′) ⇒ P (T ′ ×T T
′) (1.5)

which is given by P applied to the diagram

T ← T ′
pr1
⇔
pr2

T ′ ×T T
′.

If P is representable, it follows from the theory of descent (FGA 3.I, §B, Theorem 2) that the
diagram Equation 1.5 is exact for all u ∈ (M ). We express this fact by saying that P is compatible
with (M ), in the event that P is “compatible with faithfully flat descent”, or that the “presheaf” P
on Sch/S is a “sheaf” for the notion of localisation given by the set (M ). If P is arbitrary, then a
standard procedure, well known in the case of usual topological localisation, allows us to associate
to it a “sheaf” P and a homomorphism of functors P →P that is universal in an obvious sense.
The construction of P can be made explicit in the following way: to define P(T ), we denote, for

all T ′ over T such that the morphism u : T ′ → T is in (M ), by H
0
(T ′/T, P ) the subset of P (T ′)

consisting of the elements ξ such that their images ξ1, x2 in P (T ′ ×T T
′) are such that there exists a

morphism v : T ′′ → T ′ ×T T
′ in (M ) such that ξ1 and ξ2 have the same image in P (T ′′).

(N.B. The set H
0

thus defined is larger than the set H0(T ′/T, P ) introduced in FGA 3.I, §A.4.a).

As T ′ varies over fixed T (always with u ∈ (M )), the H
0
(T ′/T, P ) form an inductive system (when

the set of the T ′ is endowed with a preorder defined by domination), and we set

P(T ) = lim−→
T ′

H
0
(T ′/T, P ). (1.6)

The functoriality in T of this expression is evident.
When

P (T ) = Pic(X ×S T )

the contravariant functor on Sch/S defined by Equation 1.6 is called the relative Picard functor of X
over S, and denoted by PicX/S , and we define the relative Picard group of X over S, denoted by
Pic(X/S), the group PicX/S(S). We then have an evident bijection

PicX/S(T )
∼−→ Pic(X ×S T/T ). (1.7)

An element of Pic(X/S) is thus defined by means of an element ξ′ of a group Pic(X ×S S
′)

(where S′ → S is faithfully flat and quasi-compact) such that we can find a faithfully flat quasi-
compact morphism S′′ → S′ ×S S

′ such that the two inverse images of ξ′ in Pic(X ×S S
′′) are the
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same. An element ξ′ of Pic(X ×S S
′) and an element ξ1 of Pic(X ×S S1) (satisfying the conditions

that we have just stated) define the same element of Pic(X/S) if and only if there exists a faithfully
flat quasi-compact morphism S′1 → S′ ×S S1 such that the images of the two elements in question
in Pic(X ×S S

′
1) are equal. It is often convenient to work instead with the functor P ′ = Pic′X/S

introduced above, and we immediately note that the canonical morphism P → P ′ defines an
isomorphism

P
∼−→P ′ (1.8)

which gives a description of PicX/S in terms of Pic′X/S = P ′ that is usually more convenient.
By Corollary 2.3 below, if we replace P by P ′ in the description of Pic(X/S) that we have just given
then we can take S′′ = S′ ×S S

′ and S′1 = S′ ×S S1, at least under the conditions given in loc. cit..
If the functor PicX/S is representable, we say that X/S admits a Picard prescheme, and the

prescheme over S that represents the functor is called the Picard prescheme of X over S, and denoted
by PicX/S . For this, it evidently suffices that P ′ = PicX/S be representable, since then P ′ is already
a “sheaf”, and equation Equation 1.8 proves that the morphism P ′ →P ′ can be identified with the
canonical morphism

Pic′X/S →PicX/S (1.9)

which is then an isomorphism. This means that our terminology is compatible with that
introduced above with Equation 1.4. In general, when PicX/S exists it is defined by the functorial
isomorphism

HomS(S
′,PicX/S)

∼−→ Pic(X ×S S
′/S′). (1.10)

2. Relations between the various relative and absolute Picard groups

Proposition 2.1. Let f : X → S be a morphism such that OS
∼−→ f∗(OX). Then we have an exact sequence

0→ Pic(S)→ Pic(X)→ Pic′(X/S).

If X admits a section over S, then the last morphism is surjective, i.e. we have an isomorphism

Pic′(X/S)
∼−→ Pic(X)/Pic(S).

Proof. The exact sequence can be considered as the low degrees of the exact sequence that corre-
sponds to the Leray spectral sequence for f and OX . The second claim is equally formal.

Proposition 2.2. Let f : X → S be a quasi-compact separated morphism such that OS
∼−→ f∗(OX), and

let S′ → S be a faithfully flat quasi-compact morphism. Then

i. Pic′(X/S)→ Pic′(X ×S S
′/S′) is injective;
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ii. If X locally admits a section over S (i.e. every s ∈ S has an open neighbourhood U such that X|U has
a section over U ), then the diagram

Pic′(X/S)→ Pic′(X ×S S
′/S′) ⇒ Pic′(X ×S S

′′/S′′)

(where S′′ = S′ ×S S
′) is exact.

Proof. The first claim follows, thanks to the elementary properties of faithfully flat descent, from the
following general remark.

If f : X → S is a morphism such that OS
∼−→ f∗(OX), then the functor F 7→ f∗(F ), from the

category of locally free modules of finite type on S to the category of locally free modules of finite
type on X, is fully faithful, and its essential image is given by the modules G on X such that f∗(G )
is locally free and such that the canonical homomorphism

f∗f∗(G )→ G

is an isomorphism. The second statement was proven by the theory of descent in FGA 3.I, §B.4.

The results of Proposition 2.2 can also be stated as follows:

Corollary 2.3. Under the conditions of Proposition 2.2, the canonical homomorphism Equation 1.9
Pic′X/S →PicX/S is injective, and even bijective if X locally admits a section over S. (In the latter case,
the relative Picard group Pic(X/S) is identified with the restricted relative Picard group Pic′(X/S).)

Combining this with Proposition 2.1, we thus obtain:

Corollary 2.4. Under the conditions of Proposition 2.2, we have an exact sequence

0→ Pic(S)→ Pic(X)→ Pic(X/S).

If X admits a section over S, then the last homomorphism is surjective, i.e. we have an isomorphism

Pic(X/S)
∼−→ Pic(X)/Pic(S).

Remark 2.5. Let f : X → S be a morphism such that OS
∼−→ f∗(OX), and let g be a section

of X over S. Let L be an invertible module on X . We define the g-rigidification of L to be an
isomorphism OS

∼−→ g∗(L ), and a g-rigidified invertible module to be an invertible module L on X
endowed with a g-rigidification. Every automorphism of such a structure is trivial, and Pic′(X/S)
can be identified with the set of isomorphism classes of g-rigidified invertible modules on S. (It is
this fact that allows us to use the theory of descent to prove (ii) of Proposition 2.2.) This gives a
new interpretation of Pic(X/S), at least when f is further quasi-compact and separated, so that
Pic(X/S)

∼−→ Pic′(X/S) by Corollary 2.3.

Remark 2.6. Let f : X → S be a morphism as in Proposition 2.2, and let S′ → S be a faithfully flat
quasi-compact morphism such that there exists an S-morphism S′ → X , i.e. such that there exists a
section of X ′ = X ×S S

′ over S′.
Let S′′ = S′ ×S S

′, and X ′′ = X ×S S
′′, and consider the exact sequence

Pic(X/S)→ Pic(X ′/S′) ⇒ Pic(X ′′/S′′).
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Applying Corollary 2.4, we obtain the exact sequence

Pic(X/S)→ Pic(X ′)/Pic(S′) ⇒ Pic(X ′′)/Pic(S′′).

In particular, every element of the relative Picard group already “comes from” an element of Pic(X ′).
This gives a substantial simplification of the description of the relative Picard group given in the
previous section, and even of the Picard functor of X over S, since, for all T over S, we can apply
the above to X×S T/T and to the morphism T ′ = S′×S T → T . If, for example, f itself is faithfully
flat, then we can take S′ = X, which allows us, whenever f is further of finite type (resp. simple,
etc.), to restrict, in the description of the relative Picard functor T 7→ Pic(X ×S T/T ), to the base
changes T ′ → T that are of finite type (resp. simple, etc.). If f is projective and flat, and S locally
Noetherian, then we can prove that we can take in the above a S′ → S such that S′ is the direct
sum of flat covers S′i of opens Si of S that cover S; if f is further separable, then we can take S′i to
be étale over Si.

3. The principal existence theorem: statement

We do not have, not even conjecturally, an existence statement for Picard preschemes that
encompasses all known cases. A “practically necessary” condition, if we can say that, is that
f : X → S be proper (ensuring essential finiteness properties) and flat. These conditions are not
sufficient, even if S is the spectrum of the algebra of dual numbers k[t]/(t2) over a field k (say, the
field C of complex numbers), and X is of dimension 1. At the moment of writing this present talk,
the most important existence theorems for the Picard prescheme follow from the following theorem:

Theorem 3.1. Let f : X → S be a morphism of locally Noetherian preschemes.
Suppose that

i. f is projective

i. f is flat

i. the geometric fibres of f are integral.

Under these conditions, PicX/S exists.

The proof, which will be sketched in the following two sections, will at the same time show the
following: Let ξ be the section of PicX/S that corresponds to a very ample sheaf OX(1) over X/S
(i.e. induced by a projective embedding X → P(E )); then there exists an open subset U of PicX/S ,
disjoint union of quasi-projective open subsets of S, such that U is stable under translation by ξ, and
such that PicX/S is the increasing union of opens U \ nξ (each isomorphic to U). It thus follows, in
particular, that, under the conditions of Theorem 3.1, that PicX/S is separated over S.

Remark 3.2. We see from examples (with S the spectrum of a discrete valuation ring, and X of
relative dimension 1 over S, for example), that if we omit hypothesis (iii) in Theorem 3.1 and replace
it with the weaker hypothesis that, for all s ∈ S, the homomorphism k(s) → H0(Xs,OXs) be an
isomorphism, then PicX/S is not necessarily separated over S; both in the case where the geometric
fibres of f are reduced, but where a generic integral geometric fibre “blows up” by specialisation
into two irreducible components, and in the case where the geometric fibres of f are irreducible,
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but where a generic integral geometric fibre specialises to a “multiple fibre”. The first case happens,
for example, with a conic that degenerates into two concurrent lines; an example of the second
was shown to me by D. Mumford, with an elliptic curve that degenerates to a double elliptic curve.
These examples work in any characteristic.

Remark 3.3. Under the conditions of Theorem 3.1, I do not know if PicX/S is a disjoint union
of opens that are of finite type, thus quasi-projective, over S. We note that the study of the
Hilbert polynomials Q ∈ Q[t] allows us, as in the case of Hilbert schemes (FGA 3.IV), to give a
decomposition of PicX/S as a disjoint sum of opens PicQX/S , and it seems plausible that these opens
are quasi-projective over S; this is what we will see at least in the next talk when f is a simple
morphism. We draw attention to the fact that if we replace hypothesis (i) by the hypothesis “X is
locally projective over S” (which is sufficient to prove Theorem 3.1, since the question of existence
of PicX/S is clearly local on S) however, then it is easy to give examples where PicX/S contains
connected components that are not of finite type over S.

For example, let X0 be a non-singular projective algebraic variety over an algebraically closed
field k, endowed with an automorphism u and an element ξ of the Néron–Severi group of X0 such
that the un(ξ) are pairwise distinct. We can, for example, take X0 to be the product of an elliptic
curve E with itself, and u to be the automorphism (x, y) 7→ (x, y + x) of E × E. Let S be the
union of two non-singular irreducible curves that meet at two points a and b. There is a connected
principal covering P on S of the group Z, and using the action of Z on X0 defined by u we thus
obtain an associated bundle on S, with fibre X0 (trivial on S \ {a} and S \ {b}), which is in fact an
abelian scheme over S in the particular case in question. We easily see that PicX/S , which is also the
bundle associated to P and to the action of Z on PicX0/k via u, contains a connected component
that is isomorphic to P × Pic0X0/k

(where Pic0 denotes the connected component of the identity
element in Pic), which is not of finite type over S. (One can equally produce analogous phenomena
in various cases of non-separated Picard preschemes over S, as described in Remark 3.3).

[Comp.] The question raised here has been answered in the positive by Mumford (see FGA 3.VI).

4. Relative Cartier divisors and projective bundles

We will only need to use positive divisors, and we omit the qualification of “positive” in the rest
of this section.

Let X be a prescheme. A Cartier divisor, or simply divisor, on X is a closed subprescheme D of
X defined by an ideal J that is an invertible module, i.e. locally generated by a section that is a
non-zero divisor of OX . To D we associate the invertible module

L (D) = J −1

and the canonical injection J → OX gives a canonical homomorphism

sD : OX →J −1 = L (D)

i.e. sD ∈ Γ(X,L (D)). The data of a divisor is essentially equivalent to the data of an invertible
module L on X endowed with a section s that is nowhere a zero divisor, by associating to such a
pair (L , s) the “divisor” of s, denoted by div(s).
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For a given invertible L on X, the set of divisors D that define L is in bijective correspon-
dence with the quotient set Γ(X,L )×/Γ(X,O×X), where Γ(X,L )× denotes the subset of Γ(X,L )
consisting of sections that are nowhere zero divisors.

Now suppose that we have a morphism f : X → S that is locally of finite type, and suppose, for
simplicity, that S is locally Noetherian. Let J be a coherent ideal on X, with D the subscheme
of X that it defines, and let x ∈ X and s = f(x). We will show that the following conditions are
equivalent:

i. J is invertible at x (i.e. Jx is generated by a regular element of OX,x) and D is flat over S
at x.

ii. X and D are flat over S at x, and Ds is a Cartier divisor on the fibre Xs at the point x.

iii. X is flat over S at x, and Jx is generated by an element fx that induces on Xs a non-zero
divisor germ.

We then say that D is a relative Cartier divisor or simply a relative divisor, on X/S at the point
in question. We note that, in (i), D is also a relative divisor at points in a neighbourhood of x, so
if X and D are flat over S, with D proper over S, then the set of s ∈ S such that Ds is a Cartier
divisor in Xs (i.e. such that D is a relative Cartier divisor at the points of Xs) is an open subset of
S. We have also done what is necessary in the definition above in order to ensure that the notion of
relative Cartier divisor be stable under arbitrary base change S′ → S. So consider the set Div(X/S)
of relative divisors on X/S, and then the contravariant functor in S′ (that varies over S) defined by

DivX/S(S
′) = Div(X ×S S

′/S′).

Suppose that X is flat and proper over S. Then by the characterisation (ii) of relative Cartier
divisors, DivX/S can be considered as a sub-functor of the functor H ilbX/S defined in FGA 3.IV,
and the inclusion morphism

DivX/S →H ilbX/S

is “representable by open immersions” (cf. [Gro1960a, IV, 3.13]) by the above remarks. Using the
principal existence theorem of FGA 3.IV, we find:

Proposition 4.1. Suppose that f : X → S is projective and flat.
Then the functor DivX/S is representable, and, more precisely, is represented by an open of HilbX/S .

For a given very ample sheaf OX(1) over X/S, using the canonical decomposition of HilbX/S

into a sum of opens HilbQX/S corresponding to Hilbert polynomials Q ∈ Q[t], we obtain an analogous
decomposition

DivX/S = ⊔Q∈Q[t]DivQX/S

into a sum of disjoint opens that are quasi-projective over S.
Using the map D 7→ L (D), we obtain a functorial homomorphism

DivX/S →PicX/S (+)

that we propose to study; it appears to be relatively representable ([Gro1960a, IV, 3]) under rather
general conditions. We thus start with an element ξ of PicX/S(S

′), supposing, to simplify notation,
that S′ = S; we will show that the corresponding sub-functor of DivX/S is representable. Consider
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first of all the case where ξ is defined by an invertible module L on X . Suppose that X is
proper and flat over S, and that the geometric fibres of X over S are integral, which also implies
([GD1960, III, §7]) that OS

∼−→ f∗(OX), and that this remains true after any base change S′ → S.
Then the relative Cartier divisors D on X/S such that L (D) and L define the same element
of Pic(X/S) = PicX/S(S), i.e. by Corollary 2.4 such that L (D) and L are locally isomorphic
over S, are in bijective correspondence with the sections of the quotient sheaf f∗(L )×/O×S . This
correspondence is compatible with base change. General arguments of “Künneth” type from loc.
cit. and [Mumford–Tate seminar, 1962] show that the property of X/S and the flatness of L over
S imply the existence of a coherent module Q on S, defined up to unique isomorphism, and an
isomorphism of sheaves

f∗(L )
∼−→HomOX

(Q,OS)

and the formation of Q is furthermore compatible with base change. Here f∗(L )× denotes the
subsheaf of sets of f∗(L ) whose sections over U are the sections of L over f−1(U) that define
relative Cartier divisors on f−1(U)/U , i.e. that induces sections that are non-zero divisors on the
Xs (for s ∈ U).

Using the hypothesis that the fibres Xs are integral, this simply implies that the induced sections
on the fibres Xs are not identically zero, or, in terms of local homomorphisms Q → OS , that these
homomorphisms are surjective (Nakayama). This shows that the set of sections of f∗(L )×/O×S is
in bijective correspondence with the set of invertible quotient modules of Q, or, by the definition of the
projective bundle P(Q) associated to the coherent module Q (cf. [Gro1960a, V, §2]), with the set of
sections of P(Q) over S. This description is compatible with taking inverse images, and we thus
obtain the theorem below.

Theorem 4.3. Let f : X → S be a flat proper morphism with integral geometric fibres, with S locally
Noetherian, and let L be an invertible module on X . For every S′ over S, let T (S′) be the set of relative
divisors D on X ×S S

′/S′ such that L (D) is locally isomorphic to L ⊗OS
OS′ over S′ (i.e. such that

L (D) and L ⊗OS
OS′ ) define the same element of Pic(X ×S S

′/S′). Then there exists a coherent module
Q on S, determined up to unique isomorphism, such that the functor T is represented by the projective bundle
P(Q).

Corollary 4.4. If we suppose that f is projective, then the functorial homomorphism DivX/S →PicX/S

is representable by projective morphisms.

If X admits a section (resp. locally admits a section) over S, then the above homomorphism is
representable by projective bundles (resp. by local projective bundles) thanks to Theorem 4.3 and
Proposition 2.1. In the case where f is quasi-projective, we can easily reduce to the previous case by
a descent method, using the finite flat local quasi-sections of X over S.

Remark 4.5. Under the conditions of Theorem 4.3, the module Q on S is not in general locally free,
as we can see by the fact that the dimension of the reduced fibres of Q, i.e. those of H0(Xs,Ls)
for varying s ∈ S, can jump. Given a coherent module Q on the locally Noetherian prescheme S,
we can easily show that, for any given s ∈ S, Q is free at s if and only if P(Q) is flat over S at the
points over s (in which case it is even simple over S at the points over s); when this happens, with
Q defined in terms of L as above, this also implies that forming the direct image f∗(L ) “commutes
with base change on a neighbourhood of s”, or that f∗(L )s → H0(Xs,Ls) is surjective.

This will be the case if, for example, H1(Xs,Ls) = 0. Subject to the existence of the preschemes
in question, these criteria apply in particular to the universal situation DivX/S → PicX/S , and give
a necessary and sufficient condition (resp. sufficient) for this morphism to be simple at a given point
of DivX/S .
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5. Proof of the principal existence theorem

Under the conditions of Theorem 3.1, choose some module OX(1) that is very ample over X/S,
and let ξ be the corresponding element of Pic(X/S). For brevity, let P(S′) = Pic(X×S S

′/S′), and
suppose, for simplicity, that X/S admits a section. Let P+(S′) be the subset of P(S′) consisting
of classes of the L that are invertible on X ×S S

′ such that

Ri f ′∗(L (n)) = 0 for i > 0 and all n ⩾ 0

f ′∗(L (n)) ̸= 0 for all n ⩾ 0.

These conditions are stable under base change, and thus define a subfunctor P+ of P that is
evidently stable under translation by ξ. Using Serre’s “Theorems A and B” ([GD1960, III, §2]) and
generalities ([Gro1960a, IV, 5]), we easily see that P is representable if and only if P+ is, and so
P+ will be representable by an open U of the prescheme PicX/S that represents P , and the latter
will be an increasing union of opens U \ nξ.

For brevity, let D = DivX/S , and let D+ be the inverse image of P+ under the canonical
morphism D →P . So we have a morphism

D+ →P+ (+)

and we already know that D+ is representable by an open D+ of the prescheme D = DivX/S

(and, more precisely, by projective bundles associated to locally free modules that are everywhere non-zero);
this is due to the fact that, if L on X ×S S

′ is, as at the start of this section, then f ′∗(L ) is a
locally free non-zero module, whose formation commutes with base change; with the notation of
Theorem 4.3, Q is then isomorphic to the dual of f ′∗(L ). Using the general criterion ([Gro1960a,
IV, 4.7]), we can thus conclude that P+ is representable. In loc. cit., we take S to be the set of
faithfully flat quasi-compact morphisms of preschemes (which are indeed effective epimorphisms,
by FGA 3.I, §B).

Condition (a) of loc. cit., namely that Equation + is representable by morphisms that are elements
of S, is satisfied as we have just seen; condition (b) says that the functor P+ is is compatible with
faithfully flat quasi-compact descent, which is immediate. It remains only to prove condition (c)
of loc. cit., namely that the equivalence R in the prescheme D+ induced by the S-representable
morphism in Equation + is S-effective, i.e. is effective and such that D+ → D+/R is in S. For
this, note first of all that the opens D+Q of D+ that correspond to the virtual Hilbert polynomials
Q ∈ Q[t] are stable under R (since the fibres of R are connected), which reduces the problem to
proving that, for all Q, the induced equivalence relation RQ on D+Q is S-effective. But now D+Q

is quasi-projective, and the equivalence relation RQ is projective and flat. We are thus under the
hypothesis of FGA 3.III, Theorem 6.1, which implies the desired result.

In the general case where X/S does not necessarily admit a section, we can easily reduce to the
above case by the technique of descent, where we can repeat the above proof with the modification
that is imposed upon the definition of P+.

Remarks 5.1. The method that we followed is essentially that of Matsusaka for the projective
construction of Picard varieties. The result that we invoke from FGA 3.III that allows us to pass to
the effective quotient can also easily be deduced from the existence theorem for Hilbert schemes (cf.
for example [Mumford–Tate seminar, 1962]). (Classically, these quotients are constructed by using
Chow coordinates). Note that the formation of the open Pic+X/S of PicX/S and its decomposition

into opens Pic+X/S

Q
that are quasi-projcetive over S following the Hilbert polynomials for the divisors
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that define the invertible modules in question, is compatible with base change (which allows us to
apply the technique of descent).

Remarks 5.2. It is not out of the question that PicX/S exist whenever f : X → S is proper and
flat and such that the homomorphisms k(s) → H0(Xs,OXs) (for s ∈ S) are isomorphisms (this
latter condition also then implying that OS

∼−→ f∗(OX), and that this remain true after any base
change S′ → S). This at least is what we can prove in the setting of analytic spaces, if f is further
assumed to be projective, by a differential method (that of Chow, if I am not mistaken) explained in
[Gro1960a, IX, 3.1].

In this method, the passage to the quotient by a proper and flat equivalence relation in an open
of the scheme of divisors is replaced by the passage to the quotient by the projective group in the
scheme of immersions of X into Pr

S . This method can probably be adapted to the case of schemes,
using the results of Mumford on the passage to the quotient by the projective group [Mum1961]; for
now, there is no written proof, except when X has “lots of local sections” over S, for example if X is
separable over a complete local ring with algebraically closed residue field. In principle, the method
in question is of more general scope, since it also gives the existence of Picard preschemes in the
case where these are not separated, and where the first method thus necessarily fails. (Technically,
the difficulty comes from the fact that, when the geometric fibres of f are not integral, then the
functor envisaged in Theorem 4.3 is no longer representable by the projective bundle P(Q) itself,
but by an open of this, which leads to the delicate question of the passage to the quotient by an
equivalence relation that is flat but not proper).

[Comp.] As I point out at the start of the next talk, the existence conjecture suggested here is
false, but Mumford has proven a slightly weaker theorem using his methods.

Remark 5.3. Note that the proof given here uses neither the preliminary construction of Jacobians
of curves or families of curves nor the theory of abelian varieties or abelian schemes, and in this
way it essentially distinguishes itself from traditional treatments, such as those in the book by Lang
[Lan1959] or the article by Chevalley [Che1960], which follow the path sketched by Weil. Even in the
case of Jacobians of non-singular curves over an algebraically closed field (the complex numbers,
say), the construction given here for the Jacobian is the only one known that comes with the very
strong properties that we took as definition in Chapter 1 (essentially those of Chevalley, but taking
into account the “variety of parameters” with nilpotent elements). The fact that the construction of
Picard schemes should precede, not follow, the theory of abelian varieties is clear a priori, by the
fact that, in general, Picard schemes are not, nor do they reduce to, abelian schemes, as we already
see in the case of singular curves over an algebraically closed field, where we find the “generalised
Jacobians” of Rosenlicht, which are not abelian varieties. Furthermore, the theory of abelian varieties,
and more generally of abelian schemes, becomes much simpler once we have a theory of Picard
schemes in general. In particular, the theory of duality for abelian schemes, and notably the results
of Cartier type, then become slightly more formal (cf. for example [Mumford–Tate seminar, 1962]).

Remarks 5.4. The “compatibility principle” of Igusa for the Jacobian of a curve degenerating to
a singular curve can only be well understood as an existence theorem of the Picard scheme of a
relative scheme in curves X/S that are not necessarily simple over S. This is thus a particular
case of the principal existence theorem Theorem 3.1 when the specialised curve is integral (i.e. in
classical terms, irreducible of multiplicity 1). We note that, for now, the case of a reducible special
curve (even when the components are of multiplicity 1, i.e. when the special curve is separable over
the residue field) is not covered by the known existence theorems, except for in the case where we
are over a complete discrete valuation ring with algebraically closed residue field, cf. Remarks 5.2.
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This question of existence certainly arises in a geometric construction, in the theory of schemes, of
Baily–Satake “compactifications” of modular schemes of curves of genus g. (This compactification
is known for now only for g = 1, thanks to work of Igusa).

6. Relative existence theorems

We will sketch here some useful cases where the existence of certain Picard schemes implies
the existence of certain others, which allows us to deduce from the principal existence theorem
Theorem 3.1 various other existence theorems.

Proposition 6.1. Let f : X → S be a flat projective morphism such that, in the Stein factorisation
f = f ′′f ′, the morphism f ′ : X → S′ is flat and has integral geometric fibres (and thus satisfies the
hypotheses of Theorem 3.1), and such that the finite morphism f ′′ : S′ → is flat. Then PicX/S exists and
(with the notation introduced in FGA 3.II, §C.2) we have a canonical isomorphism

PicX/S
∼−→
∏
S′/S

PicX/S′ .

Proof. To prove this, we first establish an isomorphism of functors

PicX/S
∼−→
∏
S′/S

PicX/S′

and then use Theorem 3.1, which implies that PicX/S′ is representable; we use the structure
explained in Chapter 3 of PicX/S′ (which implies that every finite subset of a fibre of PicX/S′ over
S is contained in an affine open) for the existence of

∏
S′/S PicX/S′ .

For example, if X is a scheme given by a sum of schemes Xi over S that satisfy the conditions
of Theorem 3.1, then the statement of Proposition 6.1 reduces to the trivial statement

PicX/S
∼−→
∏
i

PicXi/S
.

Corollary 6.2. Let f : X → S be a projective flat morphism with locally integral geometric fibres (for
example, a projective and normal morphism). Then PicX/S exists.

Proof. In this case, S′ is an étale covering of S (which is true once f is separable, i.e. flat with
reduced geometric fibres), and we see that the structure theorem stated in Chapter 3 for PicX/S still
holds, thanks to the analogous structure of PicX/S′ .

Applying a descent procedure gives a relative existence theorem, whose scope depends on the
solution to questions about non-flat descent that were raised in FGA 3.I, §A.2.c, and of which we
content ourselves here to explain only a particular case:

Proposition 6.3. Let f : X → S be a proper morphism, and let X1 and X2 be subpreschemes of X that are
flat over S, defined by coherent ideals J1 and J2 (respectively) such that J1 ∩J2 = (0) and such that
OX/(J1 +J2) is flat over S (i.e. the subprescheme of X that is the sup of X1 and X2 is X itself, whereas
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their inf Z is flat over X). Suppose further that, for all s ∈ S, the homomorphisms k(s)→ H0(Xis ,OXis
)

are bijective for i = 1, 2. Then the natural homomorphism of functors

PicX/S →PicX1/S ×PicX2/S

is representable by affine morphisms, so if PicX1/S
and PicX2/s

exist, then so too does PicX/S , and the
canonical morphism

PicX/S → PicX1/S
× PicX2/S

is affine.

Proof. By faithfully flat descent, we can reduce to the case where Z admits a section over S, thus
defining sections of X, X1, and X2 over S, and allowing us to eliminate the automorphisms in the
structures in question, as explained in Remark 2.5.

The proof then consists of noting that the data of a “rigidified” invertible module L on X is
equivalent to the data of a triple (L1,L2, u), where Li is a “rigidified” module on Xi, and u is
an isomorphism from L1|Z to L2|Z that is compatible with the rigidifications. It remains only to
verify that, for L1 and L2 fixed, the data of u can be expressed as a section of a suitable scheme
over S that is affine over S, which is easy.

From Proposition 6.3 we easily conclude:

Corollary 6.4. LetX be a proper and separable scheme over a field k, and letXi be the irreducible components
of X . If the PicXi/k exist, then so too does PicX/k, and the canonical morphism

PicX/k →
∏
i

PicXi/k

is affine.

Combined with Corollary 6.2, this shows, for example, the existence of PicX/k whenever X is
a projective scheme that is separable over a field k. If X is no longer separable over k, then we
equally have a reduction result, using the argument of Oort [Oor1962]. The method equally applies
for a scheme with arbitrary base (a useful case, for example, in proving in the following talk the
finiteness result stated in Remark 3.3). To avoid an overly technical statement, we restrict ourselves
to the case where we are over a base field:

Proposition 6.5. Let X be a proper scheme over a field k, and X0 a subscheme that has the same underlying
set (thus defined by a nilpotent ideal on X). Then the functorial morphism PicX/k → PicX0/k is
representable by affine morphisms. In particular, if PicX0/k

exists, then so too does PicX/k, and the morphism
PicX/k → PicX0/k

is affine.

Combining this with Corollary 6.4, we easily conclude:

Corollary 6.6. Let X be a projective prescheme over a field k> Then PicX/k exists.

Remark 6.6. It is extremely plausible that, for every proper scheme X over a field k, PicX/k exists.
The results above allow us to reduce, for this question, to the case where k is algebraically closed,
and where X is integral. We then know that there exists an integral scheme X ′ that is projective over
k, and a dominant morphism g : X ′ → X (Chow’s lemma).
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It would thus suffice to show that the corresponding functorial morphism PicX/k →PicX′/k

is representable (and, probably, representable by affine morphisms), since we already know that
PicX′/k is representable. This raises questions about non-flat descent that are not answerable as
of now. Note that, if we restrict to considering the restriction of the functor PicX/k to reduced
preschemes (with X proper and integral over an algebraically closed field k), then we do indeed
obtain a representable functor, as shown by Chevalley [Che1960] in the case where X is normal,
and by Seshadri [Ses1962] by a descent method in the general case. But with our notation, the
scheme constructed by these authors is not PicX/k, but instead (PicX/k)red, i.e. the reduced scheme
corresponding to PicX/k.

[Comp.] As we point out at the start of the next talk, the question raised here has just been
answered in the affirmative by Murre.

Remark 6.7. More generally, let f : X ′ → X be a surjective morphism of proper preschemes over
k. Then considering non-flat descent leads us to conjecture that PicX/k → PicX′/k is an affine
morphism, which would in particular imply (by dividing into the connected components of the
identity elements) that the corresponding homomorphism on the Néron–Severi groups is injective
modulo torsion. We can verify this by the theory of intersections when X and X ′ are non-singular.
The answer does not seem to be known in any other case.

[Comp.] The question raised here has been answered in the affirmative (cf. the last paragraph of
the comments in the next talk).

Remark 6.8. Contrary to what we might think, the consideration of Picard schemes of algebraic
schemes with nilpotent elements is useful, and even indispensable, for various questions. If X is
a projective scheme, simple over k, say, and Y a hyperplane section, then we can consider the
“infinitesimal neighbourhoods” Xn of Y of all orders, as well as the Picard schemes PicXn/k

; when
X is irreducible of dimension ⩾ 4 (resp. ⩾ 3), the canonical morphism

PicX/k → PicXn/k
for large n

is an isomorphism (resp. induces an isomorphism between the inverse images of the torsion
subgroups of the Néron–Severi groups), and this result will be useful in the qualitative study of
Picard schemes in the following talk. Similarly, the consideration of Picard schemes of certain
curves with nilpotent elements and the fundamental theorems of formal geometry [Gro1958a] allow
us to prove, in the case of equal characteristic, a conjecture of Mumford, namely that for every
complete normal Noetherian local ring A of dimension 2, the group of classes of divisors of A can
be considered as the set of rational points over k of an algebraic group G over the residue field k
(with G being canonically determined once we have a field of representatives in A).

In the case where A is of arbitrary dimension, it is plausible that there exists an algebraic
pro-group over k that plays the same role as G above, which is constructed, in the case where we
can “desingularise” Spec(A), as a projective limit of Picard schemes of suitable projective schemes
(with nilpotent elements) over k.
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FGA 3.VI

Picard schemes: General properties

A. Grothendieck. “Technique de descente et théorèmes d’existence en géométrie algébrique, VI:
Les schémas de Picard: Propriétés générales”. Séminaire Bourbaki 14 (1961–62), Talk no. 236.
http://www.numdam.org/book-part/SB_1961-1962__7__221_0/

0. Supplements to the previous talk (FGA 3.V)

There has been some progress concerning the questions of existence of Picard preschemes raised
in FGA 3.V:

a. (Mumford). It is not true in general that, if f : X → S is a projective and separable (i.e.
flat with separable fibres) morphism, then the Picard prescheme PicX/S exists, even if the
fibres of f are of dimension 1 and S is the spectrum of a complete discrete valuation ring. A
counterexample is given by taking S = SpecR[[t]], and taking X to be the subscheme of P2

S

(with homogeneous variables x, y, z) defined by the equation x2 + y2 = tz2, which represents
a conic degenerating to two geometrically concurrent lines, but the special fibre over the field
R is nevertheless irreducible (it is given by the equation x2 + y2 = 0 in R). We easily see that,
after the étale extension S′ → S, with S′ = SpecC[[t]], the Picard prescheme of X ′/S′ exists,
and we thus obtain an explicit description of it as a sum of copies of S̃, where S̃ is induced
by S by copying the origin an infinite number of times. We easily observe that the descent
data on PicX′/S′ for S′ → S (given here by the actions of the Galois group Z/2Z of S′ over
S) is not effective, since the group permutes certain doubled points (so that there are orbits
that are not contained in an affine open). However, Mumford has shown that, if f : X → S is
a separable projective morphism such that, for all s ∈ S, the irreducible components of Xs

are geometrically irreducible with respect to k(s), then PicX/S exists; the proof relies on a
refinement of his theorem of passage to the quotient, cf. [Mumford–Tate seminar, 1962]. Note
also that it is still possible that, without any hypotheses on the irreducible components of the
fibres Xs, the scheme PicτX/S (which will be introduced below) still exists.

b. (Murre).

If X is a proper scheme over a field, then PicX/k exists. The proof partially uses the proof of
Chevalley [Che1960], and is fundamentally based on the group structure of the Picard functor.

For certain additional comments concerning the theory of Picard schemes, most notably in
relation to abelian schemes, we recommend consulting [Mumford–Tate seminar, 1962]. Finally, a
notable shortcoming of the present talk is the absence of “equivalence criteria” that would allow
us to compare the Picard scheme of a projective scheme and of its hyperplane sections; the key
theorems for developing such criteria can be found in [Gro1960b], with which one must combine
the existence theorems for Picard schemes.
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1. Topological properties of preschemes of commutative groups

Let k be a field, and G be a prescheme of groups over k. Since the identity element e, being
rational over k, is necessarily closed, it immediately follows that the diagonal of G×k G is closed,
and so G is separated : every prescheme of groups over a field is separated. We denote by G0 the connected
component of the identity element e. Since e is rational over k, G0 is in fact geometrically connected,
i.e. G 7→ G0 is compatible with base change to another field. It also follows that G0 is stable
under multiplication (set-theoretically), and if G is locally Noetherian then G0 is open, and we can
consider G0 as an open subgroup of G. In what follows, we suppose G to be locally of finite type
over k; then G0 is geometrically irreducible and of finite type over k. Indeed, we can suppose that k is
algebraically closed, and thus that G is reduced (since Gred is then a subgroup of G, taking into
account the fact that Gred ×k Gred is also then reduced), and thus simple over k over a non-empty
open, and thus everywhere, by translating this open subset. But then G is locally irreducible, and so
its irreducible components are identical to its connected components, and so G0 is irreducible. So
let U be an affine neighbourhood of e in G0; using the fact that G0 is irreducible, we immediately
see that U · U = D0, which proves that G0 is quasi-compact, and thus of finite type over k.

Suppose, for simplicity, that G is commutative. For every integer n > 0, let G(n) be the inverse
image of G0 under the n-th power homomorphism φn to G, so G(n) is an open subgroup of G. We
set

Gτ =
⋃
n>0

G(n)

Gσ =
⋃

(n,p)=1

G(n)

Gρ =
⋃
h>0

G(ph)

where p is the characteristic order of the field k.
These are open subgroups of G that satisfy

Gσ ∩Gρ = G0

Gσ ·Gρ = Gτ .

Remark. We can construct the quotient group scheme G/G0 = N (cf. FGA 3.IV) and then define
Gτ , Gσ, and Gρ as the inverse images in G of the torsion subgroup of N (resp. of its p-primary
component, resp. of the natural complement of its p-primary component, given by the sum of the
q-primary components for q prime with q ̸= p). Note that N is a discrete group scheme that is
separable over k, thus (once we have chosen an algebraic closure k of k, giving rise to a Galois
group π) can be identified with an ordinary discrete group on which π acts by automorphisms. It is
in this way that we can interpret, in an evident way, the construction of the torsion subgroup and the
decomposition of this into its q-primary components. If G is the Picard scheme of a proper scheme
X over k, then N could be called the (reduced) Néron–Severi scheme of X over k. If G0

red is a group
subscheme of G0, which is the case whenever, in particular, k is parfait, or G0 is proper over k (for
example if X is geometrically normal), then we can equally introduce the quotient N ′ = G/G0

red,
which has the tendency to behave better than N from the specialisation point of view, i.e. as X
varies over a family of algebraic schemes.

Now let S be a locally Noetherian prescheme, and G a group prescheme over S that is locally of
finite type over S. We do not assume G to be of finite type over S, nor separated over S. We then

126



FGA 3.VI
1. Topological properties of preschemes of commutative groups

set

G0 =
⋃
s∈S

(Gs)
0

and, if G is commutative,

Gτ =
⋃
s∈S

(Gs)
τ

Gσ =
⋃
s∈S

(Gs)
σ

Gρ =
⋃
s∈S

(Gs)
ρ.

These are subsets of G, stable under the multiplication of G, which does not obviously imply
that they can be defined by means of sub-group preschemes of G. Notably, it seems that there does
not exist in a general sub-group prescheme of G whose underlying set is G0. Of course, if one of these sets
is open, then, endowed with the induced structure, it is an open sub-group prescheme of G. We will
see that this is always the case for Gτ ; in this way, from the point of view of representable functors,
in particular from the “specialisation” point of view, numerical equivalence behaves in a more satisfying
manner than algebraic equivalence. Here are the principle general properties of the sets that we have
just defined:

Theorem 1.1. G0, Gτ , Gσ , and Gρ are locally constructible. Furthermore:

i. G0 is quasi-compact over S. If the G0
s are proper, and G is separated over S, then G0 is proper over S

and thus closed in G.

ii. Gτ is open. If G0 is closed, then so too is Gτ .

iii. If G0 is closed, then so too is Gσ , provided that we are in equal characteristic, i.e. that all the residue
fields of S have the same characteristic. If G0 is closed and G→ S is universally open at the points of
Gσ (cf. Corollary 1.5 below), then Gσ → S is universally open.

iv. If G0 is closed, then so too is Gρ. If we are in equal characteristic, and if, for every integer n > 0 such
that (n, p) = 1, the n-th power homomorphism to G is open, then Gρ is open.

We now give some hints towards the proof. The fact that G0 is locally constructible, and
quasi-compact over S, is contained in the following lemma:

Lemma 1.2. If S ̸= ∅ then there exists a non-empty open U in S, a group scheme H of finite type over U
with connected fibres, and a homomorphism of group schemes H → G|U that is an open immersion with
image G0|U .

Proof. To prove this lemma, we can suppose that S is irreducible; let η be its generic point. If we
make the base change S′ = Spec(OS,η)→ S then we find a group scheme G′ over a local Artinian
ring OS,s = A inside which we have an open group subscheme G′0 of finite type over A, as we said
above. This thus comes from a group scheme H of finite type over an open neighbourhood U of η,
and the canonical immersion G′0 → G′ comes from an open immersion H → G|U , which will be a
homomorphism of group schemes for U small enough.

Since the fibres of H are connected if we take U small enough, and since they are all of the same
dimension, namely that of the fibres of G, for U small enough, it follows that, for all s ∈ U , the
image of Hs in Gs is exactly G0

s (for U small enough), which proves the lemma.
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The second claim in (i) of Theorem 1.1 is contained in the following lemma (which we apply to
an quasi-compact open neighbourhood of G0 in G):

Lemma 1.3. Let X be a separated prescheme of finite type over S, with S locally Noetherian, and let g be a
section of X over S, and X0 the union of the connected components of the g(s) in the Xs. Let s ∈ S be such
that X0

s is proper over k(s). Then there exists an open neighbourhood U of s such that X0|U is proper over
U , and a fortiori closed in X|U .

Proof. By faithfully flat descent of the base, we can reduce to the case where S is the spectrum
of a complete local ring, and s is its closed point. Applying [GD1960, III, §5.5.1], we see that X
decomposes into a sum of two disjoint opens X ′ and X ′′, with X ′ proper over S, and such that
X ′s = S0

s . This allows us to reduce to the case where X = X ′, i.e. where X is proper over S. In
this case, we can apply a standard proof, using the valuative criterion of properness of a subset
(forgotten in [GD1960, II]).

We now prove that Gτ is open, or, equivalently, taking into account the fact that the formation
of Gτ (as that of G0, Gσ, and Gρ) commutes with base extension: for every sections g of G over S,
g−1(Gτ ) is open. This implies two things:

a. Let y ∈ S be such that g(y) ∈ Gτ . Then, for all neighbours y′ ∈ y of y, we have g(y′) ∈ Gτ .

b. Let y′ ∈ S be such that g(y′) ∈ Gτ . Then, for every generalisation y of y′, we have g(y) ∈ Gτ .

For (a), note that there exists an integer n > 0 such that gn(y) ∈ G0; since G0 is constructible,
(gn)−1G0 is constructible; it follows that we have gn(y′) ∈ G0 for all neighbours y′ ∈ y of y. For
(b), note that the g(y′)n = gn(y′) remain in a quasi-compact open of Gy′ (since they are contained
in a finite number of classes modulo G0

y′), and so there exists a quasi-compact open U in G that
contains the gn(y′), and thus also their generalisations gn(y), and so the powers of g(y) remain in a
quasi-compact open of Gy, which easily implies that g(y) ∈ Gτ

y .
Suppose that G0 is closed; we will show that so too is Gτ . As we already know that Gτ is open,

thus locally constructible, it remains only to show that it is stable under specialisation, which comes
from the fact that it is a union of closed subsets, namely inverse images under the n-th power
homomorphisms φn of the closed subset G0.

The same argument shows that Gσ and Gρ are closed if G0 is (under the additional hypothesis
of equal characteristic in the case of the former), once we have shown that Gσ and Gρ are locally
constructible. But, for x ∈ Gτ , let ν(x) be the smallest integer n > 0 such that the n-th power
homomorphism φn sends x to G. Then Gσ (resp. Gρ) consists of the x ∈ X such that ν(x) is
coprime to p (resp. to a power of p), and our claim of constructibility then follows from the following,
more precise lemma:

Lemma 1.4. The function ν on Gτ is locally constructible.

Proof. This means that, for every integer n > 0, the set of x ∈ Gτ such that ν(x) = n is locally
constructible; but this is the difference between φ−1n (G0) and the union of the φ−1d (G0) where d
runs over the proper divisors of n; since G0 is locally constructible, so too are all the φ−1i (G0), and
thus also the aforementioned difference.

Suppose that G0 is closed and that G→ S is universally open at the point of Gσ; we will show
that Gσ → S is open, i.e. sends a neighbourhood in Gσ of any x ∈ Gσ to a neighbourhood of
y = f(x). Since Gσ is locally constructible, it suffices to show that, for every generalisation y′ of y,
there exists a generalisation of x’ of x in G in y′. By base change, this allows us to reduce to the
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case where S is the spectrum of a discrete valuation ring, and where y and y′ are the closed point
and the generic point (respectively). Using the fact that G→ S is open at x (and thus there exists a
generalisation x1 of x in G over y′), we can further suppose that there exists a section g of G over
S such that x = g(y) (after performing another base change). If k(y′) is of characteristic 0, then it
suffices to take any generalisation x′ of x in G over y′; it is in Gτ since Gτ is open, and thus in Gσ

since Gσ
y′ = Gτ

y′ . If the characteristic of k(y′) is p > 0, then let

ν(g(y′)) = phm where (m, p) = 1

and let a and b be integers such that aph + bm = 1, and set

g1 = gap
h

g2 = gbm

so that g = g1g2. By construction, we then have g1(y′) ∈ Gσ and g2(y′) ∈ Gρ. Since G0 is closed, it
follows that g1(y) ∈ Gσ and g2(y) ∈ Gρ, whence, since

g(y) = g1(y)g2(y) ∈ Gσ

we also have that g2(y) ∈ Gσ, and so

g2(y) ∈ Gσ
y ∩Gρ

y = G0
y.

But from the hypothesis, and the fact that S is the spectrum of a discrete valuation ring, it follows
that G \ (Gy \ G0

y) is an open of G over which G → S induces an open morphism, and thus, at
every point of G0

y, gives a “quasi-section”; then, after possibly another extension of the base S, we
can suppose that there exists a section g′2 of G0 over S such that g′2(y) = g2(y). Set g′ = g1g

′
2;

then, by construction, g′(y) = g(y) = x, and g′(y′) = g1(y
′)g′2(y

′) ∈ Gσ, and so g(y′) = x′ is a
generalisation of x in Gσ over y′, which proves (iii).

Finally we prove the last claim (iv). It suffices to prove that, if x ∈ Gρ, then every generalisation
x′ of x is in Gρ. We can suppose (after taking the images under φnh for suitable h) that we even
have x ∈ G0. Then, for every integer n > 0 coprime to the characteristic, x is in the image of φn

(since the n-th power in a connected group of finite type over a field of characteristic coprime to n
is surjective). Since φn is open, it follows that x′ is also in the image of φn. More precisely, let U be
a quasi-compact open of Gτ that contains G0

y, and then x′ ∈ φn(U) for all n coprime to p. Taking
n to be a common multiple of the factors of the ν(z) that are coprime to p, for z ∈ U , we see that
x′ ∈ Gρ.

Claim (iii) of Theorem 1.1 is finished off as follows:

Corollary 1.5. Let n > 1 be an integer such that the n-th power homomorphism φn : G→ G is universally
open (for example, étale). Let G(n) = φ−1n (G0), and suppose that the connected fibres G0

s “do not contain
the additive component” (i.e. the group induced by field extension from k(s) to the algebraic closure does not
contain a subgroup isomorphic to Ga).

Then G → S is universally open at the point of G(nh). In particular, if the G0
s do not contain the

additive component, and if, for every integer n > 1, the homomorphism φn is universally open at the points of
residual characteristic coprime to p, then G→ S is universally open at the points of Gσ , and thus ((iii) of
Theorem 1.1) if G0 is closed then Gσ → S is universally open. In this case, s 7→ dimGs is a locally constant
function on S.

Proof. It follows from the hypotheses that the kernel nG of φn is universally open over S, and so
G→ S is universally open at the points of nG, and thus also (replacing n with nh) at the points
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of (nh)G. But the hypothesis on the fibres G0
s tells us exactly that the points of order some power

of n in Gs are dense in the union of the G(nh), whence it easily follows that G→ S is universally
open at all points of this union, in particular along the identity section, whence it easily follows that
s 7→ dimGs is a locally constant function.

Remark 1.6. Recall that a morphism X → S is said to be universally open if it sends every open
to an open, and retains this nice property after any base change S′ → S. This also implies (if S
is locally Noetherian and X → S is locally of finite type) that every irreducible component of X
dominates S, and that this property is retained after any base change S′ → S. In these two claims,
it suffices (thanks to the finiteness hypotheses above) to verify only for the base changes S′ → S
where S′ is the spectrum of a discrete valuation ring (complete, with algebraically closed residue
field, if one wants...). The definition extends in an evident way to the case of a subset Z of X
(such as the subset Gσ of G). It is a perfectly normal phenomenon, even if we start with a simple
projective morphism X → S with connected geometric fibres (for example, the fibre square of the
modular family of elliptic curves over S = SpecC[j]), that PicX/S is not universally open over S,
i.e. that there can be irreducible components of PicX/Sthat live entirely over a single point of S;
this is linked to the fact that the rank of the Néron–Severi group of the fibres of X/S can jump up
(“complex multiplication” phenomena). However, (1.5) assures us that, in good cases, PicσX/S (and
usually, it seems, even PicτX/S) is universally open over S.

Finally, here is a useful case where, exceptionally, G0 agrees to be open:

Corollary 1.7. Suppose that G→ S is universally open at the points of G0 (cf. Corollary 1.5) and that the
fibres Gs are separable, thus simple over k(s) (this latter condition being automatically satisfied in residual
characteristic zero, by a result of Cartier). Then G0 is open in G. If, further, S is reduced, then G0 is simple
(and in particular, flat) over S.

Proof. The first claim can be made more precise by noting that if, for some given s ∈ S, we have
that G → S is universally open at the points of G0

s, and if G0
s is separable over k(s), then G0 is

a neighbourhood of G0
s (and it so happens that the hypotheses made on s remain satisfied by all

neighbouring points). A proof of this statement, which is independent of all the structure of the
group, can be found in [GD1960, IV, §7]. The last claim in Corollary 1.7, also independent of group
structure and of any question of connected components, is a particular case of a flatness criterion
given in [Gro1960b, §5], which implies, more generally:

Corollary 1.8. Let U be an open subset of a fibre Gs such that G→ S is universally open at the points of
U (cf. (1.5)). If Gs is separable over k(s) and S is reduced at s, then G is flat over S at the points of U (and
then also simple over S at the points of U ).

Remarks 1.9. I do not know, if G is separated over S, if G0 or Gτ is always closed in G; this seems
unlikely. In any case, we find evident counter-examples if we drop the separation hypothesis, for
example by taking the affine line with a countably infinite number of copies of the origin, thus
obtaining a group scheme G over the affine line whose fibres are all the trivial group, apart from
one, which is Z. This group scheme is an open group subscheme, the closure of the identity section,
of the Picard prescheme of the S-scheme X that corresponds to a family of conics degenerating to
two concurrent lines.

Even starting with a flat and finite group scheme G over the spectrum S of a discrete valuation
ring V , if G0 is reduced at the identity section, and thus closed, then various conclusions become
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false if we drop certain hypotheses. Suppose that V is of equal characteristic p > 0, and let G be
the kernel of the homomorphism Ga → Ga given by the homomorphism of functors f 7→ fp − tf ,
where t is a uniformiser of V .

(Recall that, by definition, the “additive group” Ga over S represents the functor S′ 7→ Γ(S′,OS′)).
Then, as an S-scheme, G = SpecV [x]/(xp− tx) is the union of p concurrent “lines”, giving a group
Z/pZ that degenerates to an infinitesimal additive-type group. In this example, G0 = Gσ (and
this is one of the p lines), and so G0 is not open in G. In the case of unequal characteristic, with
residual characteristic p > 0, we start with a group scheme H = µp given by the kernel of the p-th
power in Gm, so that H = SpecV [x]/(xp− 1), which is again the union of p concurrent lines, giving
a group Z/pZ (in characteristic 0) that degenerates to an infinitesimal multiplicative-type group
in characteristic p. Let H ′ be the “constant group scheme” defined by the ordinary finite group
Z/pZ, which is the disjoint sum of Z/pZ copies of S, or even SpecV Z/pZ. Then G = H ×S H

′

describes a group (Z/pZ)2 in characteristic 0 that degenerates to an infinitesimal group times Z/pZ
in characteristic p. Here Gρ is the union of the identity section and the special fibre, and so Gρ is
not open, even though Gσ is the union of the identity section and the general fibre, and is thus not
closed, contrary to what is true in the case of equal characteristic in (iii) and (iv) of Theorem 1.1.
Of course, these are phenomena linked to characteristic p > 0. The above results give:

Corollary 1.10. Suppose that the residual characteristics of S are all 0, so that Gτ = Gσ and G0 = Gρ.
Then Gτ = Gσ is open, and even open and closed if G is separated over S and the G0

s are proper; under
these same hypotheses, G0 = Gρ is proper over S and thus closed in G. Suppose finally that, for every integer
n > 1, the n-th power homomorphism in G is universally open, then G0 is open; if furthermore the G0

s do not
have any additive component (for example the G0

s are proper, as above), then Gτ → S is universally open,
and even simple if S is reduced.

Finally we note the following easy result:

Proposition 1.11. There exists an open subset U of S such that the set G′ of points of G at which G is
simple (resp. flat) over S is the underlying set of an open group subscheme induced by G|U . Furthermore, every
section of G over U is a section of G′ over U .

Corollary 1.12. If G is simple (resp. flat) over S at the points of the identity section, then it is simple (resp.
flat) at the points of every section of G over S, and at all points of G0. If, further, for every integer n > 0 the
n-th power homomorphism φn : G→ G is étale at the points of characteristic coprime to n, then G is simple
(resp. flat) over S at all points of Gσ .

2. Application to the local properties of Picard schemes

Theorem 2.1.

i. Let f : X → S be a proper and simple morphism, and suppose that PicX/S exists (for example, if f is
projective). Then PicX/S is separated over S, and, for every closed subset Z of PicX/S that is of finite
type over S, we have that Z is proper over S.

ii. Let X be a prescheme over a field k that is proper and geometrically normal. Then Pic0X/S is proper
over k.
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Proof. For (i), with the valuative criterion of [GD1960, II, §7] it suffices to prove the following: if S is
the spectrum of a complete discrete valuation ring, and U the open consisting of the generic point
of S, then every rational section of PicX/S over S, i.e. every section over U , extends uniquely to
a section over S. Taking into account the definition of PicX/S , this is equivalent to the following
statement: for every invertible module L on V = f−1(U), there exists an invertible module on X
that extends L , unique up to isomorphism. But this follows easily from the description of invertible
modules on V (resp. on X) in terms of the classes of “Cartier” divisors, taking into account the fact
that the local rings of X are regular (since X is simple over S, which is regular), and thus factorial,
by Auslander, which implies that every divisor on S is a Cartier divisor. Indeed, every divisor on V
can be extended to a divisor on X by taking its “closure”.

For (ii), using Chow’s lemma we can reduce to the case where X is projective, and thus embedded
into some Pn

k ; we can also assume that X is connected. If dimX = 1, then X is simple over k, and
we can apply (i). If dimX ⩾ 2, then we can use a variant of the known “equivalence criteria”, which
implies that there exists a finite number of curves Yi, simple over X (obtained as intersections of
X with suitable linear subspaces of Pn

k ), such that PicτX/k →
∏

i Pic
τ
Yi/k

is a monomorphism, and
induces a fortiori a monomorphism for the connected components. Since the codomain is proper
over k by the above, and since we are talking about a homomorphism of group schemes, which is
necessarily a closed immersion, it follows that Pic0X/k is also proper over k. We can avoid recourse
to delicate equivalence criteria by using the structure of commutative algebraic groups over an
algebraically closed field (thanks to Chevalley–Borel); we are then reduced to proving that every
morphism from the affine line with the origin removed into PicτX/S is constant, which is equivalent to
saying that every invertible module on X[t, t−1] comes from an invertible module on X, which is a
result that is well known and elementary and does not even use the fact that X is proper over k (the
hypothesis that X is normal allowing us to immediately reduce to the case where X is regular).

Remark 2.2. The above proof of (i) holds true even if we only suppose that f is flat and that its fibres
Xs are locally complete intersections and simple over k(s) in codimension ⩽ 2, taking into account
the following fact which is proven in [Gro1960b]: a Noetherian complete intersection local ring that
is regular in codimension ⩽ 3 is factorial (“Samuel’s conjecture”). We note that the result becomes
false if we replace “codimension ⩽ 2” by “codimension ⩽ 1”, i.e. by the hypothesis “normal”, as
we can convince ourself by considering the example of a family of non-singular quadratics that
degenerate to a quadratic cone.

Corollary 2.3. Let f : X → S be a proper and normal morphism (i.e. flat with normal geometric fibres),
and suppose that PicX/S exists. Then Pic0X/S is proper over S, thus closed in PicX/S ; furthermore, PicτX/S

and Pic0X/S are both closed, as is PicσX/S in “equal characteristic”.

Proof. We apply Theorem 1.1 and (ii) of Theorem 2.1.

Corollary 2.4. Let f : X → S be a proper and simple morphism such that PicX/S exists and is the sum of

the schemes P (i) of finite type over S (cf. FGA 3.V, Proposition 4.1). Then each P (i) is proper over S.

Proof. This follows from (i) of Theorem 2.1.

As we noted in Remark 2.2, the above result can be generalised by making less restrictive
hypotheses on the fibres of f , but becomes false if we only suppose f to be normal. In this case, I
do not know if PicτX/S is nevertheless proper over S, even if assuming it to be of finite type over S.
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Theorem 2.5. Let f : X → S be a proper and flat morphism such that PicX/S exists, and, for each integer
n, let φn be the n-th power homomorphism in this group prescheme. Then φn is étale at all points x ∈ X of
residual characteristic coprime to n.

By the infinitesimal characterisation of étale morphisms, the above claim is equivalent to the
following:

Lemma 2.6. Suppose that S is the spectrum of an Artinian local ring A whose maximal ideal m is (ν+1)-th
power null, and let Aν−1 = A/mν and Xν−1 = X ⊗A Aν=1. Let L be an invertible module on X , and
L ′ν−1 an invertible module on Xν−1 whose n-th tensor power is isomorphic to Lν−1 = L ⊗A Aν−1. Then
there exists an invertible module L ′ on X whose n-th tensor power is isomorphic to L (if n is coprime to the
residual characteristic of k = k(L )).

Proof. Set V = mν = mν/mν+1, which is a vector space over k = k(A). We start by extending
L ′ν−1 to an arbitrary invertible module over L ′ on X . The obstruction to doing this is found in
H2(X0,OX0

)⊗k V , but by the hypothesis on L ′ν−1 and the fact that Lν−1 can be extended, we see
that the product of this obstruction with n is zero, and so the obstruction itself must be zero since n
is coprime to the characteristic. The arbitrariness of the extension is found in H1(X0,OX0)⊗k V ,
and the deviation ξ of L ′⊗n from L is found in the same module; if we try to correct L ′ in such
a way as to render this deviation zero, then we are led to finding some η in the aforementioned
module such that nη = ξ. But this is again possible thanks to the fact that n is coprime to the
characteristic.

Corollary. Under the conditions of Theorem 2.5, suppose further that the Picard schemes of the fibres Xs do
not contain any additive component (for example, if the Xs are geometrically normal, cf. (ii) of Theorem 2.1).
Then PicX/S → S is universally open at the points of PicσX/S . If Pic0X/S is closed (for example, if the Xs

are geometrically normal, cf. Corollary 2.3), then PicσX/S is itself universally open over S. Finally, in the
case of equal characteristic, PicρX/S → S is universally open.

Proof. We apply Corollary 1.5 and Theorem 1.1.

Corollary 2.7. Let f : X → Y be a proper and flat morphism such that PicX/S exists. Then the function
s 7→ dimPicXs/k(s) on S is upper semi-continuous (i.e. it can jump upwards, but not downwards), and it is
even continuous (i.e. locally constant) if the PicXs/k(s)

do not contain any additive component.

Proof. The first claim is trivially true, or almost so, for every group prescheme locally of finite type
over a locally Noetherian base, since it suffices to look along the identity section. The second claim
follows from Theorem 2.5.

Remark 2.8. Let s, s′ ∈ S be such that s is a specialisation of s′. Then Corollary 2.7 is equivalent
to an inequality (resp. equality) between the dimensions of the Picard schemes of Xs′ and of its
“specialisation” Xs. Serre noted, even before the construction of Picard schemes, that the invariance
of the dimensions of the Picard varieties of the Xs in the case of a simple morphism f : X → S was
a formal consequence of the theory of specialisation of the fundamental group ([Gro1960b, X]),
classical relations à la Kummer between the points of finite order on the Picard variety, and the
abelianisation of the fundamental group ([Gro1960b, XI]). If we denote by α, µ, and λ the dimensions
of the abelian, multiplicative, and additive parts (respectively) of PicXs/k(s)

, and we similarly define
α′, µ′, and λ′, then the known relations can be expressed as the following inequalities:

133



FGA 3.VI
2. Application to the local properties of Picard schemes

α+ µ+ λ ⩾ α′ + µ′ + λ′ (*)

(satisfied provided that PicX/S exists, and thus probably in all cases), and this inequality, for
λ = λ′ = 0, reduces to an equality, satisfied under the same existence hypotheses:

α+ µ = α′ + µ′.

We also have

2α+ µ ⩽ 2α′ + µ′ (**)

by the argument of Serre, if the Xs are separable (without even supposing the existence of
PicτX/S), or if the nPicX/S (kernels of the φn into the Picard functor) are separated over S (taking
into account the fact that they are étale over S, thanks to Theorem 2.5). We are inclined to conjecture
that Equation * is an equality in all cases, or at least if the Xs are separable, and also that we have
inequalities

α ⩽ α′

λ ⩾ λ′
(***)

which should be satisfied whenever we have a group prescheme that is locally of finite type over
locally Noetherian S, in which the dimension of the fibres is constant (see Lemma 1.3 for a positive
result in this direction).

Remark 2.9. In all known cases, PicτX/S is universally open over S, but we should probably not have
excessive illusions, even if f : X → S is simple; in any case, Mumford has constructed an example
(it is true with S non-reduced, in fact with S the spectrum of an Artinian ring) where PicτX/S is
not flat over S, by infinitesimally varying the Igusa surface. The point envisaged by Mumford can
also be found in PicρX/S , and it remains possible (for f : X → S simple) that PicX/S is flat over
S at the points of PicσX/S ; the speaker doubts, however, that this is always the case, even when
restricting to the points of Pic0X/S and supposing S to be the spectrum of a discrete valuation ring.
The question is linked to the study of fixed points of an abelian scheme under a finite automorphism
group, a situation for which we seem to lack examples. It seems that even by restricting to simple
and projective f : X → S, the results of local regularity on PicX/S stated in the present section, and
the conjectures raised in Remark 2.8, basically exhaust what can be said on this subject without
more particular hypotheses on the nature of the fibres of f . We recall, however, that, if the geometric
fibres of PicX/S are reduced and have no additive component, then it follows from Corollary 1.8
and Theorem 2.5 that PicX/S is simple over S at the points of PicσX/S whenever S is reduced; this
result still holds even, if f : X → S is normal, without any hypothesis on S, and we will see in
Theorem 3.5. On this note, we point out:

Proposition 2.10.

i. If PicX/S is simple (resp. flat) over S at the points of the identity section, then it is simple (resp. flat)
at all points of PicσX/S , and at the points of every section of PicX/S over S.

ii. Let s ∈ S be such that H2(Xs,OXs
) = 0. Then there exists an open neighbourhood U of s such that

PicX/S |U is simple over U .
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iii. Let X be a proper scheme over a field. Then we have

dimPicX/k ⩽ dimH1(X,OX)

with equality if and only if PicX/k is simple over k; this is always the case if k is of characteristic 0.

Proof. Claim (i) follows from Theorem 2.5 and Corollary 1.12, and (ii) follows from the infinitesimal
criterion for simple morphisms and a well-known obstruction calculation, taking into account the
fact that (by the “semi-continuous theorem”) the hypothesis made on s will still hold true for
neighbouring points. Finally, (iii) follows from the fact that H1(X,OX) is isomorphic to the Zariski
tangent space at the identity element of PicX/k; the last claim is a particular case of a theorem of
Cartier, saying that a “formal group” in characteristic 0 is formally simple over k.

3. The canonical abelian subscheme of PicX/S, and the Albanese
scheme

Proposition 3.1. Let k be a field, and let G a group scheme of finite type over k that is commutative and
“without additive component”. Then G0

red is separable over k, and thus a simple group scheme over k.

Proof. Since the claim is trivial if k is perfect, and in particular for Gk, where k is the algebraic
closure of k, it suffices to show that (G0

k
)red comes from a subscheme of G. But from the hypothesis

that Gk contains no additive component it easily follows that there exists an integer m such that
(G0

k
)red is the “scheme-theoretic” image of the m-th power homomorphism in Gk. Since the latter

homomorphism comes from the analogous homomorphism for G, the scheme-theoretic image of
this provides the desired object.

Corollary 3.2. Let X be a normal and proper scheme over k such that PicX/k exists. Then there exists an
abelian subscheme of PicX/k whose underlying set is Pic0X/k.

Proof. By (ii) of Theorem 2.1, since Pic0X/k is proper over k, it satisfies the conditions of Proposi-
tion 3.1.

The above result shows that, in certain cases, the classical “Picard variety” (which is (PicX/k)
0
red

in the current theory) “is defined over k”, without supposing the field k to be perfect.
Now let f : X → S be a proper and flat relative scheme, with OS

∼−→ f∗(OX) for simplicity, such
that PicX/S exists and that Pic0X/S is proper over S. Suppose further, for (ii) of Theorem 3.3, that
there exists an open of PicX/S containing Pic0X/S that is quasi-projective over S; this condition
is satisfied, as we have seen, if f is projective and with separable or irreducible geometric fibres.
Recall that an abelian scheme over S is a group scheme over S that is proper and simple over S with
connected geometric fibres. We propose to examine whether or not there exists a group subscheme
A of PicX/S that is an abelian scheme and whose underlying set is Pic0X/S . We have just seen that
such an A always exists if S is the spectrum of a field. Here is what we know how to say in the
general case envisaged here:

Theorem 3.3. Under the above conditions:
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i. If there exists an abelian subscheme of PicX/S whose underlying set is Pic0X/S , then it is unique. Its
formation is thus compatible with base change.

ii. For there to exist such an abelian subscheme, it is necessary and sufficient that it exist after every base
change S′ → S, where S′ is local Artinian; if S is the spectrum of a local ring, it even suffices to test
with the S′ = Spec(An) where An = A/mn+1. If S is reduced, then it equally suffices to test with
the S′ that are the spectrum of a discrete valuation ring (complete, with algebraically closed residue
field, if one desires).

iii. Suppose that A exists, and let B = Alb0(X/S) be the dual abelian scheme (i.e. B = Pic0A/S

[Mumford–Tate seminar, 1962]). Then we can canonically construct a principal homogeneous space
P = Alb1(X/S) for B, and an S-morphism X → P that is universal for the S-morphisms from X
to para-abelian schemes (i.e. to principal homogeneous spaces for abelian schemes). The formation of
Alb0(X/S), Alb1(X/S), and X → Alb1(X/S) commutes with base change.

Proof. We sketch the proof:

1. This is a general property of rigidity for abelian subschemes of commutative group schemes:
if two such subschemes agree set-theoretically at a point s ∈ S, then they agree over the entire
connected component of s ([Mumford–Tate seminar, 1962]).

(This result generalises a classical theorem of Chow).

2. Using Hilbert schemes, we see that the functor that, to every S′ over S associates the set
(consisting of either one or zero elements) of canonical abelian subschemes of (PicX/S)×S S

′

is representable by a scheme T of finite type over S. By (i), T → S is a monomorphism, and
by Corollary 3.2, it is surjective. To say that there exists a canonical abelian subscheme of
PicX/S implies that T is a section over S, or that T → S is an isomorphism. This is equivalent
to saying that T → S is étale, or, in the case where S is reduced, that T → S is proper.
Whence immediately (ii).

3. Simply using the definition of PicX/S , we note that, for every abelian scheme C over S, the
data of an S-morphism from X to a principal homogeneous space for C is equivalent to
the data of a group homomorphism C ′ → PicX/S , where C ′ is the dual abelian scheme of
C. But if the canonical abelian subscheme A of PicX/S exists, then these homomorphisms
necessarily factor through A (and we can see by again using the points of finite order). Whence
immediately (iii).

Remark 3.4. We denote by Pic00X/S the canonical abelian subscheme of PicX/S , if it exists. This is,
unfortunately, not always the case, as we can see by infinitesimally varying the Igusa surface (by
first-order modular deformation). It is however possible that Pic00X/S exists at least if S is reduced,
or, equivalently, by (ii), if S is the spectrum of a discrete valuation ring. So let X0 and X1 be
the special and generic fibres of X (respectively), and let A1 = PicX1/K1

, where K is the field of
fractions of the valuation ring V . By Koizumi, there exists an abelian scheme A over S, essentially
unique, whose general fibre is A1, and we easily see as in (2.1), (i) (supposing from now on that X
is simple over S) that the identity morphism of A1 extends to a morphism

A→ PicX/S .

From this, we obtain a homomorphism

A0 → Pic00X0/k
(*)
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which we can easily show to be a surjective homomorphism with kernel equal to a finite p-group,
where p is the characteristic of the residue field k (still by using the points of finite order).

With this, the following conditions on X/S are equivalent:

a. The above homomorphism Equation * is an isomorphism (which Shimura expresses by saying
that the formation of the “Picard variety” is “compatible with specialisations”).

b. Pic00X/S exists (and is then exactly A).

c. (As a reminder) The Pic00Xn/S
exist.

By the remark that we made concerning the kernel of Equation *, condition (a) is satisfied if the
residual characteristic is zero, but this result will be notably generalised in Theorem 3.5.

Of course, if PicX/S is simple over S at the points of Pic0X/S , then the latter is open in PicX/S

(cf. Corollary 1.7) and is thus, endowed with the induced structure, an abelian subscheme of PicX/S ,
and thus equal to Pic00X/S , which exists in this case. But we have much better:

Theorem 3.5. Under the conditions of Theorem 3.3, let s ∈ S be such that PicXs/k(s)
is simple over k(s)

(or, equivalently, such that dimPicXs/k(s)
= dimH1(Xs,OXs

)). Then there exists an open neighbourhood
U of s such that PicX/S is simple over S at the points of Pic0X/S |U , which is thus an open abelian subscheme
in PicX/S |U . A fortiori, Pic00X|U/U exists.

Proof. We describe the principle of the proof. The above allows us to reduce to the case where S is
the spectrum of an Artinian local ring A, and we argue by induction on the infinitesimal order of A.
We can thus suppose that Pic0Xn/An

is simple over An, and reduce to proving that Pic0Xn+1/An+1
is

simple over An+1. Note that, for this, it suffices to construct an abelian scheme Pn+1 over An+1 that
extends Pn = Pic0Xn/An

, along with an invertible module Ln+1 on Xn+1 ×An+1 Pn+1 that extends
the invertible module Ln on Xn×An

Pn that arises in the definition of the Picard scheme PicXn/An

as the solution to a universal problem. (N.B. We can suppose that X is endowed with a section over
S...). For this construction, we must use the following key result: every abelian scheme defined over
a quotient of an Artinian local ring can be extended (in other words, the absolute “formal scheme of
modules” (FGA 3.II) for an abelian scheme over an algebraically closed field is simple over the ring
of Witt vectors over k);

this result can be obtained by using the general formal properties of the obstruction to lifting,
and the group operations. With this result, we start by extending Pn arbitrarily to Pn+1; we then
find an obstruction to lifting Ln, found in H2(X0 × P0,OX0×P0

)⊗k V (where V = mn+1/mn+2),
and more precisely in the subspace H1(X0,OX0

)⊗H1(P0,OP0
)⊗k V (taking into account the fact

that the restriction of Ln to the two factors Xn and Pn is trivial). But this latter space is exactly
H1(P0,GP0/k)⊗ V , where GP0/k is the tangent sheaf to P0/k, and thus also the space that expresses
the indeterminacy that there was in the lifting of Pn to Pn+1 (FGA 3.II). So we can correct this
lifting (in exactly one way, as should be the case) in such a way as to kill the obstruction to lifting
Ln.

Corollary 3.6. Under the conditions of Theorem 3.5, R1 f∗(OX) is a locally free module on S in a
neighbourhood of s, and its formation commutes with base change.

Proof. This module is exactly the tangent module to PicX/S along the identity section.
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Remark 3.7. Using the same argument as for Theorem 3.5, we can show that, if S′ is a subscheme of
S defined by a nilpotent coherent ideal, and if we suppose only that Pic0X′/S′ exists and has simple
fibres, then Pic0X/S necessarily exists and is an abelian scheme over S. This allows us to construct
Picard schemes in certain cases, despite the absence of any projective hypothesis; for example, the
dual abelian scheme of an abelian scheme over an Artinian ring always exists. Using Corollary 3.6
in the case where X is an abelian scheme over S, and using the known structure of H•(Xs,OXs) as
an exterior algebra over H1(Xs,OXs

) (Rosenlicht–Serre), we find that Ri f∗(OX) is locally free for
all i, and more precisely that it is isomorphic to the i-th exterior power of R1 f∗(OX).

Remark 3.8. In the case of a simple projective morphism f : X → S, with S reduced and of residual
characteristics zero, the result of Corollary 3.6 was already known, by transcendental methods, as a
consequence of Hodge theory. In fact, all the Rp f∗(Ω

q
X/S) are then locally free.

We have, however, counterexamples in the case of unequal characteristics for “locally free
R1 f∗(OX)”, by Serre varieties ([Ser1958b, p.50]). It seems that we do not have any counterexample
in equal characteristic.

Corollary 3.8. Under the conditions of Theorem 3.5, PicX/S |U is simple over U at all points of PicσX/S |U .

Proof. We apply (i) of Proposition 2.10.

In particular, taking (iii) of Proposition 2.10 into account:

Corollary 3.9. Suppose that S is of residual characteristics zero. Then PicτX/S is simple over S.

Remark 3.10. We thus deduce, for example, that if PicX/S is also proper over S, then the
Néron–Severi torsion group of geometric fibres of f is constant on every connected component of S
(which is also evident by transcendental methods when f is simple and projective). We note that
the direct use of Theorem 2.5 allows us to show, more generally, that, if PicX/S is proper over S
(for example, if f : X → S is simple and projective), and if q is a prime number distinct from the
residual characteristics of S, then the q-primary component of the Néron–Severi torsion groups of
geometric fibres of X/S is constant on every connected component of S. It is no longer, however,
the case in characteristic p > 0 for the p-primary component of the torsion group. However, it
remains possible that the rank over the k(s) of PicXs/k(s)

/Pic00Xs/k(s)
= TXs/k(s) is locally constant;

when S is reduced, we can show that this is equivalent to showing that Pic00X/S exists and that PicX/S

is flat over S, and it suffices to test in the cases where S is the spectrum of a discrete valuation ring.
This is what I have verified in the few examples that I have looked at; but since the corresponding
statement with S Artinian is false (cf. Remark 2.9 and Remark 3.4), we must not get carried away.

4. The finiteness theorem for the Picard scheme

Let f : X → S be a projective and flat morphism such that PicX/S exists. Then the “Hilbert

polynomials” Q ∈ Q[t] allow us to decompose PicX/S into a sum of opens PicQX/S . If we do not
make any further hypotheses, ensuring for example that PicX/S is separated over S, then it will not
be true in general that these opens are of finite type over S; we obtain a counterexample when X is
“a conic degenerating to two lines”.
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It is possible, however, that this is the case if f is separable and has irreducible geometric fibres.
The question is linked to knowing if PicτX/S is of finite type over S, which can be true without any
hypotheses on the fibres of X/S. When f : X → S is simple, we note that PicτX/S is contained in

one of the PicQX/S (thanks to the fact that, on a non-singular projective variety, “torsion” equivalence
is finer than (in fact, “identical to”, thanks to Matsusaka) numerical equivalence for divisors), and
is thus of finite type over S if the PicQX/S are. Note that these finiteness questions that we have
just highlighted still make sense even without supposing the existence of PicX/S , since they can be
expressed by saying that certain families of invertible modules are “limited”, in the sense of FGA 3.IV:
Consider, for every algebraically closed field k, the integral subschemes of Pr

k of dimension n and
degree d, and the invertible modules on these preschemes that have a Hilbert polynomial Q (where r,
n, d, and Q are given), and show that the family of these modules (considered as coherent modules
on the Pr

k) is limited, i.e. can be parametrised by a scheme of finite type over Z.
Using the method of Matsusaka [Mat1957], a rather technical proof (using the “equivalence

criteria” in a suitable form) allow us to answer in the affirmative when we restrict to the non-singular
subvarieties of Pr

k. More precisely, we obtain the following result:

Theorem 4.1. Let f : X → S be a simple projective morphism with connected geometric fibres, with
S Noetherian. Let OX(1) be a very ample module on X with respect to S, and E a subset of PicX/S

corresponding to a family (Li) of invertible modules on the geometric fibres Xsi of X/S, with Di a (not-
necessarily positive) divisor on Xsi that defines Li, and let a(i)n tn + . . .+ a

(i)
0 be the Hilbert polynomial of

Li, and let ξ = ξi be a divisor that defines OX(1), i.e. a hyperplane section.
Then the following conditions are equivalent:

a. Q is quasi-compact, i.e. contains an open of finite type over S, i.e. the family (Li) is limited.

b. E is contained in the union of a finite number of the sets PicQX/S , for Q ∈ Q[t], i.e. the set of Hilbert
polynomials of the Li is finite.

b’. (If the fibres of X/S are all of the same dimension n). The coefficients a(i)n−1 and a(i)n−2 of the Hilbert
polynomials of the Li are contained in a finite set.

b”. (If the fibres of X/S are all of the same dimension n). The integers ξn−1Di and ξn−2D2
i (the projective

degrees of Di and of D2
i ) are bounded above.

Corollary 4.2. Let f : X → S be a simple projective morphism, with connected geometric fibres. Then the
schemes PicQX/S (for Q ∈ Q[t]) and PicτX/S are projective over S.

Proof. Since they are of finite type over S, by Theorem 4.1, we can apply Corollary 2.4.

Remark. [Comp.]
The questions of finiteness of the type highlighted in this section have been all but totally resolved

since the editing of this present talk. We note here the principal facts now known in this direction.
To simplify the statements, we implicitly assume that all the Picard preschemes that arise in the
statements exist, even though an evident modification of these statements would allow us to get rid
of any existence hypothesis. In what follows, S denotes a Noetherian scheme, and X and Y are
proper schemes over S.

i. Let f : X → Y be a surjective morphism. Then f∗ : PicY/S → PicX/S is a morphism of finite
type.
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ii. Suppose that Y is projective over S, endowed with an invertible module that is ample with
respect to S, and let X be the scheme of zeros of an arbitrary section of this module. Let
f : X → Y be the canonical immersion. Finally, suppose that the irreducible components of
the fibres of Y/S are of dimension ⩾ 3. Then f∗ : PicY/S → PicX/S is of finite type.

iii. Suppose that X is projective over S, and that all its geometric fibres are integral and of
dimension n. Let OX(1) be an ample invertible module on X, allowing us to define Hilbert
polynomials. Let M be a subset of PicX/S . Then M is quasi-compact if and only if, in the
Hilbert polynomials a0xn+ a1xn−1+ a2xn−2+ . . .+ an of the elements of M , the coefficients
a1 and a2 are bounded.

iv. For every integer n ̸= 0, the n-th power homomorphism in the group prescheme PicX/S is a
morphism of finite type.

Note that (i) and (ii) also imply (under the hypotheses given in their respective statements)
that a subset M of PicY/S is quasi-compact if and only if its image in PicX/S is quasi-compact. We thus
conclude that an invertible module L on Y is τ -equivalent to 0 if and only if its inverse image in
X is; in other words, PicτY/S is the inverse image of PicτX/S . In particular, to show that the first
prescheme is of finite type over S, it suffices to prove this for the second, since PicY/S → PicX/S is
of finite type. Then using (i), Chow’s lemma, and (iii), we find:

v. PicτX/S is of finite type over S.

Generally, the conjunction of (i) for a finite morphism and (ii) allows us to reduce, for the majority
of finiteness questions, to the case where X/S has integral and normal geometric fibres of dimension
⩽ 2; often, even, applying (i) for a surjective but not-necessarily finite morphism, along with the
resolution of singularities of algebraic surfaces (due, in arbitrary characteristic, to Abhyankar), we
can reduce to the case where X/S is even simple, and thus has non-singular geometric fibres of
dimension 2. This allows us, for example, taking into account (v) and the Picard–Igusa inequality
bounding the rank of the Néron–Severi group of a non-singular projective surface, to prove the
following generalisation of the Néron finiteness theorem:

vi. Let X/S be proper over S, but otherwise arbitrary.

Then the Néron–Severi groups PicXi/ki
/Pic0Xi/ki

of the geometric fibres Xi/ki of X/S are of
finite type, and their rank and the order of their torsion subgroups are bounded.

The same method of reduction to the case of non-singular surfaces, and known theorems for
this case (such as the Néron finiteness theorem, and the fact that the intersection form on the
Néron–Severi group is non-degenerate) implies:

vii. Let X be a proper scheme over an algebraically closed field. Then there exists a finite number
of integral closed curves Ci (for 1 ⩽ i ⩽ r) in X, such that the following property is satisfied:
for every subset M of PicX/k, M is quasi-compact if and only if the integers degLC′

i
(for

L ∈M) are bounded (where C ′i denotes the normalisation of Ci).

In the above we can take r to be the rank of the Néron–Severi group. Once we know that this
group is of finite type, (vii) reduces to the fact that the linear forms on the Néron–Severi group
defined by the curves C in X do not simultaneously vanish except for on the torsion elements of
the Néron–Severi group. In the case where X is non-singular and projective, this result, as well as
(v), was due to Matsusaka. Using (vii), we easily obtain the following characterisation of invertible
modules that are τ -equivalent to 0 on X :
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viii. Let X/k be a proper scheme over a field, and L an invertible module on X . Then the
following conditions are equivalent:

a. L is τ -equivalent to 0.

b. For every coherent module F , we have χ(F ⊗ L ) = χ(F ), where χ denotes the Eu-
ler–Poincaré characteristic.

b’. Like (b), but with F = OY , where Y is an integral closed subscheme of dimension 1 in
X .

c. For every Y as above, writing Y ′ to mean the normalised curve, we have degLY ′ = 0.

If X/k is projective and endowed with an ample invertible module OX(1), then the above
conditions are also equivalent to the following:

d. For every integer m, L ⊗m(1) is ample.

e. (If X is integral). For every pair of integers (m,n), we have

χ(L ⊗m(n)) = χ(O(n))

(i.e. (b) is true for F = L ⊗m(n)).

For the sufficiency of this last condition, note that it implies that the Hilbert polynomials of the
L ⊗m are all equal, and thus, by the Mumford criterion (iii), the L ⊗m remain in a quasi-compact
subset of PicX/k, i.e. we have (a). Conditions (b), (b’), and (c) should be considered as variants (for
an arbitrary proper scheme) of the notion of numerical equivalence, usually defined for non-singular
projective varieties. For such varieties, the equivalence of (a) and (c) was evidently well known
(Matsusaka).

Criterion (e) from the above also implies the following result:

ix. Let f : X → S be a flat projective morphism whose geometric fibres are integral. Then PicτX/S

is open and closed in PicX/S .

We restrict ourselves to some comments on the proofs of the key results (i), (ii), and (iii) (result
(iv) is a little bit different from the others, and can be proven using only (i) for radicial surjective
finite morphisms, or, more precisely, for a Frobenius morphism). For (i), we use, in an essential way,
the ideas of non-flat descent (see FGA 3.I, §A.2.c). One finds that (thinking only of finiteness results)
the lack of effectivity criteria for descent data is inoffensive. Mumford has recently proven a slightly
weaker form of (iii), where the criterion makes use of all the coefficients of the Hilbert polynomial.
His argument is extremely simple, and is inspired by the proof of an amplitude criterion by Nakai
(stated by the latter for non-singular surfaces, and generalised by Mumford to arbitrary projective
morphisms). It seems to me that this argument only works under a gentle additional restriction
on the fibres of X/S (Serre’s (S2) property), which is satisfied if the geometric fibres are normal.
We then use this restricted criterion in the proof of (ii): criterion (i) allows us to reduce to the case
where Y/S is flat with integral and normal geometric fibres, and applying the Mumford criterion we
easily reduce to the case where X/S satisfies the same conditions. From the dimension hypothesis it
then follows that the geometric fibres of Y and of X are of depth ⩾ 2 at their closed points, which
allows us to apply the “equivalence criteria” under the form that is given in [Gro1960b, XII], and
finishes the proof of (ii). Once we have (i) and (ii), it is not difficult in the Mumford criterion to
discard the hypothesis that the fibres be normal, and to prove it under the stronger form given in
(iii).

We note finally that the proof of (i) and (ii) also shows that, in the case where S is the spectrum
of a field k, the morphism PicY/k → PicX/k is affine (and not only of finite type).
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