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2. Mixed manifolds and mixed spaces
I. Category of models ∣∣∣ p. 2-01
Let B be a topological space. We define the category S n

B in the following manner: the
objects of S n

B are the open subsets of B×Cn, and a morphism f : U → U ′ from an open
subset U ⊂ B×Cn to an open subset U ′ ⊂ B×Cn is a continuous map f : U →U ′ satisfying
the following two conditions:

1. the diagram

U
f−−−−−→ U ′

π1

y yπ1

B B
commutes, where π1 denotes the projection of B×Cn to B; and

2. for all x ∈ B, the map fx : Ux →U ′
x is holomorphic, where

Ux = {z ∈Cn | (x, z) ∈U}

(and similarly for U ′).

If B is endowed with the structure of a C∞ manifold (resp. an R-analytic manifold,
resp. C-analytic manifold), then we obtain a category C∞SB (resp. RSB, resp. CSB) by
requiring the morphisms to be C∞ (resp. R-analytic, resp. C-analytic).

More generally, if f1 : B → B′ is a continuous map from one topological space to another,
then a morphism of S f1 is a continuous map f from an object U of SB to an object U ′ of
SB′ such that

1. the diagram

U
f−−−−−→ U ′

π1

y yπ1

B −−−−−→
f1

B′

commutes; and
2. fx : Ux →U ′

f1(x) is holomorphic for all x ∈ B. ∣∣∣ p. 2-02
If f1 is a C∞ map from one C∞ manifold to another, then f will be a morphism of

C∞S f1 if, further, it is a C∞ map (resp. . . . ). We thus obtain, for every category of
topological spaces, a fibred category S n (resp. C∞S n, resp. . . . ).

II. The definition of mixed spaces and mixed varieties

1. First definition
Let B and V be separated spaces, and let π : V → B be a continuous map. The structure
of a mixed space over B is defined on V by a system of charts ϕi : Ui → V , where the (Ui)
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are objects of S n
B ; for each i, ϕi is a homeomorphism from Ui to an open subset of V such

that the diagram
Ui

ϕi−−−−−→ V

π1

y yπ
B B

commutes; finally, for all i and all j, the “change of chart” ϕ−1
j ◦ϕi is an isomorphism of

SB from an open subset of Ui to an open subset of U j.
The structure thus defined is that of a (C 0,C)-mixed space. If B is a C-analytic space,

and if the change of chart maps are all C-analytic, then we have a C-analytic mixed space.
In this case, V itself is a C-analytic space, and the fibres Vx = π−1(x) are C-analytic sub-
manifolds.

If B is a C∞ manifold (resp. R-analytic, resp. C-analytic), and if the change of chart
maps are all C∞ (resp. . . . ), then we have a (C∞,C)-mixed manifold (resp. (R,C), resp.
(C,C)). In this case, V itself is a manifold. Note that the notion of a (C,C)-mixed manifold,
or a C-analytic mixed manifold, reduces to simply having a C-analytic manifold V endowed
with a projection π : V → B onto another C-analytic manifold such that π is of maximal
rank at every point.1

Let π : V → B and π′ : V ′ → B′ be mixed spaces, and let f1 : B → B′ be a continuous
(resp. . . . ) map. Then a morphism from V to V ′ over f1 is a continuous map f : V → V ′
such that the diagram

V
f−−−−−→ V ′

π

y yπ′
B −−−−−→

f1
B′

commutes, and such that, for any charts ϕi : Ui →V and ϕ′
j : U ′

j →V ′, the map ϕ′
j
−1◦ f ◦ϕi

is a morphism of S f1 (resp. . . . ) from an open subset of Ui to U j.
∣∣∣ p. 2-03

2. An equivalent definition
We now give another way of defining mixed spaces, equivalent to the above.

Given separated spaces B and V , along with a continuous map π : V → B, the structure
of a pre-mixed space consists of the structure of a C-analytic manifold on each fibre Vx =
π−1(x). Given pre-mixed spaces π : V → B and π′ : V ′ → B′, along with a continuous map
f1 : B → B′, a morphism of pre-mixed spaces over f1 is a continuous map f : V → V ′ such
that the diagram

V
f−−−−−→ V ′

π

y yπ′
B −−−−−→

f1
B′

commutes and induces a C-analytic map on each fibre.

1[Trans.] The more common modern nomenclature is to simply call such an object a family of complex mani-
folds.
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A mixed space is a pre-mixed space π : V → B such that every point y ∈ V admits
a neighbourhood W in V that is isomorphic as a pre-mixed space to an open subset of
B×Cn, via an isomorphism over the identity. The morphisms of mixed spaces are the
same: mixed spaces form a full subcategory.

3. Deformations
A mixed space π : V → B is said to be proper if B is locally compact and the map π is
proper (i.e. the inverse image of any compact subset is compact). If it is a mixed manifold,
then we can show that it is a fibred manifold that is locally trivial with respect to the
underlying C∞ structure, but the previous talk shows that, in general, any two fibres are
not isomorphic as C-analytic manifolds.

Definition. Let V0 be a compact C-analytic manifold, B a locally compact space, and
b0 ∈ B. Then a C-analytic deformation of V0 over (B,b0) consists of a proper C-analytic

∣∣∣ p. 2-04
mixed space π : V → B along with an isomorphism of C-analytic manifolds i : V0 →π−1(b0).

The goal of this seminar is the study, at least local, and an attempt at a classification
of, C-analytic deformations of a given compact C-analytic manifold V0.

Definition. Let V0 be a compact C-analytic manifold. A C-analytic deformation (π : V →
B, i : V0 → V ) of V0 is said to be locally complete if, for any other deformation (π′ : V ′ →
B′, i′ : V0 →V ′) of V0, there exists a neighbourhood B′

1 of b′
0 in B′, an analytic map f1 : B′

1 →
B with f1(b′

0) → b0, and a morphism of C-analytic mixed spaces f : π′−1(B′
1) → V over f1

such that f ◦ i′ = i. The deformation is said to be locally universal is furthermore the germ
of f1 at b′

0 is determined uniquely by this condition.

It seems that every compact C-analytic manifold V0 admits a locally complete C-analytic
deformation, and a locally universal one if the group of automorphisms of V0 is discrete.

III. Vector fields

1. Study on models
Let B be a space, U an object of SB (i.e. an open subset of B×Cn), b0 a point of B, and set
U0 =π−1(b0).

A holomorphic field of tangent vectors on U0 (i.e. a holomorphic map from U0 to Cn)
is said to be a vertical holomorphic field on U0. A vertical holomorphic field on U is a
continuous (resp. . . . ) map θ : U → Cn that induces a vertical holomorphic field on each
fibre Ux. If f : U →U ′ is an isomorphism in SB, then the transport f∗θ of θ by f is defined
by

f∗θ( f (x, z))=D2 fx,z ·θ(x, z)

where D2 fx,z is the linear map from Cn to itself that is tangent to fx at the point z ∈Ux.
This is again a vertical holomorphic field, since it follows from a Cauchy integral that the
matrix D fx,z depends continuously on the pair (x, z).

Now suppose that B is a C∞ manifold, just for simplicity, and let T0 be the tangent
space to B at b0. A field of tangent vectors to U defined on U0, i.e. a map ω : U0 → T0×Cn,

∣∣∣ p. 2-05
is said to be a projectable holomorphic field if ω(b0, z)= (t0,θ(z)) (where t0 ∈ T0 is a vector
that does not depend on z, called the projection of the field ω) and θ(z) is a holomorphic
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vector field. If B is a C-analytic space, possibly with a singularity at b0, then we give the
same definition, but with T0 then being the Zariski tangent space to B at b0, i.e. the dual
of m/m2, where m is the ideal of germs at b0 of holomorphic functions on B that vanish at
b0.

If f : U →U ′ is an isomorphism of C∞SB (resp. . . . ), then then transport f∗ω is defined
by

f∗ω( f (b0, z))=D fb0,zω(b0, z)

where D fb0,z : T0 ×Cn → T0 ×Cn is now the linear map that is tangent to f at the point
(b0, z). This is a projectable holomorphic field. Indeed, the matrix D fb0,z can be written as(

I 0
D1 f D2 f

)
and

D1 f : T →Cn

D2 f : Cn →Cn

both depend holomorphically on z (for D1 f , this follows from the fact that fx is holomor-
phic for every x). By setting f∗ω(b0, z′)= (t0,θ′(z′)), we have

θ′(z′)=D1 fb0,z(t0)+D2 fb0,z(ω(z))

if z′ = fb0 (z)

which shows that f∗ω is indeed a projectable holomorphic field.
A projectable holomorphic field on U is a C∞ field of vectors tangent to U that induces

a projectable holomorphic field on each fibre.

2. Vector fields on a mixed manifold
Let π : V → B be a (C∞,C)-mixed manifold (resp. . . . , resp. a C-analytic mixed space). By
transporting along the charts, we define the notions of

• vertical holomorphic fields on an open subset of a fibre;
• vertical holomorphic fields on a open subset of V ;
• projectable holomorphic fields on an open subset of a fibre; and
• projectable holomorphic fields on an open subset of V . ∣∣∣ p. 2-06
Let ξ be a C∞ vector field (resp. . . . ) on V . By integrating ξ, we obtain a C∞ map,

denoted by eξ, from an open subset W ⊂ R×V containing {0}×V (resp. C-analytic map
from an open subset W ⊂C×V ) to V , characterised by

1. eξ(t1 + t2, y) = eξ(t1, eξ(t2, y)), with the left-hand side being defined whenever the
right-hand side is; and

2. ∂
∂t eξ(t, y)|0,y = ξ(y).

Note that W is a mixed manifold over R×B (resp. a mixed space over C×B).

Proposition. For eξ : W →V to be a morphism of mixed spaces over the projection R×B →
B, it is necessary and sufficient for ξ to be a vertical holomorphic field. For eξ : W → V to
be a morphism of mixed spaces over a map from an open subset of R×B containing {0}×B
to B, it is necessary and sufficient for ξ to be a projectable holomorphic field.

The proof is left to the reader.
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IV. The Spencer–Kodaira map
Let π : V → B be a mixed manifold (resp. a C-analytic mixed space), b ∈ B, and V0 =
π−1(b0). Let T0 be the tangent space to B at b0 (resp. the Zariski tangent space). We
introduce the following sheaves on V0:

• Θ0: the sheaf of germs of vertical holomorphic fields on V0 ;
• Π0: the sheaf of germs of locally projectable holomorphic fields on V0 ; and
• Λ0: the sheaf π∗T0, i.e. the sheaf of germs of locally constant maps from V0 to T0.

We have an exact sequence of sheaves on V0

0→Θ0 →Π0 →Λ0 → 0

that gives rise to the long exact sequence in cohomology

. . .→H0(V0;Π0)→H0(V0;Λ0) δ−→H1(V0;Θ0)→ . . . .

We also have a canonical map
∣∣∣ p. 2-07

ι : T0 →H0(V0;Λ0)

that is injective if V0 is non-empty, and surjective if V0 is connected.

Definition. The Spencer–Kodaira map is the composition

ρ0 = δ◦ ι : T0 →H1(V0;Θ0).

This map is an essential tool in the local study of deformations of C-analytic varieties.
Note that Θ0 is exactly the sheaf of germs of holomorphic fields of tangent vectors to V0,
and thus depends only on V0, while T0 depends only on the base. Also, Θ0 is a coherent
analytic sheaf on V0, and, if V0 is compact, then H1(V0;Θ0) is a finite-dimensional vector
space over C [1]. We thus see that, in this case (which is the only case where we can say
anything non-trivial), ρ0 might be possible to calculate.

It is clear that, if the given mixed manifold is trivial (i.e. if V = B×V0, with π being
the projection to B), then the map ρ0 is zero. The next talk aims to show that, in a certain
sense, ρ indicates the non-triviality of V in a neighbourhood of V0.

3. Regular deformations
I. The map ρ̃

All throughout this talk, B is a C∞ manifold (resp. R-analytic, resp. C-analytic); π : V → B
denotes a proper mixed manifold; b0 is a point of B; and V0 = π−1(b0) is thus a compact
C-analytic manifold.

∣∣∣ p. 3-01
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Let Θ̃ (resp. Π̃) be the sheaf of germs of vertical holomorphic (resp. locally projectable
holomorphic) vector fields on V . The quotient sheaf Λ̃= Π̃/Θ̃ is exactly the inverse image
under π of the sheaf T̃ of germs of C∞ fields (resp. . . . ) of tangent vectors on B.

For every open subset U of B, set VU =π−1(U). The exact sequence

0→ Θ̃→ Π̃→ Λ̃→ 0

of sheaves on VU gives rise to a homomorphism

ρ̃U : H0(U ; T̃)
π∗−−→H0(VU ;Λ̃) δ−→H1(VU ;Θ̃).

Let R1π∗Θ̃ be the sheaf on B defined by the presheaf U 7→ H1(VU ;Θ̃). Then ρ̃ becomes a
homomorphism of sheaves on B:

ρ̃ : T̃ →R1π∗Θ̃.

In particular, we have a homomorphism

ρ̃0 : T̃0 →R1π∗Θ̃=H1(V0;Θ̃)

where T̃0 is the vector space of germs at b0 of fields of tangent vectors to B. Finally, we
∣∣∣ p. 3-02

have a commutative diagram

T̃0
ρ̃0−−−−−→ H1(V0;Θ̃)

ε

y yε
T0 −−−−−→

ρ0
H1(V0;Θ0)

where ρ0 is the Spencer–Kodaira map [2?].

Theorem 1. For the proper mixed manifold π : V → B to be locally trivial in a neighbour-
hood of the point b0 ∈ B, it is necessary and sufficient for the map ρ̃0 : T̃0 →H1(V0;Θ̃) to be
zero.

Proof. —

a. (Necessity). If π : V → B is locally trivial at b0, then, for every open subset U of B
over which V is trivial, we have Π̃= Λ̃⊕Θ̃ on VU , and so δ : H0(VU ;Λ̃)→H0(VU ;Θ̃) is
zero.

b. (Sufficiency). Let (η1, . . . ,ηp) be C∞ vector fields (resp. . . . ) on a neighbourhood of
b0 in B, such that (η1(b0), . . . ,ηp(b0)) forms a basis of the tangent space T0 to B at
b0. It then follows from the hypothesis that the map

H0(V0;Π̃)→H0(V0;Λ̃)

is surjective. So let (ξ1, . . . ,ξp) be projectable holomorphic vector fields on a neigh-
bourhood of V0 in V , that project to (η1, . . . ,ηp). Let f be the map defined on a
neighbourhood of {0}×V0 in Rp ×V0 (resp. Cp ×V0) by

f (t1, . . . , tp, y)= eξ1 (t1, eξ2 (. . . , eξp (tp, y) . . .)).
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It follows from the proposition stated in [2, Section III.2] that f induces an isomor-
phism of mixed manifolds from U×V0 to π−1( f1(U)) over f1, where U is a sufficiently
small cubical neighbourhood of 0 in Rp, and f1 is the map from U to B defined by

f1(t1, . . . , tp)= eη1 (t1, eη2 (. . . , eηp (tp,b0) . . .)),

which proves the theorem. ∣∣∣ p. 3-03

II. The regular case
For all b ∈ B, set Vb = π−1(b). Consider the family {H1(Vb;Θb)}b∈B of finite-dimensional
C-vector spaces, and, for all b ∈ B, the map

εb : H1(Vb;Θ̃)→H1(Vb;Θb).

For every open subset U ⊂ B, we have a map

ε̃U : H1(VU ;Θ̃)→ ∏
b∈U

H1(Vb;ΘB)

that defines, by varying U , a homomorphism from the sheaf R1π∗Θ̃ to the sheaf Φ on B
defined by Φ(U)=∏

b∈U H1(Vb;Θb).
Definition.

We say that the proper mixed manifold π : V → B is regular if

1. the dimension of H1(Vb;Θb) does not depend on the point b ∈ B; and
2. we can endow E = ⋃

b∈B H1(Vb;Θb) with the structure of a C∞ vector bundle (resp.
. . . ) such that ε̃ is an isomorphism from the sheaf R1π∗Θ̃ to the sheaf of germs of
C∞ sections (resp. . . . ) of the bundle E.

In fact, Kodaira and Spencer have shown [7] that, by identifying the H1 spaces with
spaces of harmonic forms, condition (2) is a consequence of condition (1).

Then Theorem 1 has the following corollary:

Proposition 1. For the proper mixed manifold π : V → B to be locally trivial, it is necessary
and sufficient for it to be regular and, for all b ∈ B, for the Spencer–Kodaira map

ρb : Tb →H1(Vb;Θb)

to be zero.
Indeed, since ε̃ is injective, this condition implies that the map

ρ̃b : T̃b →H1(Vb;Θ̃)

is zero for all b.
∣∣∣ p. 3-04

At the end of this talk, we will construct a counter-example which shows that it is
necessary to assume that the mixed manifold is regular.
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III. An example of non-regular deformation: Hopf man-
ifolds

1. Hopf manifolds
Let n Ê 2 be an integer, and let b be an (n×n) matrix with coefficients in C, whose eigenval-
ues are all of modulus > 1. The free group L(b) generated by b acts freely on Ṽ =Cn \{0},
and the quotient space Ṽ /L(b), which we call the Hopf manifold defined by b, is a compact
C-analytic manifold that is homeomorphic to S2n−1 ×S1.

Note that Vb and Vb′ are isomorphic if and only if there exists some a such that b′ =
aba−1 or b′ = ab−1a−1 (cf. Appendix).

Let Θ be the sheaf of germs of holomorphic fields of tangent vectors on Vb.

Proposition 2. We can identify H0(Vb;Θ) with the vector space of matrices that commute
with b, and H1(Vb;Θ) has the same dimension as this vector space.

Proof. If X is a vector field on an open subset U ⊂ Ṽ , then b∗(X ) is the vector field on the
open subset b(U) given by transporting via b, i.e. b∗X (u) = bX (b−1u). Let U = {Ui} be a
cover of V by simply connected Stein open subsets; for all i, set Ũi = χ−1{Ui}, where χ is
the canonical map from Ṽ to Vb. The cover Ũ = {Ũi} of Ṽ consists of Stein open subsets
that are invariant under b (not necessarily connected, but this doesn’t matter). Then b∗
defines a map, again denoted by b∗, from the group of cochains C•(Ṽ ,Ũ ;Θ) to itself.

Lemma 1. We have the exact sequence

0→ C•(Vb,U ;Θ)
χ∗−→ C•(Ṽ ,Ũ ;Θ)

1−b∗−−−→ C•(Ṽ ,Ũ ;Θ)→ 0.

Proof. The only thing that we need to verify is that the map 1− b∗ is surjective. For all
(i0, . . . , iq), let U ′

i0,...,iq
be an open subset of Ṽ such that

∣∣∣ p. 3-05

χ : U ′
i0,...,iq

→Ui0,...,iq

is a homeomorphism. The Ũi0,...,iq is a disjoint union of the bp
∗U ′

i0,...,iq
, where p ∈ Z, and

every γ ∈ Cq(Ṽ ,Ũ ;Θ) can be written in the form γ= γ1 −γ2, with γ1 = 0 on bp(U ′
i0,...,iq

) for
p < 0, and γ2 = 0 for p Ê 0. Set

β= ∑
pÊ0

bp
∗γ1 +

∑
p<0

bp
∗γ2

(which is a locally finite sum). Then β−b∗β= γ, whence Lemma 1.

Now, to finish the proof of Proposition 2. From Lemma 1, we have the following exact
sequence:

0→H0(Vb;Θ)
χ∗−→H0(Ṽ ;Θ)

1−b∗−−−→H0(Ṽ ;Θ)
δ∗−→H1(Vb;Θ)

χ∗−→H1(Ṽ yΘ)
1−b∗−−−→H1(Ṽ ;Θ).
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We can show that
χ∗ : H1(Vb;Θ)→H1(Ṽ ;Θ)

is zero: if n > 2, it is evident, since H1(Ṽ ;Θ) = 0; if n = 2, then a direct calculation on the
cochains of a cover of Ṽ by two Stein open subsets shows that

1−b∗ : H1(Ṽ ;Θ)→H1(Ṽ ;Θ)

is bijective.
Now H0(Ṽ ;Θ) is the space of holomorphic vector fields on Ṽ , but such a field extends

to a holomorphic vector field on Cn, and H0(Ṽ ,Θ)= L⊕M, where L is the space of fields of
linear vectors, and M is the space of fields of second-order vectors at 0. The subspaces L
and M are invariant under b∗, and 1− b∗ : M → M is an isomorphism. Then Proposition
2 follows from remarking that, if an element of L is represented by a matrix a, then
b∗a = bab−1.

2. Mixed manifolds whose fibres are Hopf manifolds
Let B be the set of all (n×n) matrices with coefficients in Cwith eigenvalues all of modulus
> 1. This is an open subset of Cn2

. Let α be the transformation from B×Ṽ to itself defined
∣∣∣ p. 3-06

by α(b, x) = (b,b(x)). The free group L(α) generated by α acts linearly on B× Ṽ , and the
quotient V = B × Ṽ /L(α) is a C-analytic manifold. By endowing it with the projection
π : V → B induced by the projection π1 : B× Ṽ → B after passing to the quotient, we obtain
a C-analytic mixed manifold that is proper, but not regular. Indeed, condition 1 of the
definition of regular mixed manifolds is not satisfied: for example, for n = 2, the dimension
of H1(Vb;Θ) is 4 if b is a scalar matrix, but 2 in all other cases.

Note that the dimension of H1(Vb;Θb) is an upper semi-continuous function of b, and
that the set of b such that dimH1(Vb;Θb) Ê k is a closed analytic subspace of B. This is a
general result, that we hope to be able to prove in a later talk of this seminar.

3. Calculation of ρ
We have Tb = Hom(Cn,Cn) = L ⊂ H0(Ṽ ;Θ), and we defined, to prove Proposition 2, a sur-
jective map δ∗ : L →H1(Vb;Θ).

Proposition 3. The Spencer–Kodaira map ρ is given, for the mixed manifold studied in
this section, by

ρ(a)= δ∗(ab−1).

In particular, it is surjective, and its kernel is the space of matrices of the form [ℓ,b] for
ℓ ∈ L.

Proof. Let a ∈ Tb = L. Let {Ui} be a cover of Vb by simply connected Stein open subsets,
and, for each i, let U ′

i be a connected component of Ũi.
Let η′i be the projectable holomorphic field on U ′

i defined by η′i(x) = (a,0); let η̃i be the
projectable holomorphic field on Ũi defined by η̃i = αk∗η′i on bk(U ′

i); and let ηi be the pro-
jectable holomorphic field on Ui corresponding to η̃i. By definition, ρ(a) is the cohomology
class of the cochain {θi j}, where θi j = η j −ηi is a vertical holomorphic field on Ui j.

∣∣∣ p. 3-07

11 of 25



Contents

Set η̃i(x) = (a,βi(x)). Then β ∈ C0(Ṽ ;Θ), and we have (1− b∗)β = ab−1 ∈ L ⊂ H0(Ṽ ;Θ).
Indeed, α∗η= η, α∗ηi(b−1x)= ηi(x), and

α∗(a,β(b−1x))= (a,β(x)),

whence
ab−1x+b ·β(b−1x)=β(x).

We thus deduce that θ = δ∗(ab−1), which proves Proposition 3.

4. A counter-example
Take n = 2, and σ ∈C such that |σ| > 1. Let B′ ⊂ B be the set of matrices of the form(

σ t
0 σ

)
where t ∈ C, and let V ′ = π−1(B′) be the mixed manifold induced by V over V ′; now B′ is

a line, and its tangent space T ′
b at b is generated, for all b, by a =

(
0 1
0 0

)
. It follows from

Proposition 3 that the Spencer–Kodaira map

ρ′ : Tb(B′)→H1(Vb;Θ)

is zero if and only if

b ̸= b0 =
(
σ 0
0 σ

)
since, if b ̸= b0, then a = [ℓ,b], where ℓ=

(
t−1 0
0 0

)
; and if b = b0, then ρ′ is injective.

We can also see that V ′ is trivial on B′ \{b0}.
Let ϕ : C→ B′ ⊂ B be the map defined by

ϕ(t)=
(
σ t2

0 σ

)
and let Vϕ be the mixed manifold given by the inverse image of V under ϕ. The Spencer–
Kodaira map ρ

ϕ
t from C to H1(Vϕ(t);Θ) is the composition

∣∣∣ p. 3-08

ρ′ϕ(t) ◦Dϕ : C→ T ′
ϕ(t) →H1(Vϕ(t);Θ),

and this is zero for all t, since, if t ̸= 0, then ρ′
ϕ(t) is zero; and, if t = 0, then Dϕ is zero.

However, the mixed manifold Vϕ is not locally trivial, since Vϕ

0 is not isomorphic to Vϕ
t

for t ̸= 0.

5. Question (K. Srinivasacharyulu)
We know that the Hopf manifolds are non-K"{a}hler, and thus non-algebraic. For n =
2, the manifold Vb admits non-constant meromorphic functions if and only if b can be
diagonalised with eigenvalues σ1 and σ2 satisfying σ

p
1 = σ

q
2 for some integers p and q

(and there is then the function xp
1 x−q

2 ). The set of b satisfying this property is neither
open nor closed, but it is a countable union of closed analytic subspaces. An analogous
phenomenon arises for deformations of complex tori. Is this result general?
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Appendix
With the notation of §III.1, let f : Vb → Vb′ be an isomorphism of C-analytic manifolds.
This lifts to an isomorphism of universal coverings

f̃ : Cn \{0}→Cn \{0}.

By Hartog, f̃ extends to an isomorphism g : Cn →Cn. We necessarily have

g(bz)= (b′)k g(z) (∗)

where z ∈ Cn, and k is an integer; the same property, applied to the inverse map of g,
shows that k =±1. Let a be the linear map that is tangent to g at the origin; the identity
(∗) then gives

ab = (b′)ka
k =±1

whence
b′ = aba−1 or b′ = ab−1a−1.

4. The primary obstruction to
deformation
Introduction ∣∣∣ p. 4-01
Let V0 be a compact complex-analytic manifold, and let Θ be the sheaf of germs of holo-
morphic fields of tangent vectors. We ask the following question: given an element a ∈
H1(V0,Θ), does there exists a deformation of V0, with a non-singular base (i.e. a fibred
mixed manifold π : V → B, with b0 ∈ B, along with an isomorphism V0

∼=−→ π−1(b0)), such
that a is the image, under the map ρ defined in [Talk no. 2], of a vector v that is tangent to
B at b0? An element a ∈H1(V0,Θ) for which the answer is positive is called a deformation
vector. We will give a necessary condition for a to be a deformation vector; this condition
is written [a⌣ a]= 0. We will then give an example where this condition is not satisfied.

I. Exact sequences of sheaves of algebras
Let K be a commutative ring, and let Φ, Φ1, and Φ2 be sheaves of K-modules on some
space X , and suppose that we have some given homomorphism Φ1 ⊗Φ2 →Φ, written as a
product. We define, for any cover U of X , the cup product

⌣ : Cp(X ,U ;Φ1)⊗Cq(X ,U ;Φ2)→ Cp+q(X ,U ;Φ)

by the formula
(α⌣β)i0,...,i p+q =αi0,...,i p ·βi p ,...,i p+q .
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We have the relation
d(α⌣β)= dα⌣β+ (−1)pα⌣ dβ.

This induces a cup product on the cohomology of the cover U , and, by passing to the
inductive limit over open covers, a cup product

⌣ : Hp(X ;Φ1)⊗Hq(X ;Φ2)→Hp+q(X ;Φ). ∣∣∣ p. 4-02

Definition. A sheaf of algebras on X is a sheaf of modulesΦ on X endowed with a product
Φ⊗Φ→Φ (which we do not assume to be either commutative nor associative).

If f : Φ→Ψ is a homomorphism of sheaves of algebras, then the kernel Φ′ of f is a
sheaf of two-sided ideals of Φ, i.e. we have products Φ′⊗Φ→Φ′ and Φ⊗Φ′ →Φ′ such that
the two diagrams

Φ′⊗Φ −−−−−→ Φ′y y
Φ⊗Φ −−−−−→ Φ

Φ⊗Φ′ −−−−−→ Φ′y y
Φ⊗Φ −−−−−→ Φ

both commute.

Proposition 1. Let 0 → Φ′ → Φ→ Φ′′ → 0 be an exact sequence of sheaves of algebras
on X ; let a ∈ Hp(X ;Φ′′). Then δa ∈ Hp+1(X ;Φ′), and, for any class b ∈ Hq(X ;Φ′), we have
δa⌣ b = 0.

Proof. Let U be a cover of X such that a and b are represented by cocycles α and β

(respectively), and such that α lifts to a cochain η ∈ Cp(X ,U ;Φ). Then δη is a cocycle in
Cp+1(X ,U ;Φ′) whose class in Hp+1(X ;Φ′) is, by definition, δa, and δa⌣ b is the class of
δη⌣ β. But δ(η⌣ β) = δη⌣ β, and η⌣ β is a cochain in Cp+q(X ,U ;Φ′), since Φ′ is a
sheaf of ideals. So the cocycle δη⌣β is cohomologous to 0 in Hp+q+1(X ;Φ′), which proves
the proposition.

II. The primary obstruction
Let V0 be a complex-analytic manifold, and Θ0 the sheaf of germs of holomorphic fields
of tangent vectors. Then Θ0 is a sheaf of Lie algebras, and, if a,b ∈ H•(V0,Θ0), then we
denote by [a⌣ b] the cup product defined by the bracket [−,−] : Θ0 ⊗Θ0 →Θ0. It satisfies

[b⌣ a]= (−1)pq+1[a⌣ b]

for a ∈Hp(V0,Θ0) and b ∈Hq(V0,Θ0).
∣∣∣ p. 4-03

Theorem 1. Let π : V → B be a mixed manifold, b0 a point of B, V0 = π−1(b0), and let
ρ0 : T0 →H1(V0,Θ0) be Spencer–Kodaira map. Then, if u and v are tangent vectors of B at
b0, we have

[ρ0(u)⌣ ρ0(v)]= 0.
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Corollary. Let V0 be a complex-analytic manifold, andΘ the sheaf of germs of holomorphic
fields of tangent vectors of V0. If a ∈H1(V0,Θ) is a deformation vector, then

[a⌣ a]= 0.

Proof. (Proof of the Corollary). This is simply a particular case of Theorem 1; note that
[a⌣ b] is a symmetric bilinear map from H1 ⊗H1 to H2, and that we are in characteristic
0 ̸= 2.

Proof. (Proof of Theorem 1). Consider the following sheaves on V0:

• Θ0: the sheaf of germs of vertical holomorphic fields on V0;
• Θ̃0: the sheaf of germs of vertical holomorphic fields on V ;
• Π0: the sheaf of germs of locally projectable holomorphic fields on V0;
• Π̃0: the sheaf of germs of locally projectable holomorphic fields on V ;
• Λ0: the sheaf π∗T0, where T0 is the tangent space of B at b0; and
• Λ̃0: the sheaf π∗T̃0, where T̃0 is the space of germs at b0 of fields on B of tangent

vectors of B.

We have the following diagram:

0 −−−−−→ Θ̃0 −−−−−→ Π̃0 −−−−−→ Λ̃0 −−−−−→ 0

ε

y ε

y ε

y
0 −−−−−→ Θ0 −−−−−→ Π0 −−−−−→ Λ0 −−−−−→ 0

whence we obtain the following commutative diagram:
∣∣∣ p. 4-04

T̃0
ρ̃−−−−−→ H1(V0;Θ̃)

ε

y yε
T0 −−−−−→

ρ
H1(V0;Θ0)

Let u,v ∈ T0 be fixed tangent vectors of B at b0. We can always find vector fields ũ and
ṽ on B that take the values u and v (respectively) at b0; ϵ(ũ) = u and ϵ(ṽ) = v. The exact
sequence

0→ Θ̃0 → Π̃0 → Λ̃0 → 0

is a sequence of homomorphisms of sheaves of Lie algebras, and so

[ρ̃(ũ)⌣ ρ̃(ṽ)]= 0

by Proposition 1. But ϵ : Θ̃0 →Θ0 is also a homomorphism of sheaves of Lie algebras, and
the diagram

H1(V0,Θ̃0)⊗H1(V0,Θ̃0) [−⌣−]−−−−−→ H2(V0,Θ̃0)

ε⊗ε
y yε

H1(V0,Θ0)⊗H1(V0,Θ̃0) −−−−−→
[−⌣−]

H2(V0,Θ0)

commutes. We thus deduce that [ρ(u)⌣ ρ(v)]= 0.
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Remarks.
—

1. We make essential use of the fact that ϵ : T̃0 → T0 is surjective, and thus of the fact
that B has no singularities.

2. We actually have [ρ(u) ⌣ b] = 0 for all u ∈ T0, for any class b ∈ H1(V0,Θ0) that is
in the image of H1(V0,Θ̃0) under ϵ. In particular, for an element a ∈ H1(V0,Θ0) to
be a regular deformation vector (in the sense of [Talk no. 3]), it is necessary and
sufficient for [a⌣ b]= 0 for all b ∈H1(V0,Θ0).

If V0 is a compact complex-analytic manifold, and a ∈ H1(V0,Θ), then we call [a ⌣
a] ∈ H2(V0,Θ) the primary obstruction to the deformation of V0 along a. For a to be a
deformation vector, it is necessary that this primary obstruction be zero; but it is not
sufficient: we can define a sequence of set-theoretic maps ωn, called obstructions, with
ω1 : H1(V0,Θ) → H2(V0,Θ) given by ω1(a) = [a ⌣ a], and with ωk+1 defined on the subset
of H1(V0,Θ) where ωk vanishes, with values in varying quotients2 of H2(V0,Θ), and a
necessary condition for a to be a deformation vector is that all the ωk(a) be defined and
real. I do not know if this condition is sufficient. Kodaira, Spencer, and Nijenhuis [5] have
shown that, if H2(V0,Θ) = 0, then every element of H1(V0,Θ) is a deformation vector. In
this case, we even have a locally universal deformation whose base is a manifold, and ρ is
an isomorphism from the tangent space of this manifold to H1(V0,Θ)

III. An example of obstruction

1. The manifold V0

Let X = E/Γ be a 2-dimensional complex torus, i.e. E ∼= C2 and Γ ∼= Z4, and let D the be
projective line P1C. Set V0 = X ×D. The sheaf Θ of holomorphic fields of tangent vectors
of V0 is the direct sum of the sheaves of Lie algebras Θ1 and Θ2, where

Θ1 =O ⊗OX π
∗
1ΘX

Θ2 =O ⊗OD π
∗
2ΘD

where π1 : V0 → X and π2 : V0 → D are the projections, O , OX , and D are the structure
sheaves (sheaves of local rings), and ΘX and ΘD are the sheaves of germs of holomorphic
fields of tangent vectors of X and D (respectively). We are mostly interested in Θ2. Also,

∣∣∣ p. 4-06
H1(V0,Θ2) is given by the Künneth exact sequence:

0→H0(X ,OX )⊗H1(D,ΘD)→H1(V0,Θ2)→H1(X ,OX )⊗H0(D,ΘD)→ 0.

But we know that H0(D,ΘD) is the Lie algebra a of the group

A =GL(2,C)/C∗ =SL(2,C)/{±1}

of automorphisms of D, and that H1(D,ΘD) = 0, as we can easily see by taking a cover
of D by two open subsets. We have already seen (in [Talk no. 1]) that, if X = E/Γ, then

2See the Appendix.

16 of 25



Contents

H1(X ,O ) = Hom(Γ,C)/HomC(E,C) is of dimension 2. So H1(V0,Θ2) = H1(X ,O )⊗ a is of
dimension 6. The cup product

H1(V0,Θ2)⊗H1(V0,Θ2)→H2(V0,Θ2)

is given by the formula

[(γ⊗α)⌣ (γ′⊗α′)]= (γ⌣ γ′)⊗ [α,α′].

The cone of elements ϕ ∈ H1(V0,Θ2) such that [ϕ⌣ϕ] = 0 can be identified with the cone
of rank 1 tensors in H1(X ,O )⊗a. Indeed, if ϕ= γ⊗α, then

[ϕ⌣ϕ]= (γ⌣ γ)⊗ [α,α]= 0⊗0= 0

and, if ϕ is not a simple tensor, then we have

ϕ= γ⊗α+γ′⊗α′

with γ and γ′ independent, and α and α′ independent, so

[ϕ⌣]= 2(γ⌣ γ′)⊗ [α,α′] ̸= 0.

2. The mixed space V

In this example, every element of H1(V0,Θ2) whose primary obstruction is zero is a defor-
mation vector. More precisely:

∣∣∣ p. 2-07

Proposition 2.
There exists a mixed space π : V → B and a point b0 ∈ B such that

1. π−1(b0)=V0 (the manifold defined in §III.1);
2. there exists an isomorphism σ from a C-analytic space B to the cone of elements

ϕ ∈H1(V0,Θ2) such that [ϕ⌣ϕ]= 0; and
3. for every subspace B′ of B that has no singularities at b0, the Spencer–Kodaira map

ρ from the tangent space of B′ at b0 to H1(V0,Θ) agrees with σ : B′ →H1(V0,Θ2).

Let H be the analytic space of homomorphisms from Γ to a whose images are contained
in a vector subspace of a that is 1-dimensional over C (i.e. (4×2) matrices of rank 1 with
coefficients in C). For every h ∈ H, e ◦h is a homomorphism from Γ to A, where e : a→ A
denotes the exponential map, and we construct a manifold Vh that is fibred over X with
fibre D as follows: Vh is the quotient of E ×D by the equivalence relation defined by Γ
acting via

γ⋆ (x, y)= (x+γ, ((e ◦h)(γ)) · y).

These manifolds are the fibres of a mixed space W → H, where W is the quotient of H ×
E×D by the equivalence relation defined by Γ acting via

γ⋆ (h, x, y)= (h, x+ y, (e ◦h(y)) · y).

We now place the following equivalence relation on H: we have h′ ∼ h if and only if (h′−h)
extends to an C-linear map f : E → a. Note that, if h′(Γ) and h(Γ) are contained in the
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same subspace L of a of dimension 1 over C (or if h′ ∼ h), then we also have f (E) ⊂ L (or
h ∼ 0 and h′ ∼ 0). In both cases, Vh and Vh′ are isomorphic, and we have an isomorphism
ih′,h : Vh →Vh′ defined by

ih′,h(x, y)= (x, e ◦ f (x) · y)

(in the first case), or
ih′,h = ih′,0 ◦ i0,h

(in the second case). If h, h′, and h′′ are in the same class, then we have ih′′h = ih′′h′ ◦ ih′h,
∣∣∣ p. 4-08

and we can place on W the equivalence relation

(h′, z′)∼ (h, z) ⇐⇒ h′ ∼ h or z′ = ih′hz

for h,h′ ∈ H, z ∈Vh, and z′ ∈Vh′ .
Let B and V be the quotients of H and W (respectively) by these equivalence relations.

We have a projection V → B. To show that the structures of a C-analytic space on H and
W induce structures of a C-analytic space on their quotients B and V , it suffices to remark
that we can lift B to a analytic subspace of H: let, for example, (γ1,γ2,γ3,γ4) be a basis
of Γ such that (γ1,γ2) is a basis of E over C; then each class b ∈ B contains exactly one
element h ∈ H such that

h(γ1)= h(γ2)= 0.

3. Calculating ρ0

Let T be the Zariski tangent space of B at b0, i.e. the dual of I/I2, where I is the ideal of
germs at b0 of analytic functions on B that are zero at b0. Then T0 can be identified with
Hom(Γ,a)/HomC(E,a). Also,

H1(V0,Θ)=H1(V0;Θ1)⊕H1(V0;Θ2)

= (
H1(X ;O )⊗E

)⊕ (
H1(X ;O )⊗a

)
,

and the second term of this term can be identified with the quotient Hom(Γ,a)/HomC(E,a).
We are going to show that the map ρ0 : T0 → H1(V0;Θ) is exactly the canonical injection
defined by these identifications.

Let u ∈ T0 = Hom(Γ,α)/Hom(E,α) be the class of an element h ∈ Hom(Γ,α), which we
suppose to be of rank 1. Then we can write h in the form η⊗σ, where η ∈Hom(Γ,C), σ ∈α,
and we can consider h as a tangent vector to H at 0. Let h be the field of tangent vectors
to H×E×D at 0×E×D that projects onto h, and thus whose components over E×D are
zero. Let (Ui) be a cover of X = E/Γ by simply connected open subsets, and choose, for each

∣∣∣ p. 4-09
i, a component Ũi of the inverse image of Ui in E. We will denote by vi the image over
Ui×D of the field h|Ũi×D. This is a projectable holomorphic field on 0×Ui×D of tangent
vectors of H ×Ui ×D, and we set wi j = v j − vi, so that wi j is a vertical holomorphic field
on Ui j ×D, and these fields form a cocycle whose cohomology class will be, by definition,
ρ0(u).

Let x ∈Ui j, and let x̃i and x̃ j be its inverse image in Ũi and Ũ j (respectively). We have
that x̃ j = x̃i +γi j(x), where γi j(x) ∈Γ, and

wi j(x)= h(x̃ j)− [γi j(x)]∗(h(x̃i))=−h(γi j(x)) ∈α.
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Now wi j is a vector field on D, and so

(wi j) ∈Z1(V0, (Ui ×D);Θ2),

and wi j is of the form ζ⊗α, where ζ ∈ Z1(V0, (Ui ×D);O ) is the cocycle defined by ζi j(x) =
−η(γi j(x)). This is a cocycle whose cohomology class is (up to a sign) the element of
H1(V0,O ) that is identified with the class η in Hom(Γ,C)/HomC(E,C). QED.

Appendix: Higher obstructions
I. Definition of obstructions

1. The sheaf of germs of vertical automorphisms
Let V0 be a C-analytic manifold, which we assume to be compact, and B a C-analytic space,
and let b0 ∈ B. We are going to define a sheaf Γ of non-abelian groups on V0. For every

∣∣∣ p. 4-10
open subset U of V0, consider the isomorphisms of analytic varieties γ : W →W ′, where W
and W ′ are open subsets of B×V0 that contain {b0}×U , such that the following conditions
are satisfied:

1. π1γ=π1 is the projection B×V0 to B;
2. γ is the identity on {b0}×U .

Then Γ(U) consists of equivalence classes of these isomorphisms, where we identify γ1
with γ2 if they agree on a neighbourhood of {b0}×U .

It is clear that Γ(U) is a group under composition of isomorphisms, and that the Γ(U)
form a sheaf Γ of non-abelian groups.

Proposition 1. We can identify H1(V0,Γ) with the set of classes of deformation germs of
V0 over (B,b0).

Recall that a deformation germ of V0 over (B,b0) is a deformation of V0 over a neigh-
bourhood of b0 in B, and that two such deformations (B′,b0,V ′,π′, ι′) and (B′′,b0,V ′′,π′′, ι′′)
are locally equivalent if there exists a neighbourhood W ′ of (π′)−1(b0) in V ′, a neighbour-
hood W ′′ of (π′′)−1(b0) in V ′′, and an isomorphism ϕ from W ′ to W ′′ such that the diagram

V0 V0y y
W ′ ϕ−−−−−→ W ′′

π′
y yπ′′
B B

commutes.
∣∣∣ p. 4-11
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Proof. (Proof of Proposition 1). Let (B′,b0,V ,π, ι) be a deformation of V_0$ over a neigh-
bourhood V ′ of b0 in B. Then we can find a cover {Ui} of V0 and a cover {Wi} of a neigh-
bourhood of ι(V0) in V , along with isomorphisms {hi}, where hi is an isomorphism from a
neighbourhood of {b0}×Ui in B×V0 to Wi that agrees with ι on {b0}×Ui, and such that
π◦hi =π1.

Set γi j = h−1
i ◦h j. We can show that the γi j define an element of Γ(Ui ∩U j), and that

γi j ◦γ jk = γik. The γi j thus form a cocycle γ ∈ Z1(V0, {Ui};Γ). Such a cocycle is said to be
associated to the deformation. It will still be associated to the deformation if pass to a finer
cover. Let (B′,b0,V ′,π′, ι′) be a deformation that is locally equivalent to the first, and let
γ′ be a cocycle associated to this deformation. We can suppose, by refining the covers if
necessary, that the cocycles γ and γ′ are defined with respect to the same cover {Ui} of V0.
Let f be an isomorphism from a neighbourhood of ι(V0) in V to a neighbourhood of ι′(V0)
in V ′. Set f i = (h′

i)
−1 ◦ f ◦hi. Then f i ∈Γ(Ui), and

f i ◦γi j = γ′i j ◦ f j.

We thus conclude that the cocycles associated to a deformation form a cohomology class
that depends only on the local class of the deformation.

Conversely, suppose we have a locally finite cover {Ui} of V0 and a cocycle γ ∈Z1(V0, {Ui};Γ).
Then γi j can be represented by an isomorphism from an open Wi j of B×V0 to another
open Wji, with the two open subsets both containing {b0}×Ui j. Pick a refinement {U ′

i}
of the cover {Ui}, and take some neighbourhood B′′ of b0 in B small enough such that
B′′×U ′

i j ⊂ Wi j for all (i, j), and such that the equality γi j ◦γ jk = γik holds wherever it is
defined in B′′×U ′

i jk. We thus obtain a deformation V of V0 on B′′ by gluing the B′′×U ′
i via

the γi j.
Finally, we can show that all the above does indeed define a bijection between the set

of local classes of deformations of V0 over (B,b0) and H1(V0;Γ).

2. Higher obstructions ∣∣∣ p. 4-12
For every open subset U ⊂ V0, the group Γ(U) is naturally filtered: denote by Fk(U) the
group of vertical automorphisms that are tangent to the identity up to order k−1. Then Γ
becomes a filtered sheaf:

Γ=F1 ⊃F2 ⊃ . . . and
⋂

Fk = {0}.

Set
Qk =Γ/Fk+1

Gk =Fk/F )k+1 =Ker(Qk →Qk−1).

For all k, Gk is a sheaf of abelian groups, which we will write additively. If B = C and
b0 = 0 (we then speak of the deformation in one parameter), for all k, Gk can be identified
with the sheaf Θ of germs of vector fields tangent to V0. In the general case,

Gk =mk/mk+1 ⊗Θ

where m is the maximal ideal of the point b0 in B.
Now, if a ∈Fp and b ∈Fq, then the commutator aba−1b−1 is in Fp+q, and this defines

a map Gp⊗Gq →Gp+q which endows G• =⊕
Gk with the structure of a sheaf of Lie algebras
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that is isomorphic to the tensor product of Θ with the graded algebra associated to the
maximal ideal m of b0 in B filtered by powers.

The exact sequence of non-abelian groups

0→Gk+1 →Qk+1 →Qk → 0

in which Gk+1 is a subgroup of Qk+1 contained in its centre gives rise [3] to an exact
sequence of pointed sets

∣∣∣ p. 4-13

H1(V0;Qk+1)→H1(V0;Qk)
δk−→H2(V0;Gk+1)

i.e. for an element q ∈ H1(V0,Qk) to be in the image of H1(V0;Qk+1), it is necessary and
sufficient for δk q = 0 in H2(V0;Gk+1). A necessary condition for q to be in the image of
H1(V0;Γ)→H1(V0;Qk) is thus δk q = 0 in H2(V0;Gk+1).

Definition. Let q ∈ H1(V0;Qi), and let k Ê i. We define an obstruction of order k of the
element q to be the direct image in H2(V0;Gk+1) under δk of the inverse image of q in
H1(V0;Qk). It is thus a subset of H2(V0;Gk+1). The obstruction is said to be trivial if
the identity element belongs to this subset. Being trivial is a necessary and sufficient
condition for q to be in the image of H1(V0;Qk+1), and a necessary condition for q to be in
the image of H1(V0;Γ).

Warning. If q is not in the image of H1(V0,Qk), then its obstruction of order k is empty,
and thus non-trivial.

This definition is used most of all in the case of deformations in one parameter (B =C
and b0 = 0), where Gk+1 =Θ for all k, and Q1 = G1 =Θ. The successive obstructions of an
element a ∈ H1(V0;Θ) are thus subsets of H2(V0;Θ), and for a to be a deformation vector,
it must be the case that all of its obstructions are trivial. Indeed, the element of H1(V0;Θ)
that corresponds, under the identifications we have made (Θ=Q1 =Γ/F2, and Proposition
1), to a deformation germ is exactly the image under the Spencer–Kodaira map ρ of the
canonical basis vector of the tangent space to C at 0.

II. Calculation of obstructions

1. Relation to the sheaf Ω
From now on, we work in the case of deformations in one parameter, i.e. B =C and b0 = 0.

Let Ω be the sheaf of universal enveloping algebras of the Lie algebras of the sheaf Θ
(i.e. Ω(U) is the universal enveloping algebra of Θ(U)).

∣∣∣ p. 4-14
ThenΩ containsΘ as a subsheaf, and even as a direct factor (by the Poincaré–Birkhoff–

Witt Theorem in characteristic 0). For all k, consider the sheaf of algebrasΩk =Ω[t]/(tk+1).
For i É k, we have a map of sheaves of sets

expi : Θ→Ωk

defined by

expi(Θ)=∑
p

1
M
Θp tp
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Proposition 2. (Campbell–Hausdorff). We can identify Qk with the sheaf of multiplicative
subgroups of Ωk generated by the images of the expi for i É k.

The proof of this proposition will not be given here. We denote by Ω×
k the sheaf of

multiplicative subgroups of Ωk consisting of the elements whose constant terms is 1. The
commutative diagram of sheaves of (non-abelian) groups

0 −−−−−→ Θ −−−−−→ Qk+1 −−−−−→ Qk −−−−−→ 0y y y
0 −−−−−→ Ω −−−−−→ Ω×

k+1 −−−−−→ Ω×
k −−−−−→ 0

gives rise to a commutative diagram of sets

H1(V0;Qk)
δk−−−−−→ H2(V0;Θ)y y

H1(V0;Ω×
k ) −−−−−→

δk
H2(V0;Ω)

in which H2(V0;Θ) is a vector subspace of H2(V0;Ω).

2. Calculation of the primary obstruction
Now let a ∈H1(V0;Θ), and let α= (αi j) be a cocycle of the class a (the choice of the cocycle α
does not matter, since every cocycle that is cohomologous to a deformation cocycle is itself
a deformation cocycle). The corresponding multiplicative cocycle in Ω×

1 is (1+αi j t). This
cocycle can be lifted to Ω×

i as the cochain (1+αi j t), and we have

(1+αi j t)(1+α jk t)= 1+ (αi j +α jk)t+αi jα jk t2

= (1+αik t+αi jα jk t2)

= (1+αik t){1+αi jα jk t2).

Finally, let
δ1a = a⌣ a

where the cup product is taken in the sheaf of algebras Ω.
Note that, if we denote by ⌣̄ the cup product taken in the sheaf of algebras opposite to

Ω, i.e. defined on the level of cochains by (α⌣̄β)i jk = β jkαi j, we always have that a⌣̄b =
−b⌣ a in cohomology.

Consequently,
[a⌣ a]= (a⌣ a)− (a⌣̄a)= 2a⌣ a

and δ1a = a⌣ a = 1
2 [a⌣ a]. We thus recover, up to a factor of 1

2 , the obstruction defined
earlier in this talk.
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3. Calculation of the secondary obstruction
Now suppose that a⌣ a = 0, so that we can find a cochain β= (βi j) such that δβ+α⌣α=
0, i.e.

βik =βi j +β jk +αi jα jk.

Then (1+αi j t+βi jt2) is a cocycle in Ω×
2 , and we can choose the cochain β to be a cocycle

∣∣∣ p. 4-16
in Q2.

This cocycle can be lifted to Ω×
3 as the cochain (1+αi j t+βi j t2), and we have that

(1+αi j t+βi j t2)(1+α jk t+β jk t2)

= 1+ (αi j +α jk)t+ (βi j +β jk +αi jα jk)t2 + (αi jβ jk +βi jα jk)t3

= (1+αik t+βikt2)(1+ (αi jβ jk +βi jα jk)t3).

The secondary obstruction of a is thus the cohomology class of the cocycle (αi jβ jk+βi jα jk) ∈
Z2(V0;Ω). This class depends on the choice of the cochain β: if we choose some other
β′ = β+θ, where Θ ∈ Z1(V0;Θ), then the cocycle is modified by α⌣ θ+θ⌣α, and its class
by an element of [a ⌣H1(V0;Θ)]. We recover the Massey triple product (a,a,a) taken in
the algebra Ω, but with a slightly more restrictive indetermination.

We can try to calculate this secondary obstruction without leaving the sheaf Θ, but the
calculations are then much more complicated: we must take a cochain β= (βi j) such that
δβ+ 1

2 [a⌣ a]= 0. Then the secondary obstruction of α is the class of the cocycle

[αi j,β jk]+ 1
6

[[αi j,α jk],αi j+2α jk].

The calculation done in the sheaf of enveloping algebras Ω can be generalised to obstruc-
tions of order r: we are led to determining, by induction, cochains ωr such that

ω1 =α
δωr +∑

p+q=rωp ⌣ωq = 0
1+∑

1ÉpÉrωp tp ∈C1(V0;Qr)

4. Using spectral sequences ∣∣∣ p. 4-17

Proposition 3. Let ϕ : V0 → X be an arbitrary map, which gives rise to a spectral sequence
of graded Lie algebras

H•(X ;R•ϕΘ)⇒H•(V0;Θ).

Let
a ∈H1(X ;ϕ∗Θ)⊂H1(V0;Θ).

If the element

−1
2

[a⌣ a] ∈H2(X ;ϕ∗Θ)= E2,0
2

is non-zero, but is the image under the differential d2 of the spectral sequence of an element
b ∈ E0,1

2 , then the image of the secondary obstruction of a in E1,1
∞ consists of the elements of
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the form [a,b]. In particular, if, for all b such that d2b = − 1
2 [a,a], we have that [a,b] ̸= 0,

then the secondary obstruction is non-trivial.

Warning. However, if [a,b] = 0 in E1,1, then we can only say that the secondary obstruc-
tion comes from E2,0

∞ , and if this group is non-zero, then we cannot conclude anything.

Proof. Let α be a cocycle on V0 representing the class a. The element b ∈ E0,1
2 can be

represented by a cochain
β= (βi j) ∈C1(V0;Θ)

such that
∣∣∣ p. 4-16

δβ+ 1
2

[a⌣ a]= 0.

We thus obtain a cochain
β′ ∈C1(V0;Ω)

such that
1+αt+β′t2 ∈C1(V0;Q2)

by setting β′
i j = βi j + 1

2α
2
i j; this cochain satisfies δβ′ +α⌣ α = 0. But this new cochain

represents, in the E0,1
2 term of the spectral sequence of the sheaf Ω, the same element b

as the cochain β, since it differs from it by a cochain that comes from X . The secondary
obstruction is thus the class of the cocycle α⌣ β′+β′ ⌣ α, which represents in the E1,1

term of the spectral sequence the element [a,b].

This proposition allows us to construct non-trivial examples of secondary obstructions.
Consider the group N of matrices of the form1 x y

0 1 z
0 0 1


where x, y, z ∈ C, and let Y = N/Γ, where Γ is the subgroup of N consisting of elements
where x, y, z ∈Z+ iZ. Then Y is fibred over a complex torus of dimension two T2 ∼=C2/Z4.
We find non-trivial secondary obstruction elements in H1(V0;Θ), where V0 is the product
of Y with a projective line D. (We use the spectral sequence obtained by projecting onto
T2 ×D). This variety has a “versal” deformation whose Zariski tangent space of the base
B can be identified via the Spencer–Kodaira map ρ with H1(V0;Θ). Further, B has, at its
base point b0, a conic singularity of degree 3, whose equation is given by the secondary
obstruction.

∣∣∣ p. 4-19
I do not know of any examples of non-trivial secondary obstructions on varieties V0

that satisfy H0(V0;Θ)= 0, but some very likely exist.
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Let \(B\) be a topological space.
We define the category \(\mathscr{S}_B^n\) in the following manner: the objects of \(\mathscr{S}_B^n\) are the open subsets of \(B\times\mathbb{C}^n\), and a morphism \(f\colon U\to U'\) from an open subset \(U\subset B\times\mathbb{C}^n\) to an open subset \(U'\subset B\times\mathbb{C}^n\) is a continuous map \(f\colon U\to U'\) satisfying the following two conditions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  the diagram
  \[
     \begin{CD}
       U @>f>> U'
     \\@V{\pi_1}VV @VV{\pi_1}V
     \\B @= B
     \end{CD}
   \]
  commutes, where \(\pi_1\) denotes the projection of \(B\times\mathbb{C}^n\) to \(B\); and
\item
  for all \(x\in B\), the map \(f_x\colon U_x\to U'_x\) is holomorphic, where
  \[
     U_x = \{z\in\mathbb{C}^n \mid (x,z)\in U\}
   \]
  (and similarly for \(U'\)).
\end{enumerate}

If \(B\) is endowed with the structure of a \(\mathscr{C}^\infty\) manifold (resp. an \(\mathbb{R}\)-analytic manifold, resp. \(\mathbb{C}\)-analytic manifold), then we obtain a category \(\mathscr{C}^\infty\mathscr{S}_B\) (resp. \(\mathbb{R}\mathscr{S}_B\), resp. \(\mathbb{C}\mathscr{S}_B\)) by requiring the morphisms to be \(\mathscr{C}^\infty\) (resp. \(\mathbb{R}\)-analytic, resp. \(\mathbb{C}\)-analytic).

More generally, if \(f_1\colon B\to B'\) is a continuous map from one topological space to another, then a \emph{morphism of \(\mathscr{S}_{f_1}\)} is a continuous map \(f\) from an object \(U\) of \(\mathscr{S}_B\) to an object \(U'\) of \(\mathscr{S}_{B'}\) such that

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  the diagram
  \[
     \begin{CD}
       U @>f>> U'
     \\@V{\pi_1}VV @VV{\pi_1}V
     \\B @>>{f_1}> B'
     \end{CD}
   \]
  commutes; and
\item
  \(f_x\colon U_x\to U'_{f_1(x)}\) is holomorphic for all \(x\in B\).
\end{enumerate}

\oldpage{2-02}

If \(f_1\) is a \(\mathscr{C}^\infty\) map from one \(\mathscr{C}^\infty\) manifold to another, then \(f\) will be a morphism of \(\mathscr{C}^\infty\mathscr{S}_{f_1}\) if, further, it is a \(\mathscr{C}^\infty\) map (resp. \ldots).
We thus obtain, for every category of topological spaces, a fibred category \(\mathscr{S}^n\) (resp. \(\mathscr{C}^\infty\mathscr{S}^n\), resp. \ldots).

\hypertarget{two-section-II}{%
\section*{II. The definition of mixed spaces and mixed varieties}\label{two-section-II}}
\addcontentsline{toc}{section}{II. The definition of mixed spaces and mixed varieties}

\hypertarget{two-section-II.1}{%
\subsection*{1. First definition}\label{two-section-II.1}}
\addcontentsline{toc}{subsection}{1. First definition}

Let \(B\) and \(V\) be separated spaces, and let \(\pi\colon V\to B\) be a continuous map.
The structure of a \emph{mixed space} over \(B\) is defined on \(V\) by a system of charts \(\varphi_i\colon U_i\to V\), where the \((U_i)\) are objects of \(\mathscr{S}_B^n\);
for each \(i\), \(\varphi_i\) is a homeomorphism from \(U_i\) to an open subset of \(V\) such that the diagram
\[
  \begin{CD}
    U_i @>{\varphi_i}>> V
  \\@V{\pi_1}VV @VV{\pi}V
  \\B @= B
  \end{CD}
\]
commutes;
finally, for all \(i\) and all \(j\), the ``change of chart'' \(\varphi_j^{-1}\circ\varphi_i\) is an isomorphism of \(\mathscr{S}_B\) from an open subset of \(U_i\) to an open subset of \(U_j\).

The structure thus defined is that of a \emph{\((\mathscr{C}^0,\mathbb{C})\)-mixed space}.
If \(B\) is a \(\mathbb{C}\)-analytic space, and if the change of chart maps are all \(\mathbb{C}\)-analytic, then we have a \emph{\(\mathbb{C}\)-analytic mixed space}.
In this case, \(V\) itself is a \(\mathbb{C}\)-analytic space, and the fibres \(V_x=\pi^{-1}(x)\) are \(\mathbb{C}\)-analytic sub-manifolds.

If \(B\) is a \(\mathscr{C}^\infty\) manifold (resp. \(\mathbb{R}\)-analytic, resp. \(\mathbb{C}\)-analytic), and if the change of chart maps are all \(\mathscr{C}^\infty\) (resp. \ldots), then we have a \emph{\((\mathscr{C}^\infty,\mathbb{C})\)-mixed manifold} (resp. \((\mathbb{R},\mathbb{C})\), resp. \((\mathbb{C},\mathbb{C})\)).
In this case, \(V\) itself is a manifold.
Note that the notion of a \((\mathbb{C},\mathbb{C})\)-mixed manifold, or a \(\mathbb{C}\)-analytic mixed manifold, reduces to simply having a \(\mathbb{C}\)-analytic manifold \(V\) endowed with a projection \(\pi\colon V\to B\) onto another \(\mathbb{C}\)-analytic manifold such that \(\pi\) is of maximal rank at every point.\footnote{\emph{{[}Trans.{]} The more common modern nomenclature is to simply call such an object a family of complex manifolds.}}

Let \(\pi\colon V\to B\) and \(\pi'\colon V'\to B'\) be mixed spaces, and let \(f_1\colon B\to B'\) be a continuous (resp. \ldots) map.
Then a \emph{morphism from \(V\) to \(V'\) over \(f_1\)} is a continuous map \(f\colon V\to V'\) such that the diagram
\[
  \begin{CD}
    V @>f>> V'
  \\@V{\pi}VV @VV{\pi'}V
  \\B @>>{f_1}> B'
  \end{CD}
\]
commutes, and such that, for any charts \(\varphi_i\colon U_i\to V\) and \(\varphi'_j\colon U'_j\to V'\), the map \({\varphi'_j}^{-1}\circ f\circ\varphi_i\) is a morphism of \(\mathscr{S}_{f_1}\) (resp. \ldots) from an open subset of \(U_i\) to \(U_j\).
\oldpage{2-03}
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We now give another way of defining mixed spaces, equivalent to the above.

Given separated spaces \(B\) and \(V\), along with a continuous map \(\pi\colon V\to B\), the structure of a \emph{pre-mixed space} consists of the structure of a \(\mathbb{C}\)-analytic manifold on each fibre \(V_x=\pi^{-1}(x)\).
Given pre-mixed spaces \(\pi\colon V\to B\) and \(\pi'\colon V'\to B'\), along with a continuous map \(f_1\colon B\to B'\), a \emph{morphism of pre-mixed spaces over \(f_1\)} is a continuous map \(f\colon V\to V'\) such that the diagram
\[
  \begin{CD}
    V @>f>> V'
  \\@V{\pi}VV @VV{\pi'}V
  \\B @>>{f_1}> B'
  \end{CD}
\]
commutes and induces a \(\mathbb{C}\)-analytic map on each fibre.

A \emph{mixed space} is a pre-mixed space \(\pi\colon V\to B\) such that every point \(y\in V\) admits a neighbourhood \(W\) in \(V\) that is isomorphic as a pre-mixed space to an open subset of \(B\times\mathbb{C}^n\), via an isomorphism over the identity.
The morphisms of mixed spaces are the same: mixed spaces form a \emph{full subcategory}.

\hypertarget{two-section-II.3}{%
\subsection*{3. Deformations}\label{two-section-II.3}}
\addcontentsline{toc}{subsection}{3. Deformations}

A mixed space \(\pi\colon V\to B\) is said to be \emph{proper} if \(B\) is locally compact and the map \(\pi\) is proper (i.e.~the inverse image of any compact subset is compact).
If it is a mixed manifold, then we can show that it is a fibred manifold that is locally trivial with respect to the underlying \(\mathscr{C}^\infty\) structure, but the previous talk shows that, in general, any two fibres are not isomorphic as \(\mathbb{C}\)-analytic manifolds.

\begin{rmenv}{Definition}
Let \(V_0\) be a compact \(\mathbb{C}\)-analytic manifold, \(B\) a locally compact space, and \(b_0\in B\).
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Then a \emph{\(\mathbb{C}\)-analytic deformation of \(V_0\) over \((B,b_0)\)} consists of a proper \(\mathbb{C}\)-analytic mixed space \(\pi\colon V\to B\) along with an isomorphism of \(\mathbb{C}\)-analytic manifolds \(i\colon V_0\to\pi^{-1}(b_0)\).

\end{rmenv}

The goal of this seminar is the study, at least local, and an attempt at a classification of, \(\mathbb{C}\)-analytic deformations of a given compact \(\mathbb{C}\)-analytic manifold \(V_0\).

\begin{rmenv}{Definition}
Let \(V_0\) be a compact \(\mathbb{C}\)-analytic manifold.
A \emph{\(\mathbb{C}\)-analytic deformation \((\pi\colon V\to B,i\colon V_0\to V)\) of \(V_0\)} is said to be \emph{locally complete} if, for any other deformation \((\pi'\colon V'\to B',i'\colon V_0\to V')\) of \(V_0\), there exists a neighbourhood \(B'_1\) of \(b'_0\) in \(B'\), an analytic map \(f_1\colon B'_1\to B\) with \(f_1(b'_0)\to b_0\), and a morphism of \(\mathbb{C}\)-analytic mixed spaces \(f\colon {\pi'}^{-1}(B'_1)\to V\) over \(f_1\) such that \(f\circ i'=i\).
The deformation is said to be \emph{locally universal} is furthermore the germ of \(f_1\) at \(b'_0\) is determined uniquely by this condition.

\end{rmenv}

It seems that every compact \(\mathbb{C}\)-analytic manifold \(V_0\) admits a locally complete \(\mathbb{C}\)-analytic deformation, and a locally universal one if the group of automorphisms of \(V_0\) is discrete.

\hypertarget{two-section-III}{%
\section*{III. Vector fields}\label{two-section-III}}
\addcontentsline{toc}{section}{III. Vector fields}

\hypertarget{two-section-III.1}{%
\subsection*{1. Study on models}\label{two-section-III.1}}
\addcontentsline{toc}{subsection}{1. Study on models}

Let \(B\) be a space, \(U\) an object of \(\mathscr{S}_B\) (i.e.~an open subset of \(B\times\mathbb{C}^n\)), \(b_0\) a point of \(B\), and set \(U_0=\pi^{-1}(b_0)\).

A holomorphic field of tangent vectors on \(U_0\) (i.e.~a holomorphic map from \(U_0\) to \(\mathbb{C}^n\)) is said to be a \emph{vertical holomorphic field} on \(U_0\).
A \emph{vertical holomorphic field on \(U\)} is a continuous (resp. \ldots) map \(\theta\colon U\to\mathbb{C}^n\) that induces a vertical holomorphic field on each fibre \(U_x\).
If \(f\colon U\to U'\) is an isomorphism in \(\mathscr{S}_B\), then the \emph{transport \(f_*\theta\) of \(\theta\) by \(f\)} is defined by
\[
  f_*\theta(f(x,z)) = \mathrm{D}_2 f_{x,z}\cdot\theta(x,z)
\]
where \(\mathrm{D}_2 f_{x,z}\) is the linear map from \(\mathbb{C}^n\) to itself that is tangent to \(f_x\) at the point \(z\in U_x\).
This is again a vertical holomorphic field, since it follows from a Cauchy integral that the matrix \(\mathrm{D}f_{x,z}\) depends continuously on the pair \((x,z)\).

Now suppose that \(B\) is a \(\mathscr{C}^\infty\) manifold, just for simplicity, and let \(T_0\) be the tangent space to \(B\) at \(b_0\).
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A field of tangent vectors to \(U\) defined on \(U_0\), i.e.~a map \(\omega\colon U_0\to T_0\times\mathbb{C}^n\), is said to be a \emph{projectable holomorphic field} if \(\omega(b_0,z)=(t_0,\theta(z))\) (where \(t_0\in T_0\) is a vector that does not depend on \(z\), called the \emph{projection} of the field \(\omega\)) and \(\theta(z)\) is a holomorphic vector field.
If \(B\) is a \(\mathbb{C}\)-analytic space, possibly with a singularity at \(b_0\), then we give the same definition, but with \(T_0\) then being the \emph{Zariski} tangent space to \(B\) at \(b_0\), i.e.~the dual of \(\mathfrak{m}/\mathfrak{m}^2\), where \(\mathfrak{m}\) is the ideal of germs at \(b_0\) of holomorphic functions on \(B\) that vanish at \(b_0\).

If \(f\colon U\to U'\) is an isomorphism of \(\mathscr{C}^\infty\mathscr{S}_B\) (resp. \ldots), then then transport \(f_*\omega\) is defined by
\[
  f_*\omega(f(b_0,z)) = \mathrm{D}f_{b_0,z}\omega(b_0,z)
\]
where \(\mathrm{D}f_{b_0,z}\colon T_0\times\mathbb{C}^n\to T_0\times\mathbb{C}^n\) is now the linear map that is tangent to \(f\) at the point \((b_0,z)\).
This is a projectable holomorphic field.
Indeed, the matrix \(\mathrm{D}f_{b_0,z}\) can be written as
\[
  \begin{pmatrix}
    I & 0
  \\\mathrm{D}_1f & \mathrm{D}_2f
  \end{pmatrix}
\]
and
\[
  \begin{aligned}
    \mathrm{D}_1f\colon T &\to \mathbb{C}^n
  \\\mathrm{D}_2f\colon \mathbb{C}^n &\to \mathbb{C}^n
  \end{aligned}
\]
both depend holomorphically on \(z\) (for \(\mathrm{D}_1f\), this follows from the fact that \(f_x\) is holomorphic for every \(x\)).
By setting \(f_*\omega(b_0,z')=(t_0,\theta'(z'))\), we have
\[
  \begin{gathered}
    \theta'(z') = \mathrm{D}_1f_{b_0,z}(t_0) + \mathrm{D}_2f_{b_0,z}(\omega(z))
  \\\text{if }z'=f_{b_0}(z)
  \end{gathered}
\]
which shows that \(f_*\omega\) is indeed a projectable holomorphic field.

A \emph{projectable holomorphic field on \(U\)} is a \(\mathscr{C}^\infty\) field of vectors tangent to \(U\) that induces a projectable holomorphic field on each fibre.

\hypertarget{two-section-III.2}{%
\subsection*{2. Vector fields on a mixed manifold}\label{two-section-III.2}}
\addcontentsline{toc}{subsection}{2. Vector fields on a mixed manifold}

Let \(\pi\colon V\to B\) be a \((\mathscr{C}^\infty,\mathbb{C})\)-mixed manifold (resp. \ldots, resp. a \(\mathbb{C}\)-analytic mixed space).
By transporting along the charts, we define the notions of

\begin{itemize}
\tightlist
\item
  vertical holomorphic fields on an open subset of a fibre;
\item
  vertical holomorphic fields on a open subset of \(V\);
\item
  projectable holomorphic fields on an open subset of a fibre; and
\item
  projectable holomorphic fields on an open subset of \(V\).
\end{itemize}
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Let \(\xi\) be a \(\mathscr{C}^\infty\) vector field (resp. \ldots) on \(V\).
By integrating \(\xi\), we obtain a \(\mathscr{C}^\infty\) map, denoted by \(e^\xi\), from an open subset \(W\subset\mathbb{R}\times V\) containing \(\{0\}\times V\) (resp. \(\mathbb{C}\)-analytic map from an open subset \(W\subset\mathbb{C}\times V\)) to \(V\), characterised by

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  \(e^\xi(t_1+t_2,y) = e^\xi(t_1,e^\xi(t_2,y))\), with the left-hand side being defined whenever the right-hand side is; and
\item
  \(\frac{\partial}{\partial t}e^\xi(t,y)|_{0,y} = \xi(y)\).
\end{enumerate}

Note that \(W\) is a mixed manifold over \(\mathbb{R}\times B\) (resp. a mixed space over \(\mathbb{C}\times B\)).

\leavevmode\hypertarget{two-proposition}{}%
\begin{itenv}{Proposition}
For \(e^\xi\colon W\to V\) to be a morphism of mixed spaces over the projection \(\mathbb{R}\times B\to B\), it is necessary and sufficient for \(\xi\) to be a vertical holomorphic field.
For \(e^\xi\colon W\to V\) to be a morphism of mixed spaces over a map from an open subset of \(\mathbb{R}\times B\) containing \(\{0\}\times B\) to \(B\), it is necessary and sufficient for \(\xi\) to be a projectable holomorphic field.

\end{itenv}

The proof is left to the reader.

\hypertarget{two-section-IV}{%
\section*{IV. The Spencer--Kodaira map}\label{two-section-IV}}
\addcontentsline{toc}{section}{IV. The Spencer--Kodaira map}

Let \(\pi\colon V\to B\) be a mixed manifold (resp. a \(\mathbb{C}\)-analytic mixed space), \(b\in B\), and \(V_0=\pi^{-1}(b_0)\).
Let \(T_0\) be the tangent space to \(B\) at \(b_0\) (resp. the Zariski tangent space).
We introduce the following sheaves on \(V_0\):

\begin{itemize}
\tightlist
\item
  \(\Theta_0\): the sheaf of germs of vertical holomorphic fields on \(V_0\) ;
\item
  \(\Pi_0\): the sheaf of germs of locally projectable holomorphic fields on \(V_0\) ; and
\item
  \(\Lambda_0\): the sheaf \(\pi^*T_0\), i.e.~the sheaf of germs of locally constant maps from \(V_0\) to \(T_0\).
\end{itemize}

We have an exact sequence of sheaves on \(V_0\)
\[
  0 \to \Theta_0 \to \Pi_0 \to \Lambda_0 \to 0
\]
that gives rise to the long exact sequence in cohomology
\[
  \ldots \to \mathrm{H}^0(V_0;\Pi_0) \to \mathrm{H}^0(V_0;\Lambda_0) \xrightarrow{\delta} \mathrm{H}^1(V_0;\Theta_0) \to \ldots.
\]
We also have a canonical map
\oldpage{2-07}
\[
  \iota\colon T_0 \to \mathrm{H}^0(V_0;\Lambda_0)
\]
that is injective if \(V_0\) is non-empty, and surjective if \(V_0\) is connected.

\leavevmode\hypertarget{two-definition}{}%
\begin{rmenv}{Definition}
The \emph{Spencer--Kodaira map} is the composition
\[
  \rho_0 = \delta\circ\iota\colon T_0 \to \mathrm{H}^1(V_0;\Theta_0).
\]

\end{rmenv}

This map is an essential tool in the local study of deformations of \(\mathbb{C}\)-analytic varieties.
Note that \(\Theta_0\) is exactly the sheaf of germs of holomorphic fields of tangent vectors to \(V_0\), and thus depends only on \(V_0\), while \(T_0\) depends only on the base.
Also, \(\Theta_0\) is a coherent analytic sheaf on \(V_0\), and, if \(V_0\) is compact, then \(\mathrm{H}^1(V_0;\Theta_0)\) is a finite-dimensional vector space over \(\mathbb{C}\) {[}\protect\hyperlink{ref-2-1}{1}{]}.
We thus see that, in this case (which is the only case where we can say anything non-trivial), \(\rho_0\) might be possible to calculate.

It is clear that, if the given mixed manifold is trivial (i.e.~if \(V=B\times V_0\), with \(\pi\) being the projection to \(B\)), then the map \(\rho_0\) is zero.
The next talk aims to show that, in a certain sense, \(\rho\) indicates the non-triviality of \(V\) in a neighbourhood of \(V_0\).

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\hypertarget{part-3.-regular-deformations}{%
\part*{3. Regular deformations}\label{part-3.-regular-deformations}}
\addcontentsline{toc}{part}{3. Regular deformations}

\hypertarget{three-section-I}{%
\section*{\texorpdfstring{I. The map \(\widetilde{\rho}\)}{I. The map \textbackslash widetilde\{\textbackslash rho\}}}\label{three-section-I}}
\addcontentsline{toc}{section}{I. The map \(\widetilde{\rho}\)}

All throughout this talk, \(B\) is a \(\mathscr{C}^\infty\) manifold (resp. \(\mathbb{R}\)-analytic, resp. \(\mathbb{C}\)-analytic); \(\pi\colon V\to B\) denotes a proper mixed manifold; \(b_0\) is a point of \(B\); and \(V_0=\pi^{-1}(b_0)\) is thus a compact \(\mathbb{C}\)-analytic manifold.
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Let \(\widetilde{\Theta}\) (resp. \(\widetilde{\Pi}\)) be the sheaf of germs of vertical holomorphic (resp. locally projectable holomorphic) vector fields on \(V\).
The quotient sheaf \(\widetilde{\Lambda}=\widetilde{\Pi}/\widetilde{\Theta}\) is exactly the inverse image under \(\pi\) of the sheaf \(\widetilde{T}\) of germs of \(\mathscr{C}^\infty\) fields (resp. \ldots) of tangent vectors on \(B\).

For every open subset \(U\) of \(B\), set \(V_U=\pi^{-1}(U)\).
The exact sequence
\[
  0 \to \widetilde{\Theta} \to \widetilde{\Pi} \to \widetilde{\Lambda} \to 0
\]
of sheaves on \(V_U\) gives rise to a homomorphism
\[
  \widetilde{\rho}_U\colon
  \mathrm{H}^0(U;\widetilde{T})
  \xrightarrow{\pi_*} \mathrm{H}^0(V_U;\widetilde{\Lambda})
  \xrightarrow{\delta} \mathrm{H}^1(V_U;\widetilde{\Theta}).
\]
Let \(\mathrm{R}^1\pi_*\widetilde{\Theta}\) be the sheaf on \(B\) defined by the presheaf \(U\mapsto\mathrm{H}^1(V_U;\widetilde{\Theta})\).
Then \(\widetilde{\rho}\) becomes a homomorphism of sheaves on \(B\):
\[
  \widetilde{\rho}\colon \widetilde{T} \to \mathrm{R}^1\pi_*\widetilde{\Theta}.
\]
In particular, we have a homomorphism
\[
  \widetilde{\rho}_0\colon
  \widetilde{T}_0
  \to \mathrm{R}^1\pi_*\widetilde{\Theta}
  = \mathrm{H}^1(V_0;\widetilde{\Theta})
\]
where \(\widetilde{T}_0\) is the vector space of germs at \(b_0\) of fields of tangent vectors to \(B\).
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Finally, we have a commutative diagram
\[
  \begin{CD}
    \widetilde{T}_0 @>{\widetilde{\rho}_0}>> \mathrm{H}^1(V_0;\widetilde{\Theta})
  \\@V{\varepsilon}VV @VV{\varepsilon}V
  \\T_0 @>>{\rho_0}> \mathrm{H}^1(V_0;\Theta_0)
  \end{CD}
\]
where \(\rho_0\) is the Spencer--Kodaira map {[}\protect\hyperlink{ref-2}{\textbf{2?}}{]}.

\leavevmode\hypertarget{three-theorem-1}{}%
\begin{itenv}{Theorem 1}
For the proper mixed manifold \(\pi\colon V\to B\) to be locally trivial in a neighbourhood of the point \(b_0\in B\), it is necessary and sufficient for the map \(\widetilde{\rho}_0\colon\widetilde{T}_0\to\mathrm{H}^1(V_0;\widetilde{\Theta})\) to be zero.

\end{itenv}

\begin{proof}

---

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\item
  \emph{(Necessity).}
  If \(\pi\colon V\to B\) is locally trivial at \(b_0\), then, for every open subset \(U\) of \(B\) over which \(V\) is trivial, we have \(\widetilde{\Pi}=\widetilde{\Lambda}\oplus\widetilde{\Theta}\) on \(V_U\), and so \(\delta\colon\mathrm{H}^0(V_U;\widetilde{\Lambda})\to\mathrm{H}^0(V_U;\widetilde{\Theta})\) is zero.
\item
  \emph{(Sufficiency).}
  Let \((\eta_1,\ldots,\eta_p)\) be \(\mathscr{C}^\infty\) vector fields (resp. \ldots) on a neighbourhood of \(b_0\) in \(B\), such that \((\eta_1(b_0),\ldots,\eta_p(b_0))\) forms a basis of the tangent space \(T_0\) to \(B\) at \(b_0\).
  It then follows from the hypothesis that the map
  \[
     \mathrm{H}^0(V_0;\widetilde{\Pi}) \to \mathrm{H}^0(V_0;\widetilde{\Lambda})
   \]
  is surjective.
  So let \((\xi_1,\ldots,\xi_p)\) be projectable holomorphic vector fields on a neighbourhood of \(V_0\) in \(V\), that project to \((\eta_1,\ldots,\eta_p)\).
  Let \(f\) be the map defined on a neighbourhood of \(\{0\}\times V_0\) in \(\mathbb{R}^p\times V_0\) (resp. \(\mathbb{C}^p\times V_0\)) by
  \[
     f(t_1,\ldots,t_p,y) = e^{\xi_1}(t_1,e^{\xi_2}(\ldots,e^{\xi_p}(t_p,y)\ldots)).
   \]
  It follows from the proposition stated in {[}\protect\hyperlink{ref-3-1}{2}, Section III.2{]} that \(f\) induces an isomorphism of mixed manifolds from \(U\times V_0\) to \(\pi^{-1}(f_1(U))\) over \(f_1\), where \(U\) is a sufficiently small cubical neighbourhood of \(0\) in \(\mathbb{R}^p\), and \(f_1\) is the map from \(U\) to \(B\) defined by
  \[
     f_1(t_1,\ldots,t_p) = e^{\eta_1}(t_1,e^{\eta_2}(\ldots,e^{\eta_p}(t_p,b_0)\ldots)),
   \]
  which proves the theorem.
\end{enumerate}
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\end{proof}

\hypertarget{three-section-II}{%
\section*{II. The regular case}\label{three-section-II}}
\addcontentsline{toc}{section}{II. The regular case}

For all \(b\in B\), set \(V_b=\pi^{-1}(b)\).
Consider the family \(\{\mathrm{H}^1(V_b;\Theta_b)\}_{b\in B}\) of finite-dimensional \(\mathbb{C}\)-vector spaces, and, for all \(b\in B\), the map
\[
  \varepsilon_b\colon \mathrm{H}^1(V_b;\widetilde{\Theta}) \to \mathrm{H}^1(V_b;\Theta_b).
\]

For every open subset \(U\subset B\), we have a map
\[
  \widetilde{\varepsilon}_U\colon \mathrm{H}^1(V_U;\widetilde{\Theta}) \to \prod_{b\in U}\mathrm{H}^1(V_b;\Theta_B)
\]
that defines, by varying \(U\), a homomorphism from the sheaf \(\mathrm{R}^1\pi_*\widetilde{\Theta}\) to the sheaf \(\Phi\) on \(B\) defined by \(\Phi(U)=\prod_{b\in U}\mathrm{H}^1(V_b;\Theta_b)\).

\hypertarget{three-definition}{}
\begin{rmenv}{Definition}

We say that the proper mixed manifold \(\pi\colon V\to B\) is \emph{regular} if

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  the dimension of \(\mathrm{H}^1(V_b;\Theta_b)\) does not depend on the point \(b\in B\); and
\item
  we can endow \(E=\bigcup_{b\in B}\mathrm{H}^1(V_b;\Theta_b)\) with the structure of a \(\mathscr{C}^\infty\) vector bundle (resp. \ldots) such that \(\widetilde{\varepsilon}\) is an isomorphism from the sheaf \(\mathrm{R}^1\pi_*\widetilde{\Theta}\) to the sheaf of germs of \(\mathscr{C}^\infty\) sections (resp. \ldots) of the bundle \(E\).
\end{enumerate}

\end{rmenv}

In fact, Kodaira and Spencer have shown {[}\protect\hyperlink{ref-3-2}{7}{]} that, by identifying the \(\mathrm{H}^1\) spaces with spaces of harmonic forms, condition (2) is a consequence of condition (1).

Then \protect\hyperlink{three-theorem-1}{Theorem 1} has the following corollary:

\leavevmode\hypertarget{three-proposition-1}{}%
\begin{itenv}{Proposition 1}
For the proper mixed manifold \(\pi\colon V\to B\) to be locally trivial, it is necessary and sufficient for it to be regular and, for all \(b\in B\), for the Spencer--Kodaira map
\[
  \rho_b\colon T_b \to \mathrm{H}^1(V_b;\Theta_b)
\]
to be zero.

\end{itenv}

Indeed, since \(\widetilde{\varepsilon}\) is injective, this condition implies that the map
\[
  \widetilde{\rho}_b\colon \widetilde{T}_b \to \mathrm{H}^1(V_b;\widetilde{\Theta})
\]
is zero for all \(b\).
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At the end of this talk, we will construct a counter-example which shows that it is necessary to assume that the mixed manifold is regular.

\hypertarget{three-section-III}{%
\section*{III. An example of non-regular deformation: Hopf manifolds}\label{three-section-III}}
\addcontentsline{toc}{section}{III. An example of non-regular deformation: Hopf manifolds}

\hypertarget{three-section-III.1}{%
\subsection*{1. Hopf manifolds}\label{three-section-III.1}}
\addcontentsline{toc}{subsection}{1. Hopf manifolds}

Let \(n\geqslant 2\) be an integer, and let \(b\) be an \((n\times n)\) matrix with coefficients in \(\mathbb{C}\), whose eigenvalues are all of modulus \(>1\).
The free group \(L(b)\) generated by \(b\) acts freely on \(\widetilde{V}=\mathbb{C}^n\setminus\{0\}\), and the quotient space \(\widetilde{V}/L(b)\), which we call the \emph{Hopf manifold defined by \(b\)}, is a compact \(\mathbb{C}\)-analytic manifold that is homeomorphic to \(S^{2n-1}\times S^1\).

Note that \(V_b\) and \(V_{b'}\) are isomorphic if and only if there exists some \(a\) such that \(b'=aba^{-1}\) or \(b'=ab^{-1}a^{-1}\) (cf.~\protect\hyperlink{three-appendix}{Appendix}).

Let \(\Theta\) be the sheaf of germs of holomorphic fields of tangent vectors on \(V_b\).

\leavevmode\hypertarget{three-proposition-2}{}%
\begin{itenv}{Proposition 2}
We can identify \(\mathrm{H}^0(V_b;\Theta)\) with the vector space of matrices that commute with \(b\), and \(\mathrm{H}^1(V_b;\Theta)\) has the same dimension as this vector space.

\end{itenv}

\begin{proof}
If \(X\) is a vector field on an open subset \(U\subset\widetilde{V}\), then \(b_*(X)\) is the vector field on the open subset \(b(U)\) given by transporting via \(b\), i.e.~\(b_*X(u)=bX(b^{-1}u)\).
Let \(\mathscr{U}=\{U_i\}\) be a cover of \(V\) by simply connected Stein open subsets;
for all \(i\), set \(\widetilde{U}_i=\chi^{-1}\{U_i\}\), where \(\chi\) is the canonical map from \(\widetilde{V}\) to \(V_b\).
The cover \(\widetilde{\mathscr{U}}=\{\widetilde{U}_i\}\) of \(\widetilde{V}\) consists of Stein open subsets that are invariant under \(b\) (not necessarily connected, but this doesn't matter).
Then \(b_*\) defines a map, again denoted by \(b_*\), from the group of cochains \(C^\bullet(\widetilde{V},\widetilde{U};\Theta)\) to itself.

\leavevmode\hypertarget{three-lemma-1}{}%
\begin{itenv}{Lemma 1}
We have the exact sequence
\[
  0
  \to C^\bullet(V_b,\mathscr{U};\Theta)
  \xrightarrow{\chi^*} C^\bullet(\widetilde{V},\widetilde{U};\Theta)
  \xrightarrow{1-b_*} C^\bullet(\widetilde{V},\widetilde{U};\Theta)
  \to 0.
\]

\end{itenv}

\begin{proof}
The only thing that we need to verify is that the map \(1-b_*\) is surjective.
For all \((i_0,\ldots,i_q)\), let \(U'_{i_0,\ldots,i_q}\) be an open subset of \(\widetilde{V}\) such that
\oldpage{3-05}
\[
  \chi\colon U'_{i_0,\ldots,i_q} \to U_{i_0,\ldots,i_q}
\]
is a homeomorphism.
The \(\widetilde{U}_{i_0,\ldots,i_q}\) is a disjoint union of the \(b_*^p U'_{i_0,\ldots,i_q}\), where \(p\in\mathbb{Z}\), and every \(\gamma\in C^q(\widetilde{V},\widetilde{U};\Theta)\) can be written in the form \(\gamma=\gamma_1-\gamma_2\), with \(\gamma_1=0\) on \(b^p(U'_{i_0,\ldots,i_q})\) for \(p<0\), and \(\gamma_2=0\) for \(p\geqslant 0\).
Set
\[
  \beta = \sum_{p\geqslant 0} b_*^p\gamma_1 + \sum_{p<0} b_*^p\gamma_2
\]
(which is a locally finite sum).
Then \(\beta-b_*\beta=\gamma\), whence \protect\hyperlink{three-lemma-1}{Lemma 1}.
\end{proof}

Now, to finish the proof of \protect\hyperlink{three-proposition-2}{Proposition 2}.
From \protect\hyperlink{three-lemma-1}{Lemma 1}, we have the following exact sequence:
\[
  0
  \to \mathrm{H}^0(V_b;\Theta)
  \xrightarrow{\chi^*} \mathrm{H}^0(\widetilde{V};\Theta)
  \xrightarrow{1-b_*} \mathrm{H}^0(\widetilde{V};\Theta)
  \xrightarrow{\delta_*} \mathrm{H}^1(V_b;\Theta)
  \xrightarrow{\chi^*} \mathrm{H}^1(\widetilde{V}y\Theta)
  \xrightarrow{1-b_*} \mathrm{H}^1(\widetilde{V};\Theta).
\]
We can show that
\[
  \chi^*\colon \mathrm{H}^1(V_b;\Theta) \to \mathrm{H}^1(\widetilde{V};\Theta)
\]
is zero:
if \(n>2\), it is evident, since \(\mathrm{H}^1(\widetilde{V};\Theta)=0\);
if \(n=2\), then a direct calculation on the cochains of a cover of \(\widetilde{V}\) by two Stein open subsets shows that
\[
  1-b_*\colon \mathrm{H}^1(\widetilde{V};\Theta) \to \mathrm{H}^1(\widetilde{V};\Theta)
\]
is bijective.

Now \(\mathrm{H}^0(\widetilde{V};\Theta)\) is the space of holomorphic vector fields on \(\widetilde{V}\), but such a field extends to a holomorphic vector field on \(\mathbb{C}^n\), and \(\mathrm{H}^0(\widetilde{V},\Theta)=L\oplus M\), where \(L\) is the space of fields of linear vectors, and \(M\) is the space of fields of second-order vectors at \(0\).
The subspaces \(L\) and \(M\) are invariant under \(b_*\), and \(1-b_*\colon M\to M\) is an isomorphism.
Then \protect\hyperlink{three-proposition-2}{Proposition 2} follows from remarking that, if an element of \(L\) is represented by a matrix \(a\), then \(b_*a=bab^{-1}\).
\end{proof}

\hypertarget{three-section-III.2}{%
\subsection*{2. Mixed manifolds whose fibres are Hopf manifolds}\label{three-section-III.2}}
\addcontentsline{toc}{subsection}{2. Mixed manifolds whose fibres are Hopf manifolds}

Let \(B\) be the set of all \((n\times n)\) matrices with coefficients in \(\mathbb{C}\) with eigenvalues all of modulus \(>1\).
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This is an open subset of \(\mathbb{C}^{n^2}\).
Let \(\alpha\) be the transformation from \(B\times\widetilde{V}\) to itself defined by \(\alpha(b,x)=(b,b(x))\).
The free group \(L(\alpha)\) generated by \(\alpha\) acts linearly on \(B\times\widetilde{V}\), and the quotient \(V=B\times\widetilde{V}/L(\alpha)\) is a \(\mathbb{C}\)-analytic manifold.
By endowing it with the projection \(\pi\colon V\to B\) induced by the projection \(\pi_1\colon B\times\widetilde{V}\to B\) after passing to the quotient, we obtain a \(\mathbb{C}\)-analytic mixed manifold that is proper, but not regular.
Indeed, condition 1 of the definition of regular mixed manifolds is not satisfied: for example, for \(n=2\), the dimension of \(\mathrm{H}^1(V_b;\Theta)\) is \(4\) if \(b\) is a scalar matrix, but \(2\) in all other cases.

Note that the dimension of \(\mathrm{H}^1(V_b;\Theta_b)\) is an upper semi-continuous function of \(b\), and that the set of \(b\) such that \(\dim\mathrm{H}^1(V_b;\Theta_b)\geqslant k\) is a closed analytic subspace of \(B\).
This is a general result, that we hope to be able to prove in a later talk of this seminar.

\hypertarget{three-section-III.3}{%
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\addcontentsline{toc}{subsection}{3. Calculation of \(\rho\)}

We have \(T_b=\operatorname{Hom}(\mathbb{C}^n,\mathbb{C}^n)=L\subset\mathrm{H}^0(\widetilde{V};\Theta)\), and we defined, to prove \protect\hyperlink{three-proposition-2}{Proposition 2}, a surjective map \(\delta_*\colon L\to\mathrm{H}^1(V_b;\Theta)\).

\leavevmode\hypertarget{three-proposition-3}{}%
\begin{itenv}{Proposition 3}
The Spencer--Kodaira map \(\rho\) is given, for the mixed manifold studied in this section, by
\[
  \rho(a) = \delta_*(ab^{-1}).
\]
In particular, it is surjective, and its kernel is the space of matrices of the form \([\ell,b]\) for \(\ell\in L\).

\end{itenv}

\begin{proof}
Let \(a\in T_b=L\).
Let \(\{U_i\}\) be a cover of \(V_b\) by simply connected Stein open subsets, and, for each \(i\), let \(U'_i\) be a connected component of \(\widetilde{U}_i\).

Let \(\eta'_i\) be the projectable holomorphic field on \(U'_i\) defined by \(\eta'_i(x)=(a,0)\);
let \(\widetilde{\eta}_i\) be the projectable holomorphic field on \(\widetilde{U}_i\) defined by \(\widetilde{\eta}_i=\alpha_*^k\eta'_i\) on \(b^k(U'_i)\);
and let \(\eta_i\) be the projectable holomorphic field on \(U_i\) corresponding to \(\widetilde{\eta}_i\).
By definition, \(\rho(a)\) is the cohomology class of the cochain \(\{\theta_{ij}\}\), where \(\theta_{ij}=\eta_j-\eta_i\) is a vertical holomorphic field on \(U_{ij}\).
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Set \(\widetilde{\eta}_i(x)=(a,\beta_i(x))\).
Then \(\beta\in C^0(\widetilde{V};\Theta)\), and we have \((1-b_*)\beta=ab^{-1}\in L\subset\mathrm{H}^0(\widetilde{V};\Theta)\).
Indeed, \(\alpha_*\eta=\eta\), \(\alpha_*\eta_i(b_{-1}x)=\eta_i(x)\), and
\[
  \alpha_*(a,\beta(b^{-1}x)) = (a,\beta(x)),
\]
whence
\[
  ab^{-1}x + b\cdot\beta(b^{-1}x) = \beta(x).
\]
We thus deduce that \(\theta=\delta_*(ab^{-1})\), which proves \protect\hyperlink{three-proposition-3}{Proposition 3}.
\end{proof}

\hypertarget{three-section-III.4}{%
\subsection*{4. A counter-example}\label{three-section-III.4}}
\addcontentsline{toc}{subsection}{4. A counter-example}

Take \(n=2\), and \(\sigma\in\mathbb{C}\) such that \(|\sigma|>1\).
Let \(B'\subset B\) be the set of matrices of the form
\[
  \begin{pmatrix}
    \sigma & t
  \\0 & \sigma
  \end{pmatrix}
\]
where \(t\in\mathbb{C}\), and let \(V'=\pi^{-1}(B')\) be the mixed manifold induced by \(V\) over \(V'\);
now \(B'\) is a line, and its tangent space \(T'_b\) at \(b\) is generated, for all \(b\), by \(a=\begin{pmatrix}0&1\\0&0\end{pmatrix}\).
It follows from \protect\hyperlink{three-proposition-3}{Proposition 3} that the Spencer--Kodaira map
\[
  \rho'\colon T_b(B') \to \mathrm{H}^1(V_b;\Theta)
\]
is zero if and only if
\[
  b \neq b_0 =
  \begin{pmatrix}
    \sigma & 0
  \\0 & \sigma
  \end{pmatrix}
\]
since, if \(b\neq b_0\), then \(a=[\ell,b]\), where \(\ell=\begin{pmatrix}t^{-1}&0\\0&0\end{pmatrix}\); and if \(b=b_0\), then \(\rho'\) is injective.

We can also see that \(V'\) is trivial on \(B'\setminus\{b_0\}\).

Let \(\varphi\colon\mathbb{C}\to B'\subset B\) be the map defined by
\[
  \varphi(t) =
  \begin{pmatrix}
    \sigma & t^2
  \\0 & \sigma
  \end{pmatrix}
\]
and let \(V^\varphi\) be the mixed manifold given by the inverse image of \(V\) under \(\varphi\).
The Spencer--Kodaira map \(\rho_t^\varphi\) from \(\mathbb{C}\) to \(\mathrm{H}^1(V_{\varphi(t)};\Theta)\) is the composition
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\[
  \rho'_{\varphi(t)}\circ\mathrm{D}\varphi\colon
  \mathbb{C}
  \to T'_{\varphi(t)}
  \to \mathrm{H}^1(V_{\varphi(t)};\Theta),
\]
and this is zero for all \(t\), since, if \(t\neq0\), then \(\rho'_{\varphi(t)}\) is zero; and, if \(t=0\), then \(\mathrm{D}\varphi\) is zero.

However, the mixed manifold \(V^\varphi\) is not locally trivial, since \(V_0^\varphi\) is not isomorphic to \(V_t^\varphi\) for \(t\neq0\).

\hypertarget{three-section-III.5}{%
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\addcontentsline{toc}{subsection}{5. Question (K. Srinivasacharyulu)}

We know that the Hopf manifolds are non-K"\{a\}hler, and thus non-algebraic.
For \(n=2\), the manifold \(V_b\) admits non-constant meromorphic functions if and only if \(b\) can be diagonalised with eigenvalues \(\sigma_1\) and \(\sigma_2\) satisfying \(\sigma_1^p=\sigma_2^q\) for some integers \(p\) and \(q\) (and there is then the function \(x_1^px_2^{-q}\)).
The set of \(b\) satisfying this property is neither open nor closed, but it is a countable union of closed analytic subspaces.
An analogous phenomenon arises for deformations of complex tori.
Is this result general?

\hypertarget{three-appendix}{%
\section*{Appendix}\label{three-appendix}}
\addcontentsline{toc}{section}{Appendix}

With the notation of \protect\hyperlink{three-section-III.1}{§III.1}, let \(f\colon V_b\to V_{b'}\) be an isomorphism of \(\mathbb{C}\)-analytic manifolds.
This lifts to an isomorphism of universal coverings
\[
  \widetilde{f}\colon \mathbb{C}^n\setminus\{0\} \to \mathbb{C}^n\setminus\{0\}.
\]
By Hartog, \(\widetilde{f}\) extends to an isomorphism \(g\colon\mathbb{C}^n\to\mathbb{C}^n\).
We necessarily have
\[
  g(bz) = (b')^kg(z)
\tag{$*$}
\]
where \(z\in\mathbb{C}^n\), and \(k\) is an integer;
the same property, applied to the inverse map of \(g\), shows that \(k=\pm1\).
Let \(a\) be the linear map that is tangent to \(g\) at the origin;
the identity (\(*\)) then gives
\[
  \begin{aligned}
    ab &= (b')^ka
  \\k &= \pm1
  \end{aligned}
\]
whence
\[
  b' = aba^{-1}
  \quad\text{or}\quad
  b'= ab^{-1}a^{-1}.
\]

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\hypertarget{part-4.-the-primary-obstruction-to-deformation}{%
\part*{4. The primary obstruction to deformation}\label{part-4.-the-primary-obstruction-to-deformation}}
\addcontentsline{toc}{part}{4. The primary obstruction to deformation}

\hypertarget{four-introduction}{%
\section*{Introduction}\label{four-introduction}}
\addcontentsline{toc}{section}{Introduction}
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Let \(V_0\) be a compact complex-analytic manifold, and let \(\Theta\) be the sheaf of germs of holomorphic fields of tangent vectors.
We ask the following question: given an element \(a\in\mathrm{H}^1(V_0,\Theta)\), does there exists a deformation of \(V_0\), with a non-singular base (i.e.~a fibred mixed manifold \(\pi\colon V\to B\), with \(b_0\in B\), along with an isomorphism \(V_0\xrightarrow{\cong}\pi^{-1}(b_0)\)), such that \(a\) is the image, under the map \(\rho\) defined in {[}Talk no. 2{]}, of a vector \(v\) that is tangent to \(B\) at \(b_0\)?
An element \(a\in\mathrm{H}^1(V_0,\Theta)\) for which the answer is positive is called a \emph{deformation vector}.
We will give a necessary condition for \(a\) to be a deformation vector;
this condition is written \([a\smile a]=0\).
We will then give an example where this condition is not satisfied.

\hypertarget{four-section-I}{%
\section*{I. Exact sequences of sheaves of algebras}\label{four-section-I}}
\addcontentsline{toc}{section}{I. Exact sequences of sheaves of algebras}

Let \(K\) be a commutative ring, and let \(\Phi\), \(\Phi_1\), and \(\Phi_2\) be sheaves of \(K\)-modules on some space \(X\), and suppose that we have some given homomorphism \(\Phi_1\otimes\Phi_2\to\Phi\), written as a product.
We define, for any cover \({\mathscr{U}}\) of \(X\), the \emph{cup product}
\[
  \smile\colon C^p(X,{\mathscr{U}};\Phi_1) \otimes C^q(X,{\mathscr{U}};\Phi_2)
  \to C^{p+q}(X,{\mathscr{U}};\Phi)
\]
by the formula
\[
  (\alpha\smile\beta)_{i_0,\ldots,i_{p+q}}
  = \alpha_{i_0,\ldots,i_p}\cdot\beta_{i_p,\ldots,i_{p+q}}.
\]
We have the relation
\[
  \mathrm{d}(\alpha\smile\beta) = \mathrm{d}\alpha\smile\beta + (-1)^p\alpha\smile\mathrm{d}\beta.
\]
This induces a cup product on the cohomology of the cover \({\mathscr{U}}\), and, by passing to the inductive limit over open covers, a cup product
\[
  \smile\colon \mathrm{H}^p(X;\Phi_1) \otimes \mathrm{H}^q(X;\Phi_2)
  \to \mathrm{H}^{p+q}(X;\Phi).
\]
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\begin{rmenv}{Definition}
A \emph{sheaf of algebras} on \(X\) is a sheaf of modules \(\Phi\) on \(X\) endowed with a product \(\Phi\otimes\Phi\to\Phi\) (which we do not assume to be either commutative nor associative).

\end{rmenv}

If \(f\colon\Phi\to\Psi\) is a homomorphism of sheaves of algebras, then the kernel \(\Phi'\) of \(f\) is a sheaf of two-sided ideals of \(\Phi\), i.e.~we have products \(\Phi'\otimes\Phi\to\Phi'\) and \(\Phi\otimes\Phi'\to\Phi'\) such that the two diagrams
\[
  \begin{CD}
    \Phi'\otimes\Phi @>>> \Phi'
  \\@VVV @VVV
  \\\Phi\otimes\Phi @>>> \Phi
  \end{CD}
  \qquad
  \begin{CD}
    \Phi\otimes\Phi' @>>> \Phi'
  \\@VVV @VVV
  \\\Phi\otimes\Phi @>>> \Phi
  \end{CD}
\]
both commute.

\leavevmode\hypertarget{four-proposition-1}{}%
\begin{itenv}{Proposition 1}
Let \(0\to\Phi'\to\Phi\to\Phi''\to0\) be an exact sequence of sheaves of algebras on \(X\);
let \(a\in\mathrm{H}^p(X;\Phi'')\).
Then \(\delta a\in\mathrm{H}^{p+1}(X;\Phi')\), and, for any class \(b\in\mathrm{H}^q(X;\Phi')\), we have \(\delta a\smile b=0\).

\end{itenv}

\begin{proof}
Let \({\mathscr{U}}\) be a cover of \(X\) such that \(a\) and \(b\) are represented by cocycles \(\alpha\) and \(\beta\) (respectively), and such that \(\alpha\) lifts to a cochain \(\eta\in C^p(X,{\mathscr{U}};\Phi)\).
Then \(\delta\eta\) is a cocycle in \(C^{p+1}(X,{\mathscr{U}};\Phi')\) whose class in \(\mathrm{H}^{p+1}(X;\Phi')\) is, by definition, \(\delta a\), and \(\delta a\smile b\) is the class of \(\delta\eta\smile\beta\).
But \(\delta(\eta\smile\beta)=\delta\eta\smile\beta\), and \(\eta\smile\beta\) is a cochain in \(C^{p+q}(X,{\mathscr{U}};\Phi')\), since \(\Phi'\) is a sheaf of ideals.
So the cocycle \(\delta\eta\smile\beta\) is cohomologous to \(0\) in \(\mathrm{H}^{p+q+1}(X;\Phi')\), which proves the proposition.
\end{proof}

\hypertarget{four-section-II}{%
\section*{II. The primary obstruction}\label{four-section-II}}
\addcontentsline{toc}{section}{II. The primary obstruction}

Let \(V_0\) be a complex-analytic manifold, and \(\Theta_0\) the sheaf of germs of holomorphic fields of tangent vectors.
Then \(\Theta_0\) is a sheaf of Lie algebras, and, if \(a,b\in\mathrm{H}^\bullet(V_0,\Theta_0)\), then we denote by \([a\smile b]\) the cup product defined by the bracket \([-,-]\colon\Theta_0\otimes\Theta_0\to\Theta_0\).
It satisfies
\[
  [b\smile a] = (-1)^{pq+1}[a\smile b]
\]
for \(a\in\mathrm{H}^p(V_0,\Theta_0)\) and \(b\in\mathrm{H}^q(V_0,\Theta_0)\).
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\leavevmode\hypertarget{four-theorem-1}{}%
\begin{itenv}{Theorem 1}
Let \(\pi\colon V\to B\) be a mixed manifold, \(b_0\) a point of \(B\), \(V_0=\pi^{-1}(b_0)\), and let \(\rho_0\colon T_0\to\mathrm{H}^1(V_0,\Theta_0)\) be Spencer--Kodaira map.
Then, if \(u\) and \(v\) are tangent vectors of \(B\) at \(b_0\), we have
\[
  [\rho_0(u)\smile\rho_0(v)] = 0.
\]

\end{itenv}

\begin{itenv}{Corollary}
Let \(V_0\) be a complex-analytic manifold, and \(\Theta\) the sheaf of germs of holomorphic fields of tangent vectors of \(V_0\).
If \(a\in\mathrm{H}^1(V_0,\Theta)\) is a deformation vector, then
\[
  [a\smile a]=0.
\]

\end{itenv}

\begin{proof}
\emph{(Proof of the Corollary).}
This is simply a particular case of \protect\hyperlink{four-theorem-1}{Theorem 1};
note that \([a\smile b]\) is a symmetric bilinear map from \(\mathrm{H}^1\otimes\mathrm{H}^1\) to \(\mathrm{H}^2\), and that we are in characteristic \(0\neq2\).
\end{proof}

\begin{proof}
\emph{(Proof of Theorem 1).}
Consider the following sheaves on \(V_0\):

\begin{itemize}
\tightlist
\item
  \(\Theta_0\): the sheaf of germs of vertical holomorphic fields on \(V_0\);
\item
  \(\widetilde{\Theta}_0\): the sheaf of germs of vertical holomorphic fields on \(V\);
\item
  \(\Pi_0\): the sheaf of germs of locally projectable holomorphic fields on \(V_0\);
\item
  \(\widetilde{\Pi}_0\): the sheaf of germs of locally projectable holomorphic fields on \(V\);
\item
  \(\Lambda_0\): the sheaf \(\pi^*T_0\), where \(T_0\) is the tangent space of \(B\) at \(b_0\); and
\item
  \(\widetilde{\Lambda}_0\): the sheaf \(\pi^*\widetilde{T}_0\), where \(\widetilde{T}_0\) is the space of germs at \(b_0\) of fields on \(B\) of tangent vectors of \(B\).
\end{itemize}

We have the following diagram:
\[
  \begin{CD}
    0 @>>> \widetilde{\Theta}_0 @>>> \widetilde{\Pi}_0 @>>> \widetilde{\Lambda}_0 @>>> 0
  \\@. @V{\varepsilon}VV @V{\varepsilon}VV @V{\varepsilon}VV @.
  \\0 @>>> \Theta_0 @>>> \Pi_0 @>>> \Lambda_0 @>>> 0
  \end{CD}
\]
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whence we obtain the following commutative diagram:
\[
  \begin{CD}
    \widetilde{T}_0 @>{\widetilde{\rho}}>> \mathrm{H}^1(V_0;\widetilde{\Theta})
  \\@V{\varepsilon}VV @VV{\varepsilon}V
  \\T_0 @>>{\rho}> \mathrm{H}^1(V_0;\Theta_0)
  \end{CD}
\]

Let \(u,v\in T_0\) be fixed tangent vectors of \(B\) at \(b_0\).
We can always find vector fields \(\widetilde{u}\) and \(\widetilde{v}\) on \(B\) that take the values \(u\) and \(v\) (respectively) at \(b_0\);
\(\epsilon(\widetilde{u})=u\) and \(\epsilon(\widetilde{v})=v\).
The exact sequence
\[
  0 \to
  \widetilde{\Theta}_0 \to
  \widetilde{\Pi}_0 \to
  \widetilde{\Lambda}_0 \to
  0
\]
is a sequence of homomorphisms of sheaves of Lie algebras, and so
\[
  [\widetilde{\rho}(\widetilde{u})\smile\widetilde{\rho}(\widetilde{v})] = 0
\]
by \protect\hyperlink{four-proposition-1}{Proposition 1}.
But \(\epsilon\colon\widetilde{\Theta}_0\to\Theta_0\) is also a homomorphism of sheaves of Lie algebras, and the diagram
\[
  \begin{CD}
    \mathrm{H}^1(V_0,\widetilde{\Theta}_0)\otimes\mathrm{H}^1(V_0,\widetilde{\Theta}_0) @>{[-\smile-]}>> \mathrm{H}^2(V_0,\widetilde{\Theta}_0)
  \\@V{\varepsilon\otimes\varepsilon}VV @VV{\varepsilon}V
  \\\mathrm{H}^1(V_0,\Theta_0)\otimes\mathrm{H}^1(V_0,\widetilde{\Theta}_0) @>>{[-\smile-]}> \mathrm{H}^2(V_0,\Theta_0)
  \end{CD}
\]
commutes.
We thus deduce that \([\rho(u)\smile\rho(v)]=0\).
\end{proof}
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\begin{rmenv}{Remarks}

---

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  We make essential use of the fact that \(\epsilon\colon\widetilde{T}_0\to T_0\) is surjective, and thus of the fact that \(B\) has no singularities.
\item
  We actually have \([\rho(u)\smile b]=0\) for all \(u\in T_0\), for any class \(b\in\mathrm{H}^1(V_0,\Theta_0)\) that is in the image of \(\mathrm{H}^1(V_0,\widetilde{\Theta}_0)\) under \(\epsilon\).
  In particular, for an element \(a\in\mathrm{H}^1(V_0,\Theta_0)\) to be a regular deformation vector (in the sense of {[}Talk no. 3{]}), it is necessary and sufficient for \([a\smile b]=0\) for all \(b\in\mathrm{H}^1(V_0,\Theta_0)\).
\end{enumerate}

\end{rmenv}

If \(V_0\) is a compact complex-analytic manifold, and \(a\in\mathrm{H}^1(V_0,\Theta)\), then we call \([a\smile a]\in\mathrm{H}^2(V_0,\Theta)\) the \emph{primary obstruction} to the deformation of \(V_0\) along \(a\).
For \(a\) to be a deformation vector, it is necessary that this primary obstruction be zero;
but it is not sufficient: we can define a sequence of set-theoretic maps \(\omega_n\), called \emph{obstructions}, with \(\omega_1\colon\mathrm{H}^1(V_0,\Theta)\to\mathrm{H}^2(V_0,\Theta)\) given by \(\omega_1(a)=[a\smile a]\), and with \(\omega_{k+1}\) defined on the subset of \(\mathrm{H}^1(V_0,\Theta)\) where \(\omega_k\) vanishes, with values in varying quotients\footnote{See the \protect\hyperlink{four-appendix}{Appendix}.} of \(\mathrm{H}^2(V_0,\Theta)\), and a necessary condition for \(a\) to be a deformation vector is that all the \(\omega_k(a)\) be defined and real.
I do not know if \emph{this} condition is sufficient.
Kodaira, Spencer, and Nijenhuis {[}\protect\hyperlink{ref-4-4}{5}{]} have shown that, if \(\mathrm{H}^2(V_0,\Theta)=0\), then every element of \(\mathrm{H}^1(V_0,\Theta)\) is a deformation vector.
In this case, we even have a locally universal deformation whose base is a manifold, and \(\rho\) is an isomorphism from the tangent space of this manifold to \(\mathrm{H}^1(V_0,\Theta)\)

\hypertarget{four-section-III}{%
\section*{III. An example of obstruction}\label{four-section-III}}
\addcontentsline{toc}{section}{III. An example of obstruction}

\hypertarget{four-section-III.1}{%
\subsection*{\texorpdfstring{1. The manifold \(V_0\)}{1. The manifold V\_0}}\label{four-section-III.1}}
\addcontentsline{toc}{subsection}{1. The manifold \(V_0\)}

Let \(X=E/\Gamma\) be a \(2\)-dimensional complex torus, i.e.~\(E\cong\mathbb{C}^2\) and \(\Gamma\cong\mathbb{Z}^4\), and let \(D\) the be projective line \(\mathbb{P}^1\mathbb{C}\).
Set \(V_0=X\times D\).
The sheaf \(\Theta\) of holomorphic fields of tangent vectors of \(V_0\) is the direct sum of the sheaves of Lie algebras \(\Theta_1\) and \(\Theta_2\), where
\[
  \begin{aligned}
    \Theta_1 &= {\mathcal{O}}\otimes_{{\mathcal{O}}_X}\pi_1^*\Theta_X
  \\\Theta_2 &= {\mathcal{O}}\otimes_{{\mathcal{O}}_D}\pi_2^*\Theta_D
  \end{aligned}
\]
where \(\pi_1\colon V_0\to X\) and \(\pi_2\colon V_0\to D\) are the projections, \({\mathcal{O}}\), \({\mathcal{O}}_X\), and \({\mathscr{D}}\) are the structure sheaves (sheaves of local rings), and \(\Theta_X\) and \(\Theta_D\) are the sheaves of germs of holomorphic fields of tangent vectors of \(X\) and \(D\) (respectively).
We are mostly interested in \(\Theta_2\).
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Also, \(\mathrm{H}^1(V_0,\Theta_2)\) is given by the Künneth exact sequence:
\[
  0 \to
  \mathrm{H}^0(X,{\mathcal{O}}_X)\otimes\mathrm{H}^1(D,\Theta_D) \to
  \mathrm{H}^1(V_0,\Theta_2) \to
  \mathrm{H}^1(X,{\mathcal{O}}_X)\otimes\mathrm{H}^0(D,\Theta_D) \to
  0.
\]
But we know that \(\mathrm{H}^0(D,\Theta_D)\) is the Lie algebra \({\mathfrak{a}}\) of the group
\[
  A = \operatorname{GL}(2,\mathbb{C})/\mathbb{C}^* = \operatorname{SL}(2,\mathbb{C})/\{\pm1\}
\]
of automorphisms of \(D\), and that \(\mathrm{H}^1(D,\Theta_D)=0\), as we can easily see by taking a cover of \(D\) by two open subsets.
We have already seen (in {[}Talk no. 1{]}) that, if \(X=E/\Gamma\), then \(\mathrm{H}^1(X,{\mathcal{O}})=\operatorname{Hom}(\Gamma,\mathbb{C})/\operatorname{Hom}_{\mathbb{C}}(E,\mathbb{C})\) is of dimension \(2\).
So \(\mathrm{H}^1(V_0,\Theta_2)=\mathrm{H}^1(X,{\mathcal{O}})\otimes{\mathfrak{a}}\) is of dimension \(6\).
The cup product
\[
  \mathrm{H}^1(V_0,\Theta_2)\otimes\mathrm{H}^1(V_0,\Theta_2) \to \mathrm{H}^2(V_0,\Theta_2)
\]
is given by the formula
\[
  [(\gamma\otimes\alpha)\smile(\gamma'\otimes\alpha')]
  = (\gamma\smile\gamma')\otimes[\alpha,\alpha'].
\]
The cone of elements \(\varphi\in\mathrm{H}^1(V_0,\Theta_2)\) such that \([\varphi\smile\varphi]=0\) can be identified with the cone of rank \(1\) tensors in \(\mathrm{H}^1(X,{\mathcal{O}})\otimes{\mathfrak{a}}\).
Indeed, if \(\varphi=\gamma\otimes\alpha\), then
\[
  [\varphi\smile\varphi]
  = (\gamma\smile\gamma)\otimes[\alpha,\alpha]
  = 0\otimes0
  = 0
\]
and, if \(\varphi\) is not a simple tensor, then we have
\[
  \varphi = \gamma\otimes\alpha + \gamma'\otimes\alpha'
\]
with \(\gamma\) and \(\gamma'\) independent, and \(\alpha\) and \(\alpha'\) independent, so
\[
  [\varphi\smile] = 2(\gamma\smile\gamma')\otimes[\alpha,\alpha'] \neq 0.
\]

\hypertarget{four-section-III.2}{%
\subsection*{\texorpdfstring{2. The mixed space \(V\)}{2. The mixed space V}}\label{four-section-III.2}}
\addcontentsline{toc}{subsection}{2. The mixed space \(V\)}

In this example, every element of \(\mathrm{H}^1(V_0,\Theta_2)\) whose primary obstruction is zero is a deformation vector.
More precisely:
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\hypertarget{four-proposition-2}{}
\begin{itenv}{Proposition 2}

There exists a mixed space \(\pi\colon V\to B\) and a point \(b_0\in B\) such that

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  \(\pi^{-1}(b_0)=V_0\) (the manifold defined in \protect\hyperlink{four-section-III.1}{§III.1});
\item
  there exists an isomorphism \(\sigma\) from a \(\mathbb{C}\)-analytic space \(B\) to the cone of elements \(\varphi\in\mathrm{H}^1(V_0,\Theta_2)\) such that \([\varphi\smile\varphi]=0\); and
\item
  for every subspace \(B'\) of \(B\) that has no singularities at \(b_0\), the Spencer--Kodaira map \(\rho\) from the tangent space of \(B'\) at \(b_0\) to \(\mathrm{H}^1(V_0,\Theta)\) agrees with \(\sigma\colon B'\to\mathrm{H}^1(V_0,\Theta_2)\).
\end{enumerate}

\end{itenv}

Let \(H\) be the analytic space of homomorphisms from \(\Gamma\) to \({\mathfrak{a}}\) whose images are contained in a vector subspace of \({\mathfrak{a}}\) that is \(1\)-dimensional over \(\mathbb{C}\) (i.e.~\((4\times2)\) matrices of rank \(1\) with coefficients in \(\mathbb{C}\)).
For every \(h\in H\), \(e\circ h\) is a homomorphism from \(\Gamma\) to \(A\), where \(e\colon{\mathfrak{a}}\to A\) denotes the exponential map, and we construct a manifold \(V_h\) that is fibred over \(X\) with fibre \(D\) as follows: \(V_h\) is the quotient of \(E\times D\) by the equivalence relation defined by \(\Gamma\) acting via
\[
  \gamma\star(x,y) = (x+\gamma,((e\circ h)(\gamma))\cdot y).
\]
These manifolds are the fibres of a mixed space \(W\to H\), where \(W\) is the quotient of \(H\times E\times D\) by the equivalence relation defined by \(\Gamma\) acting via
\[
  \gamma\star(h,x,y) = (h,x+y,(e\circ h(y))\cdot y).
\]
We now place the following equivalence relation on \(H\): we have \(h'\sim h\) if and only if \((h'-h)\) extends to an \(\mathbb{C}\)-linear map \(f\colon E\to{\mathfrak{a}}\).
Note that, if \(h'(\Gamma)\) and \(h(\Gamma)\) are contained in the same subspace \(L\) of \({\mathfrak{a}}\) of dimension \(1\) over \(\mathbb{C}\) (or if \(h'\sim h\)), then we also have \(f(E)\subset L\) (or \(h\sim0\) and \(h'\sim0\)).
In both cases, \(V_h\) and \(V_{h'}\) are isomorphic, and we have an isomorphism \(i_{h',h}\colon V_h\to V_{h'}\) defined by
\[
  i_{h',h}(x,y) = (x,e\circ f(x)\cdot y)
\]
(in the first case), or
\[
  i_{h',h} = i_{h',0}\circ i_{0,h}
\]
(in the second case).
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If \(h\), \(h'\), and \(h''\) are in the same class, then we have \(i_{h''h}=i_{h''h'}\circ i_{h'h}\), and we can place on \(W\) the equivalence relation
\[
  (h',z') \sim (h,z) \iff h'\sim h\text{ or }z'=i_{h'h}z
\]
for \(h,h'\in H\), \(z\in V_h\), and \(z'\in V_{h'}\).

Let \(B\) and \(V\) be the quotients of \(H\) and \(W\) (respectively) by these equivalence relations.
We have a projection \(V\to B\).
To show that the structures of a \(\mathbb{C}\)-analytic space on \(H\) and \(W\) induce structures of a \(\mathbb{C}\)-analytic space on their quotients \(B\) and \(V\), it suffices to remark that we can lift \(B\) to a analytic subspace of \(H\): let, for example, \((\gamma_1,\gamma_2,\gamma_3,\gamma_4)\) be a basis of \(\Gamma\) such that \((\gamma_1,\gamma_2)\) is a basis of \(E\) over \(\mathbb{C}\); then each class \(b\in B\) contains exactly one element \(h\in H\) such that
\[
  h(\gamma_1) = h(\gamma_2) = 0.
\]

\hypertarget{four-section-III.3}{%
\subsection*{\texorpdfstring{3. Calculating \(\rho_0\)}{3. Calculating \textbackslash rho\_0}}\label{four-section-III.3}}
\addcontentsline{toc}{subsection}{3. Calculating \(\rho_0\)}

Let \(T\) be the Zariski tangent space of \(B\) at \(b_0\), i.e.~the dual of \({\mathfrak{I}}/{\mathfrak{I}}^2\), where \({\mathfrak{I}}\) is the ideal of germs at \(b_0\) of analytic functions on \(B\) that are zero at \(b_0\).
Then \(T_0\) can be identified with \(\operatorname{Hom}(\Gamma,a)/\operatorname{Hom}_{\mathbb{C}}(E,a)\).
Also,
\[
  \begin{aligned}
    \mathrm{H}^1(V_0,\Theta)
    &= \mathrm{H}^1(V_0;\Theta_1) \oplus \mathrm{H}^1(V_0;\Theta_2)
  \\&= \big(\mathrm{H}^1(X;{\mathcal{O}}) \otimes E\big) \oplus \big(\mathrm{H}^1(X;{\mathcal{O}})\otimes a\big),
  \end{aligned}
\]
and the second term of this term can be identified with the quotient \(\operatorname{Hom}(\Gamma,a)/\operatorname{Hom}_{\mathbb{C}}(E,a)\).
We are going to show that the map \(\rho_0\colon T_0\to\mathrm{H}^1(V_0;\Theta)\) is exactly the canonical injection defined by these identifications.

Let \(u\in T_0=\operatorname{Hom}(\Gamma,\alpha)/\operatorname{Hom}(E,\alpha)\) be the class of an element \(h\in\operatorname{Hom}(\Gamma,\alpha)\), which we suppose to be of rank \(1\).
Then we can write \(h\) in the form \(\eta\otimes\sigma\), where \(\eta\in\operatorname{Hom}(\Gamma,\mathbb{C})\), \(\sigma\in\alpha\), and we can consider \(h\) as a tangent vector to \(H\) at \(0\).
Let \(\overline{h}\) be the field of tangent vectors to \(H\times E\times D\) at \(0\times E\times D\) that projects onto \(h\), and thus whose components over \(E\times D\) are zero.
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Let \((U_i)\) be a cover of \(X=E/\Gamma\) by simply connected open subsets, and choose, for each \(i\), a component \(\widetilde{U}_i\) of the inverse image of \(U_i\) in \(E\).
We will denote by \(v_i\) the image over \(U_i\times D\) of the field \(\overline{h}|\widetilde{U}_i\times D\).
This is a projectable holomorphic field on \(0\times U_i\times D\) of tangent vectors of \(H\times U_i\times D\), and we set \(w_{ij}=v_j-v_i\), so that \(w_{ij}\) is a vertical holomorphic field on \(U_{ij}\times D\), and these fields form a cocycle whose cohomology class will be, by definition, \(\rho_0(u)\).

Let \(x\in U_{ij}\), and let \(\widetilde{x}_i\) and \(\widetilde{x}_j\) be its inverse image in \(\widetilde{U}_i\) and \(\widetilde{U}_j\) (respectively).
We have that \(\widetilde{x}_j=\widetilde{x}_i+\gamma_{ij}(x)\), where \(\gamma_{ij}(x)\in\Gamma\), and
\[
  w_{ij}(x)
  = \overline{h}(\widetilde{x}_j) - [\gamma_{ij}(x)]_*(\overline{h}(\widetilde{x}_i))
  = -h(\gamma_{ij}(x)) \in\alpha.
\]
Now \(w_{ij}\) is a vector field on \(D\), and so
\[
  (w_{ij}) \in \mathrm{Z}^1(V_0,(U_i\times D);\Theta_2),
\]
and \(w_{ij}\) is of the form \(\zeta\otimes\alpha\), where \(\zeta\in\mathrm{Z}^1(V_0,(U_i\times D);{\mathcal{O}})\) is the cocycle defined by \(\zeta_{ij}(x)=-\eta(\gamma_{ij}(x))\).
This is a cocycle whose cohomology class is (up to a sign) the element of \(\mathrm{H}^1(V_0,{\mathcal{O}})\) that is identified with the class \(\eta\) in \(\operatorname{Hom}(\Gamma,\mathbb{C})/\operatorname{Hom}_{\mathbb{C}}(E,\mathbb{C})\).
QED.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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Let \(V_0\) be a \(\mathbb{C}\)-analytic manifold, which we assume to be compact, and \(B\) a \(\mathbb{C}\)-analytic space, and let \(b_0\in B\).
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We are going to define a sheaf \(\Gamma\) of non-abelian groups on \(V_0\).
For every open subset \(U\) of \(V_0\), consider the isomorphisms of analytic varieties \(\gamma\colon W\to W'\), where \(W\) and \(W'\) are open subsets of \(B\times V_0\) that contain \(\{b_0\}\times U\), such that the following conditions are satisfied:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  \(\pi_1\gamma=\pi_1\) is the projection \(B\times V_0\) to \(B\);
\item
  \(\gamma\) is the identity on \(\{b_0\}\times U\).
\end{enumerate}

Then \(\Gamma(U)\) consists of equivalence classes of these isomorphisms, where we identify \(\gamma_1\) with \(\gamma_2\) if they agree on a neighbourhood of \(\{b_0\}\times U\).

It is clear that \(\Gamma(U)\) is a group under composition of isomorphisms, and that the \(\Gamma(U)\) form a sheaf \(\Gamma\) of non-abelian groups.

\leavevmode\hypertarget{four-proposition-1}{}%
\begin{itenv}{Proposition 1}
We can identify \(\mathrm{H}^1(V_0,\Gamma)\) with the set of classes of deformation germs of \(V_0\) over \((B,b_0)\).

\end{itenv}

Recall that a deformation germ of \(V_0\) over \((B,b_0)\) is a deformation of \(V_0\) over a neighbourhood of \(b_0\) in \(B\), and that two such deformations \((B',b_0,V',\pi',\iota')\) and \((B'',b_0,V'',\pi'',\iota'')\) are locally equivalent if there exists a neighbourhood \(W'\) of \((\pi')^{-1}(b_0)\) in \(V'\), a neighbourhood \(W''\) of \((\pi'')^{-1}(b_0)\) in \(V''\), and an isomorphism \(\varphi\) from \(W'\) to \(W''\) such that the diagram
\[
  \begin{CD}
    V_0 @= V_0
  \\@VVV @VVV
  \\W' @>{\varphi}>> W''
  \\@V{\pi'}VV @VV{\pi''}V
  \\B @= B
  \end{CD}
\]
commutes.
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\begin{proof}
\emph{(Proof of \protect\hyperlink{four-proposition-1}{Proposition 1}).}
Let \((B',b_0,V,\pi,\iota)\) be a deformation of V\_0\$ over a neighbourhood \(V'\) of \(b_0\) in \(B\).
Then we can find a cover \(\{U_i\}\) of \(V_0\) and a cover \(\{W_i\}\) of a neighbourhood of \(\iota(V_0)\) in \(V\), along with isomorphisms \(\{h_i\}\), where \(h_i\) is an isomorphism from a neighbourhood of \(\{b_0\}\times U_i\) in \(B\times V_0\) to \(W_i\) that agrees with \(\iota\) on \(\{b_0\}\times U_i\), and such that \(\pi\circ h_i=\pi_1\).

Set \(\gamma_{ij}=h^{-1}_i\circ h_j\).
We can show that the \(\gamma_{ij}\) define an element of \(\Gamma(U_i\cap U_j)\), and that \(\gamma_{ij}\circ\gamma_{jk}=\gamma_{ik}\).
The \(\gamma_{ij}\) thus form a cocycle \(\gamma\in\operatorname{Z}^1(V_0,\{U_i\};\Gamma)\).
Such a cocycle is said to be \emph{associated to the deformation}.
It will still be associated to the deformation if pass to a finer cover.
Let \((B',b_0,V',\pi',\iota')\) be a deformation that is locally equivalent to the first, and let \(\gamma'\) be a cocycle associated to this deformation.
We can suppose, by refining the covers if necessary, that the cocycles \(\gamma\) and \(\gamma'\) are defined with respect to the same cover \(\{U_i\}\) of \(V_0\).
Let \(f\) be an isomorphism from a neighbourhood of \(\iota(V_0)\) in \(V\) to a neighbourhood of \(\iota'(V_0)\) in \(V'\).
Set \(f_i=(h'_i)^{-1}\circ f\circ h_i\).
Then \(f_i\in\Gamma(U_i)\), and
\[
  f_i\circ\gamma_{ij} = \gamma'_{ij}\circ f_j.
\]
We thus conclude that the cocycles associated to a deformation form a cohomology class that depends only on the local class of the deformation.

Conversely, suppose we have a locally finite cover \(\{U_i\}\) of \(V_0\) and a cocycle \(\gamma\in\operatorname{Z}^1(V_0,\{U_i\};\Gamma)\).
Then \(\gamma_{ij}\) can be represented by an isomorphism from an open \(W_{ij}\) of \(B\times V_0\) to another open \(W_{ji}\), with the two open subsets both containing \(\{b_0\}\times U_{ij}\).
Pick a refinement \(\{U'_i\}\) of the cover \(\{U_i\}\), and take some neighbourhood \(B''\) of \(b_0\) in \(B\) small enough such that \(B''\times U'_{ij}\subset W_{ij}\) for all \((i,j)\), and such that the equality \(\gamma_{ij}\circ\gamma_{jk}=\gamma_{ik}\) holds wherever it is defined in \(B''\times U'_{ijk}\).
We thus obtain a deformation \(V\) of \(V_0\) on \(B''\) by gluing the \(B''\times U'_i\) via the \(\gamma_{ij}\).

Finally, we can show that all the above does indeed define a bijection between the set of local classes of deformations of \(V_0\) over \((B,b_0)\) and \(\mathrm{H}^1(V_0;\Gamma)\).
\end{proof}
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For every open subset \(U\subset V_0\), the group \(\Gamma(U)\) is naturally filtered: denote by \({\mathscr{F}}_k(U)\) the group of vertical automorphisms that are tangent to the identity up to order \(k-1\).
Then \(\Gamma\) becomes a filtered sheaf:
\[
  \Gamma = {\mathscr{F}}_1 \supset {\mathscr{F}}_2 \supset \ldots
  \qquad\text{and }\bigcap {\mathscr{F}}_k=\{0\}.
\]
Set
\[
  \begin{aligned}
    {\mathscr{Q}}_k &= \Gamma/{\mathscr{F}}_{k+1}
  \\{\mathscr{G}}_k &= {\mathscr{F}}_k/{\mathscr{F}})_{k+1} = \operatorname{Ker}({\mathscr{Q}}_k\to{\mathscr{Q}}_{k-1}).
  \end{aligned}
\]
For all \(k\), \({\mathscr{G}}_k\) is a sheaf of abelian groups, which we will write additively.
If \(B=\mathbb{C}\) and \(b_0=0\) (we then speak of \emph{the deformation in one parameter}), for all \(k\), \({\mathscr{G}}_k\) can be identified with the sheaf \(\Theta\) of germs of vector fields tangent to \(V_0\).
In the general case,
\[
  {\mathscr{G}}_k = {\mathfrak{m}}^k/{\mathfrak{m}}^{k+1}\otimes\Theta
\]
where \({\mathfrak{m}}\) is the maximal ideal of the point \(b_0\) in \(B\).

Now, if \(a\in{\mathscr{F}}_p\) and \(b\in{\mathscr{F}}_q\), then the commutator \(aba^{-1}b^{-1}\) is in \({\mathscr{F}}_{p+q}\), and this defines a map \({\mathscr{G}}_p\otimes{\mathscr{G}}_q\to{\mathscr{G}}_{p+q}\) which endows \({\mathscr{G}}_\bullet=\bigoplus{\mathscr{G}}_k\) with the structure of a sheaf of Lie algebras that is isomorphic to the tensor product of \(\Theta\) with the graded algebra associated to the maximal ideal \({\mathfrak{m}}\) of \(b_0\) in \(B\) filtered by powers.

The exact sequence of non-abelian groups
\[
  0 \to {\mathscr{G}}_{k+1} \to {\mathscr{Q}}_{k+1} \to {\mathscr{Q}}_k \to 0
\]
in which \({\mathscr{G}}_{k+1}\) is a subgroup of \({\mathscr{Q}}_{k+1}\) contained in its centre gives rise {[}\protect\hyperlink{ref-4-1}{3}{]} to an exact sequence of pointed sets
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\[
  \mathrm{H}^1(V_0;{\mathscr{Q}}_{k+1}) \to \mathrm{H}^1(V_0;{\mathscr{Q}}_k) \xrightarrow{\delta_k} \mathrm{H}^2(V_0;{\mathscr{G}}_{k+1})
\]
i.e.~for an element \(q\in\mathrm{H}^1(V_0,{\mathscr{Q}}_k)\) to be in the image of \(\mathrm{H}^1(V_0;{\mathscr{Q}}_{k+1})\), it is necessary and sufficient for \(\delta_k q=0\) in \(\mathrm{H}^2(V_0;{\mathscr{G}}_{k+1})\).
A \emph{necessary} condition for \(q\) to be in the image of \(\mathrm{H}^1(V_0;\Gamma)\to\mathrm{H}^1(V_0;{\mathscr{Q}}_k)\) is thus \(\delta_k q=0\) in \(\mathrm{H}^2(V_0;{\mathscr{G}}_{k+1})\).

\begin{rmenv}{Definition}
Let \(q\in\mathrm{H}^1(V_0;{\mathscr{Q}}_i)\), and let \(k\geqslant i\).
We define an \emph{obstruction of order \(k\) of the element \(q\)} to be the direct image in \(\mathrm{H}^2(V_0;{\mathscr{G}}_{k+1})\) under \(\delta_k\) of the inverse image of \(q\) in \(\mathrm{H}^1(V_0;{\mathscr{Q}}_k)\).
It is thus a subset of \(\mathrm{H}^2(V_0;{\mathscr{G}}_{k+1})\).
The obstruction is said to be \emph{trivial} if the identity element belongs to this subset.
Being trivial is a necessary and sufficient condition for \(q\) to be in the image of \(\mathrm{H}^1(V_0;{\mathscr{Q}}_{k+1})\), and a necessary condition for \(q\) to be in the image of \(\mathrm{H}^1(V_0;\Gamma)\).

\end{rmenv}

\begin{rmenv}{Warning}
If \(q\) is not in the image of \(\mathrm{H}^1(V_0,{\mathscr{Q}}_k)\), then its obstruction of order \(k\) is empty, and thus non-trivial.

\end{rmenv}

This definition is used most of all in the case of deformations in one parameter (\(B=\mathbb{C}\) and \(b_0=0\)), where \({\mathscr{G}}_{k+1}=\Theta\) for all \(k\), and \({\mathscr{Q}}_1={\mathscr{G}}_1=\Theta\).
The successive obstructions of an element \(a\in\mathrm{H}^1(V_0;\Theta)\) are thus subsets of \(\mathrm{H}^2(V_0;\Theta)\), and for \(a\) to be a deformation vector, it must be the case that all of its obstructions are trivial.
Indeed, the element of \(\mathrm{H}^1(V_0;\Theta)\) that corresponds, under the identifications we have made (\(\Theta={\mathscr{Q}}_1=\Gamma/{\mathscr{F}}_2\), and \protect\hyperlink{four-proposition-1}{Proposition 1}), to a deformation germ is exactly the image under the Spencer--Kodaira map \(\rho\) of the canonical basis vector of the tangent space to \(\mathbb{C}\) at \(0\).
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From now on, we work in the case of deformations in one parameter, i.e.~\(B=\mathbb{C}\) and \(b_0=0\).

Let \(\Omega\) be the sheaf of universal enveloping algebras of the Lie algebras of the sheaf \(\Theta\) (i.e.~\(\Omega(U)\) is the universal enveloping algebra of \(\Theta(U)\)).
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Then \(\Omega\) contains \(\Theta\) as a subsheaf, and even as a direct factor (by the Poincaré--Birkhoff--Witt Theorem in characteristic \(0\)).
For all \(k\), consider the sheaf of algebras \(\Omega_k=\Omega[t]/(t^{k+1})\).
For \(i\leqslant k\), we have a map of sheaves of sets
\[
  \exp_i\colon \Theta \to \Omega_k
\]
defined by
\[
  \exp_i(\Theta) = \sum_p\frac{1}{M} \Theta^p t^p
\]

\leavevmode\hypertarget{four-proposition-2}{}%
\begin{itenv}{Proposition 2}
\emph{(Campbell--Hausdorff).}
We can identify \({\mathscr{Q}}_k\) with the sheaf of multiplicative subgroups of \(\Omega_k\) generated by the images of the \(\exp_i\) for \(i\leqslant k\).

\end{itenv}

The proof of this proposition will not be given here.
We denote by \(\Omega_k^\times\) the sheaf of multiplicative subgroups of \(\Omega_k\) consisting of the elements whose constant terms is \(1\).
The commutative diagram of sheaves of (non-abelian) groups
\[
  \begin{CD}
    0 @>>> \Theta @>>> {\mathscr{Q}}_{k+1} @>>> {\mathscr{Q}}_k @>>> 0
  \\@. @VVV @VVV @VVV @.
  \\0 @>>> \Omega @>>> \Omega_{k+1}^\times @>>> \Omega_k^\times @>>> 0
  \end{CD}
\]
gives rise to a commutative diagram of sets
\[
  \begin{CD}
    \mathrm{H}^1(V_0;{\mathscr{Q}}_k) @>{\delta_k}>> \mathrm{H}^2(V_0;\Theta)
  \\@VVV @VVV
  \\\mathrm{H}^1(V_0;\Omega_k^\times) @>>{\delta_k}> \mathrm{H}^2(V_0;\Omega)
  \end{CD}
\]
in which \(\mathrm{H}^2(V_0;\Theta)\) is a vector subspace of \(\mathrm{H}^2(V_0;\Omega)\).
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Now let \(a\in\mathrm{H}^1(V_0;\Theta)\), and let \(\alpha=(\alpha_{ij})\) be a cocycle of the class \(a\) (the choice of the cocycle \(\alpha\) does not matter, since every cocycle that is cohomologous to a deformation cocycle is itself a deformation cocycle).
The corresponding multiplicative cocycle in \(\Omega_1^\times\) is \((1+\alpha_{ij}t)\).
This cocycle can be lifted to \(\Omega_i^\times\) as the cochain \((1+\alpha_{ij}t)\), and we have
\[
  \begin{aligned}
    (1+\alpha_{ij}t) (1+\alpha_{jk}t)
    &= 1 + (\alpha_{ij}+\alpha_{jk})t + \alpha_{ij}\alpha_{jk}t^2
  \\&= (1 + \alpha_{ik}t + \alpha_{ij}\alpha_{jk}t^2)
  \\&= (1+\alpha_{ik}t) \{1 + \alpha_{ij}\alpha_{jk}t^2).
  \end{aligned}
\]
Finally, let
\[
  \delta_1 a=a\smile a
\]
where the cup product is taken in the sheaf of algebras \(\Omega\).

Note that, if we denote by \(\bar{\smile}\) the cup product taken in the sheaf of algebras opposite to \(\Omega\), i.e.~defined on the level of cochains by \((\alpha\bar{\smile}\beta)_{ijk}=\beta_{jk}\alpha_{ij}\), we always have that \(a\bar{\smile}b=-b\smile a\) in cohomology.

Consequently,
\[
  [a\smile a] = (a\smile a)-(a\bar{\smile}a) = 2a\smile a
\]
and \(\delta_1a=a\smile a=\frac12[a\smile a]\).
We thus recover, up to a factor of \(\frac12\), the obstruction defined earlier in this talk.
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Now suppose that \(a\smile a=0\), so that we can find a cochain \(\beta=(\beta_{ij})\) such that \(\delta\beta+\alpha\smile\alpha=0\), i.e.
\[
  \beta_{ik} = \beta_{ij}+\beta_{jk}+\alpha_{ij}\alpha_{jk}.
\]
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Then \((1+\alpha_{ij}t+\beta{ij}t^2)\) is a cocycle in \(\Omega_2^\times\), and we can choose the cochain \(\beta\) to be a cocycle in \({\mathscr{Q}}_2\).

This cocycle can be lifted to \(\Omega_3^\times\) as the cochain \((1+\alpha_{ij}t+\beta_{ij}t^2)\), and we have that
\[
  \begin{aligned}
    &(1+\alpha_{ij}t+\beta_{ij}t^2) (1+\alpha_{jk}t+\beta_{jk}t^2)
  \\=\,\,& 1+ (\alpha_{ij}+\alpha_{jk})t + (\beta_{ij}+\beta_{jk}+\alpha_{ij}\alpha_{jk})t^2 + (\alpha_{ij}\beta_{jk}+\beta_{ij}\alpha_{jk})t^3
  \\=\,\,& (1 + \alpha_{ik}t + \beta{ik}t^2) (1+ (\alpha_{ij}\beta_{jk}+\beta_{ij}\alpha_{jk})t^3).
  \end{aligned}
\]
The secondary obstruction of \(a\) is thus the cohomology class of the cocycle \((\alpha_{ij}\beta_{jk}+\beta_{ij}\alpha_{jk})\in\operatorname{Z}^2(V_0;\Omega)\).
This class depends on the choice of the cochain \(\beta\): if we choose some other \(\beta'=\beta+\theta\), where \(\Theta\in\operatorname{Z}^1(V_0;\Theta)\), then the cocycle is modified by \(\alpha\smile\theta+\theta\smile\alpha\), and its class by an element of \([a\smile\mathrm{H}^1(V_0;\Theta)]\).
We recover the \emph{Massey triple product} \((a,a,a)\) taken in the algebra \(\Omega\), but with a slightly more restrictive indetermination.

We can try to calculate this secondary obstruction without leaving the sheaf \(\Theta\), but the calculations are then much more complicated: we must take a cochain \(\beta=(\beta_{ij})\) such that \(\delta\beta+\frac12[a\smile a]=0\).
Then the secondary obstruction of \(\alpha\) is the class of the cocycle
\[
  [\alpha_{ij},\beta_{jk}] + \frac16[[\alpha_{ij},\alpha_{jk}],\alpha_ij+2\alpha_{jk}].
\]
The calculation done in the sheaf of enveloping algebras \(\Omega\) can be generalised to obstructions of order \(r\): we are led to determining, by induction, cochains \(\omega_r\) such that
\[
  \begin{cases}
    \omega_1 = \alpha
  \\\delta\omega_r + \sum_{p+q=r}\omega_p\smile\omega_q = 0
  \\1 + \sum_{1\leqslant p\leqslant r}\omega_p t^p \in \operatorname{C}^1(V_0;{\mathscr{Q}}_r)
  \end{cases}
\]
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\leavevmode\hypertarget{four-proposition-3}{}%
\begin{itenv}{Proposition 3}
Let \(\varphi\colon V_0\to X\) be an arbitrary map, which gives rise to a spectral sequence of graded Lie algebras
\[
  \mathrm{H}^\bullet(X;\mathbb{R}^\bullet\varphi\Theta) \Rightarrow \mathrm{H}^\bullet(V_0;\Theta).
\]
Let
\[
  a \in \mathrm{H}^1(X;\varphi_*\Theta) \subset \mathrm{H}^1(V_0;\Theta).
\]
If the element
\[
  -\frac12[a\smile a] \in \mathrm{H}^2(X;\varphi_*\Theta) = E_2^{2,0}
\]
is non-zero, but is the image under the differential \(\mathrm{d}_2\) of the spectral sequence of an element \(b\in E_2^{0,1}\), then the image of the secondary obstruction of \(a\) in \(E_\infty^{1,1}\) consists of the elements of the form \([a,b]\).
In particular, if, for all \(b\) such that \(\mathrm{d}_2 b=-\frac12[a,a]\), we have that \([a,b]\neq0\), then the secondary obstruction is non-trivial.

\end{itenv}

\begin{rmenv}{Warning}
However, if \([a,b]=0\) in \(E^{1,1}\), then we can only say that the secondary obstruction comes from \(E_\infty^{2,0}\), and if this group is non-zero, then we cannot conclude anything.

\end{rmenv}

\begin{proof}
Let \(\alpha\) be a cocycle on \(V_0\) representing the class \(a\).
The element \(b\in E_2^{0,1}\) can be represented by a cochain
\[
  \beta = (\beta_{ij}) \in \operatorname{C}^1(V_0;\Theta)
\]
such that
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\[
  \delta\beta + \frac12[a\smile a] = 0.
\]
We thus obtain a cochain
\[
  \beta' \in \operatorname{C}^1(V_0;\Omega)
\]
such that
\[
  1 + \alpha t + \beta' t^2 \in \operatorname{C}^1(V_0;{\mathscr{Q}}_2)
\]
by setting \(\beta'_{ij}=\beta_{ij}+\frac12\alpha_{ij}^2\);
this cochain satisfies \(\delta\beta'+\alpha\smile\alpha=0\).
But this new cochain represents, in the \(E_2^{0,1}\) term of the spectral sequence of the sheaf \(\Omega\), the same element \(b\) as the cochain \(\beta\), since it differs from it by a cochain that comes from \(X\).
The secondary obstruction is thus the class of the cocycle \(\alpha\smile\beta'+\beta'\smile\alpha\), which represents in the \(E^{1,1}\) term of the spectral sequence the element \([a,b]\).
\end{proof}

This proposition allows us to construct non-trivial examples of secondary obstructions.
Consider the group \(N\) of matrices of the form
\[
  \begin{pmatrix}
    1 & x & y
  \\0 & 1 & z
  \\0 & 0 & 1
  \end{pmatrix}
\]
where \(x,y,z\in\mathbb{C}\), and let \(Y=N/\Gamma\), where \(\Gamma\) is the subgroup of \(N\) consisting of elements where \(x,y,z\in\mathbb{Z}+i\mathbb{Z}\).
Then \(Y\) is fibred over a complex torus of dimension two \(T^2\cong\mathbb{C}^2/\mathbb{Z}^4\).
We find non-trivial secondary obstruction elements in \(\mathrm{H}^1(V_0;\Theta)\), where \(V_0\) is the product of \(Y\) with a projective line \(D\).
(We use the spectral sequence obtained by projecting onto \(T^2\times D\)).
This variety has a ``versal'' deformation whose Zariski tangent space of the base \(B\) can be identified via the Spencer--Kodaira map \(\rho\) with \(\mathrm{H}^1(V_0;\Theta)\).
Further, \(B\) has, at its base point \(b_0\), a conic singularity of degree \(3\), whose equation is given by the secondary obstruction.
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I do not know of any examples of non-trivial secondary obstructions on varieties \(V_0\) that satisfy \(\mathrm{H}^0(V_0;\Theta)=0\), but some very likely exist.
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