Divisors in algebraic geometry

C.S. Seshadri 1958–59

Translator's note

This page is a translation into English of the following:

Seshadri, C. S. "Diviseurs en géométrie algébrique." Séminaire Claude Chevalley 4 (1958-59), Talk no. 4. numdam.org/item/SCC_1958-1959__4__A4_0

The translator (Tim Hosgood) takes full responsibility for any errors introduced, and claims no rights to any of the mathematical content herein.

Version: 50c2259

In the first part of this talk, we will prove a theorem of Serre on complete varieties [6], following the methods of Grothendieck [4]. The second part is dedicated to generalities on divisors. In the literature, we often call the divisors studied here "locally principal" divisors.

p. 4-01

The algebraic spaces considered here are defined over an algebraically closed field K. By "variety," we mean an irreducible algebraic space. If X is an algebraic space, we denote by $\mathscr{O}(X)$, $\mathscr{R}(X)$, etc. (or simply \mathscr{O} , \mathscr{R} , etc.) the structure sheaf, of regular functions, etc. on X (to define $\mathscr{R}(X)$) we assume that X is a variety). By "coherent sheaf" on X, we mean a coherent sheaf of \mathscr{O} -modules on X.

1 Preliminaries

References: [4–6]

If M is a module over an integral ring A (commutative and with 1), then we say that an element $m \in M$ is a torsion element if there exists some non-zero $a \in A$ such that $a \cdot m = 0$. We say that M is a torsion module (resp. torsion-free module) if every element of M is a torsion element (resp. if $M \neq 0$ and no non-zero element of M is a torsion element). The torsion elements of M form a torsion submodule of M (denoted by T(M)); if $M \neq 0$, then M/T(M) is a torsion-free module. If M is a torsion module of finite type over A, then the ideal ann M of A (the ideal of A given by the elements $a \in A$ such that aM = 0) is non-zero.

Let X be an algebraic space and \mathscr{F} a sheaf of \mathscr{O} -modules on X. We define $\operatorname{supp}\mathscr{F}$ to be the set of points $x \in X$ such that $\mathscr{F}_x \neq 0$. If \mathscr{F} is coherent, then $\operatorname{supp}\mathscr{F}$ is a closed subset of X. If X is affine, then $\operatorname{supp}\mathscr{F}$ is the set defined by the ideal $\operatorname{ann} H^0(X,\mathscr{F})$ of the affine algebra $\operatorname{H}^0(X,\mathscr{O})$, where $\operatorname{H}^0(X,\mathscr{F})$ is considered as a module over $\operatorname{H}^0(X,\mathscr{O})$.

A sheaf \mathscr{F} of \mathscr{O} -modules on a *variety* X is said to be a *torsion sheaf* (resp. *torsion-free sheaf*) if, for every $x \in X$, the module \mathscr{F}_x over the ring \mathscr{O}_x is a torsion module (resp. torsion-free module).

p. 4-02

Proposition 1. If \mathscr{F} is a coherent sheaf on a variety X, then there exists a coherent subsheaf $T(\mathscr{F})$ of \mathscr{F} (and only one) such that $(T(\mathscr{F}))_x = T(\mathscr{F}_x)$.

Proof. The uniqueness is trivial. The exists is a consequence of the fact that, if X is affine, then $T(\mathscr{F}_x)$ is given by localisation of the module $T(H^0*(X,\mathscr{F}))$ with respect to the maximal ideal of $H^0(X,\mathscr{O})$ that defines x.

C.orollary If $\mathscr{F} \neq 0$ then $\mathscr{F}/T(\mathscr{F})$ is a torsion-free coherent sheaf.¹

Proposition 2. If \mathscr{F} is a coherent sheaf on the variety X, then $\operatorname{supp} \mathscr{F} \neq X$ if and only if \mathscr{F} is a torsion sheaf.

Proof. This is a trivial consequence of the fact that, if U is an affine open subset, then $\operatorname{supp} \mathscr{F} \cap U$ is defined by the ideal $\operatorname{ann} \operatorname{H}^0(U,\mathscr{F})$ of $\operatorname{H}^0(U,\mathscr{O})$, where $\operatorname{H}^0(U,\mathscr{F})$ is considered as a module over $\operatorname{H}^0(U,\mathscr{O})$.

Proposition 3. If \mathscr{F} is a torsion-free coherent sheaf on a variety X, with $\mathscr{F} \subset \mathscr{R}^n$, then there exists a coherent sheaf $\mathscr{I} \neq 0$ of ideals of \mathscr{O} such that $\mathscr{I} \cdot \mathscr{F} \subset \mathscr{O}^n$.

Proof. Let \mathscr{I}_x be the ideal $[\mathscr{O}_X^n:\mathscr{F}_x]$ of \mathscr{O}_x , i.e. the ideal of elements i_x of \mathscr{O}_x such that $i_x\mathscr{F}_x\subset\mathscr{O}_x^n$. Since \mathscr{F}_x is of finite type over \mathscr{O}_x , we know that $\mathscr{I}_x\neq 0$. If we take an affine open subset U of X, then we can prove that \mathscr{I}_x is given by localisation of the ideal $[H^0(U,\mathscr{O}^n):H^0(U,\mathscr{F})]$ of $H^0(U,\mathscr{O})$ by the maximal ideal of $H^0(U,\mathscr{O})$ that defines x. Thus $\{\mathscr{I}_x\}_{x\in X}$ defines a coherent sheaf \mathscr{I} of ideals of \mathscr{O} such that $\mathscr{I}\cdot\mathscr{F}\subset\mathscr{O}^n$.

Let \mathscr{F} be a torsion-free coherent sheaf on a variety X. Then the canonical homomorphism $\mathscr{F} \to \mathscr{F} \otimes_{\mathscr{O}} \mathscr{R}$ is injective. The sheaves \mathscr{R} and $\mathscr{F} \otimes_{\mathscr{O}} \mathscr{R}$ are locally constant sheaves, and thus constant ([5]). We can then identify $\mathscr{F} \otimes_{\mathscr{O}} \mathscr{R}$ with a vector space of finite dimension over \mathscr{R} (we identify the field of rational functions with the sheaf \mathscr{R} since \mathscr{R} is constant). We call this dimension the rank of \mathscr{F} , and we can then consider \mathscr{F} as a subsheaf of \mathscr{R}^n , where $n=\mathrm{rank}\,\mathscr{F}$.

Proposition 4. Under the same hypotheses as in Proposition 3, there exists a coherent sheaf $\mathcal{I} \neq 0$ of ideals of \mathcal{O} such that $\mathcal{I} \cdot \mathcal{F} \subset \mathcal{O}^n$, where $n = \operatorname{rank} \mathcal{F}$; then $\mathcal{O}^n/(\mathcal{I} \cdot \mathcal{F})$ and $\mathcal{F}/(\mathcal{I} \cdot \mathcal{F})$ are torsion sheaves.

Proof. The proof is immediate.

p. 4-03

If Y is a closed subset of an algebraic space X, then we denote by \mathscr{I}_Y the coherent sheaf of ideals of \mathscr{O} defined by Y.

Proposition 5. Let Y be a closed subset of an algebraic space X, and \mathscr{F} a coherent sheaf on X, with supp $\mathscr{F} \subset Y$; then there exists an integer k such that $\mathscr{I}_{\mathbf{v}}^k \mathscr{F} = 0$.

Proof. We can reduce to the case where X is affine, since there exists a finite cover of X by affine opens. In this case, the hypothesis implies that the set defined by the ideal ann $H^0(X, \mathscr{F})$ is contained in Y. This implies, as is well known, that ann $H^0(X, \mathscr{F}) \supset \mathscr{I}_Y^k$.

Proposition 6. Let \mathscr{F} be a coherent sheaf of fractional ideals on a variety X (i.e. a coherent subsheaf of \mathscr{R}) such that, for every x outside of a closed subset Y of X, \mathscr{F}_x is an ideal of \mathscr{O}_x . Then there exists an integer k such that $\mathscr{F}_y^k \cdot \mathscr{F} \subset \mathscr{O}$.

Proof. By Proposition 3 and the hypothesis, there exists a coherent sheaf \mathscr{J} of ideals of \mathscr{O} such that $\mathscr{J}_x = \mathscr{O}_x$ if $x \not\in Y$, and such that $\mathscr{J} \cdot \mathscr{F} \subset \mathscr{O}$. Thus $\operatorname{supp}(\mathscr{O}/\mathscr{J}) \subset Y$, and, by Proposition 5, there exists an integer k such that $\mathscr{J}_Y^k(\mathscr{O}/\mathscr{J}) = 0$. This implies that $\mathscr{J}_Y^k \subset \mathscr{J}$.

2 Dévissage theorem

Let $\mathscr C$ be an abelian category, and $\mathscr C'$ a subcategory of objects of $\mathscr C$. We say that $\mathscr C'$ is *left exact in* $\mathscr C$ if 2

- 1. every subobject of an object of \mathscr{C}' is in \mathscr{C}' ;
- 2. for every exact sequence $0 \to \mathscr{A}' \to \mathscr{A} \to \mathscr{A}'' \to 0$ in \mathscr{C} , the object \mathscr{A} is in \mathscr{C}' if the other two objects are in \mathscr{C}' .

Let X be an algebraic space. We denote by $\mathscr{C}(X)$ the abelian category of coherent sheaves on X. If Y is a closed subset of X, then a coherent sheaf on Y has a canonical extension to a coherent sheaf on X (extending by 0 outside of Y), and so we can consider $\mathscr{C}(Y)$ as a subcategory of $\mathscr{C}(X)$. With this notation, we have the following theorem:

p. 4-04

Theorem (**Dévissage**). Let \mathscr{D} be a left-exact subcategory of $\mathscr{C}(X)$ that has the following property: for every closed irreducible subset Y of X, there exists a coherent sheaf \mathscr{M}_Y of $\mathscr{C}(Y)$ that belongs to \mathscr{D} , and that is torsion-free as a sheaf on Y. Then $\mathscr{D} = \mathscr{C}(X)$.

 $^{^1}$ [Trans.] The condition that $\mathscr{F} \neq 0$ is unnecessary, but we include it here since it is in the original. Note that the zero sheaf is indeed a torsion-free sheaf, otherwise any coherent torsion sheaf \mathscr{F} provides a counterexample to this corollary.

 $^{^2}$ The axioms here that define a left-exact subcategory are slightly stronger than those of Grothendieck [4].

Proof. The proof works by induction on the dimension of X. If $\dim X = 0$, then X consists of a finite number of points P_1, \ldots, P_r , and a coherent sheaf on X can be identified with a system $\{N_i\}_{i=1,\ldots,r}$, where N_i is a vector space of finite dimension over K. Thus the sheaf \mathcal{M}_{P_i} on P_i that we have, by hypothesis, is a vector space of finite dimension over K. By the axioms of a left-exact subcategory, it is trivial to show that every system $\{N_i\}_{i=1,\ldots,r}$, where N_i is a vector space of finite dimension over K, considered as a coherent sheaf on X, belongs to \mathcal{D} .

Now assume that we have proven the theorem for all dimensions $\leq (n-1)$. Let dim X = n. Let Y be a closed subset of X such that dim $Y \leq (n-1)$. We can easily show that $\mathcal{D} \cap \mathcal{C}(Y)$ is a left-exact subcategory of $\mathcal{C}(Y)$ that satisfies the hypotheses of the theorem. So, by the induction hypothesis, $\mathcal{D} \supset \mathcal{C}(Y)$.

We will now prove that, if \mathscr{F} is a coherent sheaf on X with $\operatorname{supp}\mathscr{F}=Y$, then $\mathscr{F}\in\mathscr{D}$. If $\mathscr{I}_Y\cdot\mathscr{F}=0$, then $\mathscr{F}\in\mathscr{C}(Y)$, and, by the above, $\mathscr{F}\in\mathscr{D}$. No matter what, by Proposition 5, there exists an integer $k\geqslant 1$ such that $\mathscr{I}_Y^k\mathscr{F}=0$. We will complete the proof by induction on k. Suppose that that claim has been proven for every coherent sheaf \mathscr{G} on X such that $\mathscr{I}_V^{k-1}\mathscr{G}=0$. For \mathscr{F} , we have an exact sequence

$$0 \to \mathcal{I}_{\mathbf{V}} \cdot \mathscr{F} \to \mathscr{F} \to \mathscr{F}/(\mathcal{I}_{\mathbf{V}} \cdot \mathscr{F}) \to 0.$$

The sheaf $\mathscr{I}_Y\mathscr{F}$ is annihilated by \mathscr{I}_Y^{k-1} , and the sheaf $\mathscr{F}/(\mathscr{I}_Y\mathscr{F})$ is annihilated by \mathscr{I}_Y . Thus $\mathscr{I}_Y\mathscr{F}$ and $\mathscr{F}/(\mathscr{I}_Y\mathscr{F})$ belong to \mathscr{D} . This implies that $\mathscr{F}\in\mathscr{D}$.

Suppose that X is a variety, and that \mathscr{F} is a torsion-free sheaf on X. We can consider \mathscr{F} as a coherent subsheaf of \mathscr{R}^n , where $n=\operatorname{rank}\mathscr{F}$, and, by Proposition 4, there then exists a coherent sheaf of ideals \mathscr{I} such that $\mathscr{I}\cdot\mathscr{F}\subset\mathscr{O}^n$, and such that the sheaves $\mathscr{F}/(\mathscr{I}\mathscr{F})$ and $\mathscr{O}^n/(\mathscr{I}\mathscr{F})$ are torsion sheaves. Since $\mathscr{F}/(\mathscr{I}\mathscr{F})$ is a torsion sheaf, $\mathscr{F}/(\mathscr{I}\mathscr{F})\in\mathscr{D}$; thus $\mathscr{F}\in\mathscr{D}$ if and only if $\mathscr{I}\mathscr{F}\in\mathscr{D}$. Analogously, $\mathscr{I}\mathscr{F}\in\mathscr{D}$ if and only if $\mathscr{O}^n\in\mathscr{D}$, and, by the axioms of an exact subcategory, if and only if $\mathscr{O}\in\mathscr{D}$. Thus $\mathscr{F}\in\mathscr{D}$ if and only if $\mathscr{O}\in\mathscr{D}$. If we repeat the same argument for the torsion-free sheaf \mathscr{M}_X , which we have by hypothesis, then we see that $\mathscr{O}\in\mathscr{D}$, which implies that $\mathscr{F}\in\mathscr{D}$.

p. 4-05

Suppose again that X is a variety, but now that \mathscr{F} is an arbitrary coherent sheaf. We will show that $\mathscr{F} \in \mathscr{D}$. We can assume that $\mathscr{F} \neq 0$, and we then have

$$0 \to T(\mathscr{F}) \to \mathscr{F} \to \mathscr{F}/T(\mathscr{F}) \to 0$$

where $T(\mathscr{F})$ is a torsion sheaf, and $\mathscr{F}/T(\mathscr{F})$ is a torsion-free sheaf. By Proposition 2, $\operatorname{supp} T(\mathscr{F}) \neq X$, and, since X is a variety, $\operatorname{dim} \operatorname{supp} T(\mathscr{F}) < \operatorname{dim} T(X)$. We then have, by the induction hypothesis, that $T(\mathscr{F}) \in \mathscr{D}$, and we have just proven that $\mathscr{F}/T(\mathscr{F}) \in \mathscr{D}$. Thus $\mathscr{F} \in \mathscr{D}$.

Now let X be an arbitrary algebraic space, and X_1,\ldots,X_p its irreducible components. If $\mathscr F$ is a coherent sheaf on X, then $\mathscr F/(\mathscr I_{X_i}\mathscr F)$ can be identified with a sheaf on the variety X_i (where $\mathscr I_{X_i}$ is the sheaf of ideals of $\mathscr O(X)$ determined by X_i), and, by the above, $\mathscr F/(\mathscr I_{X_i}\mathscr F)\in\mathscr D$. Thus the sheaf $\mathscr G=\sum_{i=1}^p\mathscr F/(\mathscr I_{X_i}\mathscr F)$ belongs to $\mathscr D$. We have a canonical homomorphism $\varphi\colon \mathscr F\to\mathscr G$. The image of φ is a coherent subsheaf of $\mathscr G$, and so the image of φ belongs to $\mathscr D$.

We know that $\operatorname{supp} \operatorname{Ker} \varphi \subset \bigcup_{i \neq j} X_i \cap X_j$, and so $\operatorname{dim} \operatorname{supp} \operatorname{Ker} \varphi < \operatorname{dim} X$, and, by the induction hypothesis, $\operatorname{Ker} \varphi \in \mathcal{D}$. Thus $\mathscr{F} \in \mathcal{D}$, and the theorem is proven.

Corollary (Serre's Theorem). *If* \mathscr{F} *is a coherent sheaf on a complete algebraic space* X, *then* $H^0(X,\mathscr{F})$ *is a vector space of finite dimension over* K.

Proof. We take \mathscr{D} to be the category of all coherent sheaves \mathscr{F} on X such that $H^0(X,\mathscr{F})$ is of finite dimension over K. We can prove that \mathscr{D} is a left-exact subcategory of $\mathscr{C}(X)$. Also, we know that, if Y is an irreducible closed subset of X, then Y is a complete variety. Thus the coherent sheaf $\mathscr{O}(Y)$ on Y is a torsion-free sheaf with the property that $H^0(Y,\mathscr{O}(Y)) \cong K$, and so $H^0(X,\mathscr{O}(Y)) = H^0(Y,\mathscr{O}(Y))$ is of finite dimension over K (we denote also by $\mathscr{O}(Y)$ the canonical extension of $\mathscr{O}(Y)$ to X). By the Theorem, the corollary is proven.

3 Divisors (Generalities)

Let X be an algebraic variety, and $\mathscr{R}^{\times}(X)$ and $\mathscr{O}^{\times}(X)$ (or simply \mathscr{R}^{\times} and \mathscr{O}^{\times}) the constant sheaf on X of non-zero rational functions and the sheaf on X of invertible regular functions (respectively). The sheaves \mathscr{R}^{\times} and \mathscr{O}^{\times} , endowed with their multiplicative structure, are sheaves of abelian groups.

p. 4-06

A divisor D on X is a section of the quotient sheaf $\mathscr{R}^{\times}/\mathscr{O}^{\times}$. An element of \mathscr{R}^{\times} that is a representative of the value D(x) of D at x is called a definition function of D at x. More generally, a function $f \in \mathscr{R}^{\times}$ is called a definition function of D in an open subset D if, for all $x \in U$, D is a representative of D(x); then D is determined up to an invertible regular function on D. Since we can locally lift a section of $\mathbb{R}^{\times}/\mathscr{O}^{\times}$ to a section of \mathbb{R}^{\times} , a divisor D is determined by the following data: a cover D is open subsets, and non-zero rational functions D is under that, on D is under that, on D is an invertible regular function. We have that D is under that, and D is an invertible regular function. We have that D is under that, and D is an invertible regular function. We have that D is under the following data: a substantial side with D is an invertible regular function. We have that D is determined up to D is an invertible regular function. We have that D is determined up to D is an invertible regular function. We have that D is an invertible regular function. We have that D is an invertible regular function where D is an invertible regular function. We have that D is an invertible regular function where D is an invertible regular function. We have that D is an invertible regular function where D is an invertible regular function. We have that D is an invertible regular function of D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D in D is an invertible regular function of D

A divisor D is said to be *positive* if, for each $x \in X$, $D(x) \in \mathcal{O}_x/\mathcal{O}_x^{\times}$ (i.e. if all the definition functions of D at x are regular functions in x).

Since $\mathcal{R}^{\times}/\mathcal{O}^{\times}$ is a sheaf of abelian groups on X, there is a canonical structure of an abelian group on the set of divisors on X; this group is called the *group of divisors on* X. The composition law in this group is written additively, and the identity element in this group is thus called the *zero divisor*, and is denoted by (0).

If f is a non-zero rational function on X, then it defines a divisor $\operatorname{div} f$ by the data $(\operatorname{div} f)(x) = \operatorname{Im} f \subseteq \mathcal{R}^{\times}/\mathcal{O}_{x}^{\times}$. The divisors obtained in this way are called *principal divisors*, and form a subgroup of the group of divisors on X; the quotient group is called the *group of classes of divisors on* X. Two divisors D_{1} and D_{2} are said to be equivalent if they are equivalent module the group of principal divisors; we write $D_{1} \sim D_{2}$. We have seen that a divisor defines, up to equivalence, a locally trivial algebraic fibre bundle with structure group K^{\times} . On the other hand, it is easy to see that a locally trivial algebraic fibre bundle with K^{\times} as its structure group defines, up to equivalence, a divisor [7]. Thus the group of

p. 4-07

classes of divisors on X is equal to $H^1(X, \mathcal{O}^{\times})$, the group of classes of equivalent algebraic fibre bundles with K^{\times} as their structure group.

We can define, in an analogous way, an additive divisor on a variety X as a section of the sheaf \mathscr{R}/\mathscr{O} (the divisors defined above are called multiplicative divisors, or simply divisors). The additive divisors form an abelian group, and even a vector space over K. An additive divisor is determined by the following data: a cover $\{U_i\}$ of X by open subsets, and rational functions f_i on U_i such that $f_{ij} = f_i - f_j$ is a regular function on $U_i \cap U_j$. We can define, as for (multiplicative) divisors, the notions of definition functions of an additive divisor, equivalence between two additive divisors, etc. We find, for example, that $H^1(X,\mathscr{O})$ is equal to the group of classes of additive divisors on X.

Let D be a (multiplicative) divisor on X. We define $\operatorname{supp} D$ to be the set of points $x \in X$ such that D(x) is not the identity element in $\mathscr{R}^{\times}/\mathscr{O}_{x}^{\times}$, i.e. such that every definition function of D at x is either not defined at x or takes the value 0 at x.

Proposition 7. The support of a divisor D on a variety X is a closed subset $\neq X$ of X, and D = 0 if and only if the support is empty.

Proof. The latter claim is trivial. For the former, we prove that the set E of points $x \in X$ such that every definition function of D at x belongs to \mathcal{O}_x^{\times} is a non-empty open subset; indeed, if we take a definition function g of D at x, then it is also a definition function of D in an open subset U that contains x. By hypothesis, if $x \in E$, then g is regular at x and $g(x) \neq 0$, and we can choose U such that g is regular and invertible on U, which proves that E is open.

p. 4-08

Proposition 8. If D is a divisor on a normal variety X, then supp D is a union of hypersurfaces (i.e. of closed subvarieties of codimension 1).

Proof. If f is a function on a normal variety Y, we know that, if f is not defined at $x \in Y$, then x belongs to a variety of poles or zeros of f (i.e. to an irreducible component of the closure of the set of points $x \in Y$ such that $f(x) \in \{0, \infty\}$). So, if we take f to be a definition function for D in some open subset $U \subset X$, then $\operatorname{supp} D \cap U$ is the union of the pole and zero varieties of f in U, and we know that these varieties are of codimension 1 ([2, chapitre III]).

Remark. If X is not normal, then the support of a divisor D on X is not necessarily of codimension 1. It is easy to define an affine variety X of dimension > 1 that is normal everywhere except at a single point x_0 (for example, the point (a,ab,b^2,b^3) in the four-dimensional space K^4). There exists a function u that is everywhere defined on X, and which is entire on the local ring of x_0 , but which is not contained in this ring; by adding, if necessary, a constant, we can assume that x_0 is not a zero of u. There is then an open neighbourhood X' of x_0 such that the divisor of the function induced by u on X' has support equal to the single point x_0 .

Suppose that X is a normal variety, and D is a divisor on X. Let S be a hypersurface of X. If f is a definition function of D at $x \in S$, then the order of f on S ([2]) does not depend on the choice of f, nor on $x \in S$. We denote this integer by $\operatorname{ord}_S D$. It is easy

to see that $\operatorname{ord}_S D = 0$ if and only if $S \not\subset \operatorname{supp} D$. If we now take the formal combination $C = \sum_S (\operatorname{ord}_S D) \cdot S$, where S runs over the set of all hypersurfaces of X, then C is a cycle of codimension 1, and we call it the *associated cycle* of the divisor D.

Proposition 9. Let X be a normal variety. The map that sends a divisor D to its associated cycle of codimension 1 is an injective homomorphism from the group of divisors on X to the group of cycles of codimension 1.

Proof. The proof is trivial.

Proposition 10. If X is further a non-singular variety, then the homomorphism that sends a divisor to its associated cycle is bijective.

p. 4-09

Proof. It suffices to show that, for every hypersurface S, there exists a divisor D such that the cycle $1 \cdot S$ is the cycle associated to D. Since X is non-singular, for every $x \in X$, the local ring \mathcal{O}_x is factorial [3]; thus, for every $x \in S$, S is defined by one single equation in a neighbourhood of x. So there exists a cover $\{U_i\}_{i=1,\dots,p}$ of S by open subsets U_i of X, and, for each i, a regular function f_i on U_i that is non-zero outside of $U_i \cap S$ in U_i with $\operatorname{ord}_S f_i = 1$. It then follows that f_i/f_j is an invertible regular function in $U_i \cap U_j$. Now take the cover $\{U_i\}_{i=0,\dots,p}$, where $U_0 = CS$, and take $f_0 = 1$. It is easy to see that the divisor D for which f_i is a definition function of D on U_i is such that the cycle associated to D is $1 \cdot S$. So the proposition is proven.

Remark. Proposition 10 is not necessarily true if X is non-singular. For example, for the cone xy-zw=0 in K^4 , the cycle defined by x=z=0 is not a cycle associated to any divisor.

Bibliography

- [1] P. Cartier. "Diviseurs et dérivations en géométrie algébrique." Bull. Soc. Math. France. (1958).
- [2] C. Chevalley. Fondements de la Géométrie algébrique. Paris, Secrétariat mathématique, 1958.
- [3] R. Godement. Propriétés analytiques des localités. 1955-56. 8.
- [4] A. Grothendieck. Sur les faisceaux algébriques et les faisceaux analytiques cohérents. 1956-57. 9.
- [5] J.-P. Serre. "Faisceaux algébriques cohérents." Ann. Math. 61 (1955), 197–279.
- [6] J.-P. Serre. "Sur la cohomologie des variétés algébriques." J. Math. Pures Et Appl. 36 (1957), 1–16.
- [7] A. Weil. Fibre spaces in algebraic geometry. University of Chicago, 1955.