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Introduction
In friendly homage to José Luis Viviente.

If T is a triple on a category &, then T-categories are more general structures than T-
algebras: they correspond to the passage from “everywhere-defined laws” to “partially
defined laws” (in a very broad sense, in fact) and thus also encompass structures as
diverse as topologies and categories.

Manes showed, in [Ma], that the category of compact topological spaces is a category
of T-algebras, where T is the triple of ultrafilters on & = Set. This led Barr, in [Ba],
to define “relational T-algebras” so that the category of topological spaces is a category
of “relational T-algebras”. But Barr seemed disappointed in the fact that, apart from
this particular case, and that of preorders relative to the identity triple, there were few
examples. Independently, the new system of axioms for topologies that we had given in
[Bu] led us to a similar idea (unfortunately with the triple of filters. .. but our goal was
to situate topologies amongst quasi-topologies) that consisted in seeing topologies as a
notion analogous to that of preorders (it is indicative, indeed, that the structure of a
finite topology is equivalent to that of a finite preorder). But this idea necessitated us to
try passing from preorders to categories, and we found, in the definitions of Bénabou [Be]
of categories in terms of spans, what we needed in order to define T-categories. We show
(??proposition:1.2.4]Proposition 1.2.4) that the “relational T-algebras” are obtained as
a particular case: that of T-preorders (which are to T-categories what preorders are to
categories).

The general outline of this article is as follows. Chapter 0 is dedicated to some details
of terminology. Chapter I first gives a definition of T-categories that demonstrates their
relation to categories: if & = Set, then the morphisms of a T-category appear, not as
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arrows going from one object to another object, but as arrows going from one structure
on the objects to an object. In this way, a “convergence” in a topology can be represented
as an arrow F' — x going from a filter to a point. It is then easy to observe that these
structures must be given by the endofunctor of a triple in order to be able to define the
properties of reflexivity, transitivite, identity, and associativity of a T-category. Then we
will expand on some general properties: those that can we obtain without placing any
hypotheses on the triple T, essentially the existence of projective limits and the fibration
of the forgetful functor to & (which will allow us, in passing, to resolve the problem
that consists of universally embedding the forgetful functor of T-algebras into a fibrant
functor). Other properties, such as the existence of inductive limits, the adjunction with
the forgetful functor to T-graphs (the analogue of the Stone—Cech—Barr theorem), or the
cofibration of the forgetful functor to & cannot be obtained unless we suppose the triple
T to be “bounded”.

Chapter II is essentially dedicated to two interpretations of T-categories, on one hand
as monads (or monoids, if one prefers) in the “Kleisli pseudo-category”, and on the other
as pseudo-algebras in the “bicatgeory of spans”.

Chapter III gives various examples, of which the most detailed is that of multicat-
egories (which generalise those defined by Lambek in [La]). For this, we have been led
to study in Sections III.1 and III.2 the particular case where T is a “strongly cartesian”
triple, which not only allows for the construction of free T-categories over the usual
model of free monoids (see the Appendix), but also gives a manageable description of
this structure. We will thus quantitatively improve the examples given by Barr, and we
will also later study other useful examples, but this problem appeared less important to
us long as our definition seems more natural and has a more general reach.

Chapter IV is dedicated first of all to the description of various particular cases of T-
functors, for example étale (or “discrete fibration”) T-functors, and then a generalisation,
of T-profunctors, that give an approach to T-natural transformations.

In a subsequent work, we will define tensor T-categories, that will give various “coher-
ence” formulas, in particular those of the “pseudo-categories” introduced in Chapter II.
We equally hope to undertake a homological study of these structure.

I would like, in closing, to express my thanks to Madame Bastiani, who encouraged
me to work on this subject, and who reread the manuscript, which enabled me to correct
numerous imperfections and sometimes errors.
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0 Terminology

Categories generalise, at the same time, monoids and preorders; we thus obtain two types
of definitions of categories (and two choices of forgetful functors to sets). The choice be-
tween these definitions depends most of all on practical necessities or the generalisations
that we wish to obtain. The relationship between these two definitions can be clarified
by the notions of monad and polyad of Bénabou [Be].

We will find ourselves in such a situation due to the various structures that we
introduce, and we will call these two types of definitions “global” and “local”, respectively.
The only goal of the reminders below is the allow us to make precise the terminology
and to give us a model of “local” definitions, but, of course, we suppose that the reader
knows the elements of the theory of categories and of triples, and this chapter can be
quickly skimmed over.

0.1 Categories
A category is a quadruple & = (|8|,Homyg, i, k) satisfying conditions (1) to (6) below:
(1) |&] is a set; its elements are called objects of &.

(2) Homyg is a family of sets (that we suppose to be disjoint from one another, and
disjoint from |&|, to simplify constructions; but this is rarely the case in practice
and, in theory, it is not indispensable). This family is indexed by |€|2, and the
relations

e € |8|,e’ € |€|, f € Homg(€, €)

are expressed by simply saying that f: e — €’ is a morphism (in |&|); we call e the
source of f and €’ the target of f.

(3) i is a family of maps of the form
i(e): {@} — Homg(e, €),

where the index e runs over the set |§|. We denote by id(e), ide, or even simply
e, the morphism i(e)(@): e — e. (This is a sophisticated way of giving a family of
morphisms id. : e — e, where e € |§]).

(4) k is a family of maps of the form
k(e”,€',e): Homg(e”,e') x Homg(e',e) — Homg(e”, €),

where the index (e, €', e) runs over the set |§|3. We generally denote by g - f the
composite, i.e. the image under such a map of a pair (g, f).

(5) If f: e — €' is a morphism in &, then

fride=f=ide - f.
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(6) If fre—e€,g:e >¢€’ and h: " — €

which allows to us to denote this morphism by A - g - f.

are “consecutive” morphisms in &, then

A pair (||, Homg) satisfying conditions 1 and 2 is called a graph; a triple (|§|, Homg, %)
satisfying conditions 1, 2, and 3 is called a pointed graph; and in both cases we use the
corresponding terminology of conditions 1, 2, and 3.

We say that F': § — &' is a functor if § and &' are categories and F is a pair (|F|, F})
such that

(1’) |F|: |8] — |&'| is a map. We denote simply by F(e) the object |F|(e), for all e € |&|.
(2’) Fy is a family of maps of the form
Fi(¢',e): Homg(€',e) — Home (F(€'), F(e)),

where the index (€, e) runs over the set |§|2. If f: e — €’ is a morphism in &, we
denote simply by F'(f) the morphism F}(e’,e)(f).

(8’) F(ide) = idp(e) for all e € |&].

() F(g-f)=F(g) - F(f),if f: e = € and g: ¢ — €” are consecutive morphisms in
&.

A natural transformation I: F — F’, where F, F': § — &' are functors with the same
source and target, is given by a family of morphisms in &' of the form I(e): F(e) — F’(e),
where the index e runs over the set |§|, such that for every morphism f: e — ¢’ in & we
have the relation I(e') - F(f) = F'(f) - I(e). We denote by & the usual category whose
objects are the functors F': § — & and whose morphisms are the natural transformations
between these functors. The composition law in &¢ will generally borrow the notation
from that of &, which risks producing confusion. Indeed, if F': § — & and G: & — &”
are consecutive functors, then we denote by G - F: § — &” the usual composite. Such a
composition extends to natural transformations: if I: F — F” is a morphism in &¢ and
J: G = G’ a morphism in &"”¢', then we define a composite J-I: G- F — G’ - F' by the
formula

(J-I)(e) = J(F'(e)) - G(I(e)) = G'(I(e)) - J(F(e))-

But the notation of a dot for this composition risks being confused with the composition
in &%, when, for example, § = &' = & and the composition in & is denoted by a dot. Also,
even though we generally denote by a point the compositions of “morphisms between
structures”, we often denote by JI the composite J - I above, so that, for example, we
can write

JI=JF' -GI=G'I-JF.

Similarly, we often write Fe, F'f, and Ie instead of F(e), F(f), and I(e), respectively;
this convention is used most of all when the previous convention on the notation JI
instead of J - I is in force.
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As for limits, we adopt the following notation: if e € |8|, and if ¢: A — 8 is a
functor, then we say that C: e — ¢ is a projective cone if C is a family of morphisms
in &, called the canonical projections of C, of the form C(n): e — ¢(n) for all n € |A|
such that, for every morphism z: n — n’ in A, we have that ¢(z) - C(n) = C(n'). We
say that the projective cone C is a projective limit, or simply that e is the projective
limit of ¢, if, for every projective cone of the form C’: ¢/ — ¢, there exists exactly one
morphism f: e — e in & such that C'(n) = C(n) - f for all n € |A|. We call f the
crochetTO-DO translator footnote here about “crochet” of C’ with respect to the limit
C. This terminology is often modified for particular limits: products, fibre products,
various diagrams. For example, we say that the following commutative diagram

2
™
\Ul
¢

f

" v
g\
e

is a cartesian square, or a fibre product®, or we say that (v1,v2), or simply 7, is a fibre
product of (f,g), if the relation f- f' = g- ¢’ in & implies the existence and universality
of a crochet h such that f’ = v; - h and ¢ = vy - h. We use analogous conventions
for inductive limits, but the expression “canonical projection” should be replaced by
canonical injection. We say that & admits projective A -limits, for example, if, for every
¢ € |67, there exists a projective limit C: e — ¢; and if we have chosen such a limit
for all ¢, we say that & is endowed with a canonical (or official) choice of projective
A-limits. We use analogous conventions for fibre products, inductive limits, etc. ....
Often such a choice is classical and is made tacitly.

We will not cover the notion of a functor commuting with limits, nor that of limits
commuting with one another; these notions are clear enough.

Recall that, if C': ¢ — e is an inductive cone, where ¢: A — & is a functor, if
f: € — eis a morphism in &, and if we can form, for all n € | 4|, a fibre product

p(n) " ¢/(n)

C(n)\ C'(n)
(S

f ¢
then the family ¢'(n) extends to a functor ¢': A — & in a way entirely determined by the
condition that t: ¢’ — ¢ be a natural transformation. We say that the cone C': ¢’ — €’
is obtained by the change of base f, and we sometimes denote it by f*C. We say that,
in &, the inductive A -limits are universal if, whenever C is an inductive A-limit and C’
exists, then C’ is an inductive A-limit.
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0.2 Triples

Let & be a category. We say that T = (T, 1, K) is a triple on § if T': & — & is a functor,
and I:idg —» T and K: TT — T are natural transformations such that

K- TI=T=K-IT 1)

K-TK=K-KT
We say that (M,m): T — T’ is a morphism of triples if T = (T,I,K) is a triple on
g T = (T',I',K’) is a triple on another category &', M: & — & is a functor, and
m: T'M — MT is a natural transformation such that

m-I'M = MI @)
m-K'M=MK - -mT - -T'm.
In general, when there is no risk of confusion, we use the same notation I and K for all
triples. _ _
We say that the functor F': & — & is an adjoint functor of the functor U: & — & if
there exist natural transformations I: idg — UF and I: FU — idz such that

UI-IU=U

- 3)
IF-FI=F.
For all e € |&|, we call Ie the adjunction morphism associated to e; for all € € |&|, we
call Te the coadjunction morphism associated to e. We will show that T = (UF,I,U TF)
is a triple on &: we say that it is induced from the adjoint pair (F,U); it depends on the
choice (tacit, in general) of I and I.
Recall that, if T is a triple on &, then we denote by Alg(T) the category of T-algebras:
a T-algebra on e € |§| is a morphism in & of the form b: T'e — e such that

b-Ie=e

_ (4)
b-Ke=b-Tb

and a morphism f: b — b’ in Alg(T) is defined by a morphism f: e — €’ in § such that

b is an algebra on e, b’ is an algebra on ¢/, and

Fb=0b-Tf. (5)

We denote by KI(T) the Kleisli category of T: it has the same objects as &, and a
morphism g: e — €’ in KI(T) is a morphism g: Te — T'¢’ in & such that g: Ke — Ke' is
a morphism in Alg(T). Recall that such a morphism is equivalent to giving a morphism
h: e — Té, and that the composite of h with another morphism A': ¢’ — Te” in KI(T)
is equal to Ke"” - Th' - h: e — Te”. The forgetful functors Alg(T) — & and KI(T) — &
(with the latter sending the morphism g: e — ¢’ in KI(T) to the morphism g: Te — T’
in &) admit adjoints, and T is the triple induced form each of these adjoint pairs.

IThis terminology supposes that we consider the diagram as oriented within the plane.
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Recall, finally, that if T is the triple induced by an adjoint pair (F,U), then we have
a commutative diagram

KI(T) — & — Alg(T)

L

O

with the horizontal arrows being furthermore unique whenever they make the diagram
obtained by replacing the three functors to & with their adjoints commute. The functor
& — Alg(T) is called the FEilenberg—Moore functor associated to (F,U), or simply to
U. When this functor is an isomorphism, we say that U is tripleable. For example, the
Eilenberg-Moore functor KI(T) — Alg(T) is fully faithful, but not always injective.

I General properties of T-categories

We are going to replace the morphism b: T'e — e of a T-algebra, where T is a triple on
a category &, by a span, i.e. by a pair of morphism in & with the same target

b:m—e and a:w—Te

and define the notion of a T-category by adding data and conditions to this span, in a
way that generalises the notion of a “relational T-algebra” of Barr [Ba]. In Chapter II,
we will see that this generalisation is natural; below, we will draw inspiration from the
“global” definition of a category in order to choose our axioms.

I.1 T-categories

In the rest of this chapter, & will be a category admitting finite fibre products, and
T = (T,1,K) a triple on &.
A T-graph on an object e € |§| is a pair (b, a), where
b:m—e and a:7m—Te

are morphisms in &.
A pointed T-graph is a triple (b, a,?) such that (b,a) is a T-graph on e, and i: e & 7
is a morphism in & such that

b-i=id, and a-i=Ie. (1)

We then form a fibre product of (a,Tb):

T o
Tb o1
Te T

a
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The relations
a-idy =a=idpe-a=Tb-(Ti-a)
a-(i-b)=Ie-b=Tb-Irm
imply the existence of crochets i1,i2: m — o such that
v1 -4 =id, vy-11=Ti-a (2)

Ul'iQIi'b Uz'i2:I7T. (3)

We then form a fibre product (wq,ws) of (v2,Tv1). If k: mo — 7 is a morphism that
satisfies

b-k=b-v

_ (4)
a-k=Ke-Ta-vs
then the relations
a-(k-w))=Ke-Ta-vy-wy =Ke-TThb-Tvg-we =Tb- (K- T, - wa)
a-(vy-w))=Tb-Tvy-wy =Tb- (Tk-ws)
imply the existence of crochets k1, ko: m3 — 7o such that
vl-k1:k~w1 ’Uz'klzK’iT'T’Ug"LUQ (5)
1)1-](?2:’1)1'11)1 v2~k2=Tk-w2 (6)

A T-category, then, is a quadruple 6 = (b,a,i,k) such that (b,a,?) is a pointed
T-graph and further satisfying axioms (4), (5), (6), as well as (7) and (8) below:

(7) k-4, = idy = k - i3 (“identity”)
(8) k-k1 =k - ko (“associativity”).

Remark. In reality, 6 depends on the choice of the fibre products (v1,v2) and (w1, w2),
and we call these pairs the fibre products associated to the T-category 0; their data is
implicit in the quadruple (b, a,i,k). We call b and a the target morphism and source
morphism (respectively) in 0; the object e is denoted |6| and called the object of objects
(or simply the objects object), and the object 7 is called the object of morphisms (or
simply the morphisms object). More generally, 7, for n = 0,1,2,3, where my = e and
m =, is called the object of paths of length n in 6. (All this terminology can also be
applied to a T-graph.)

When & is endowed with a canonical choice of fibre products, and (v, v2) and (wy, ws)
are canonically chosen, we say that 6 is a canonical (or official) T-category. In the
case where & is endowed with such a choice, it will be implicit that the T-category is
canonical, and we will explicitly point out if this is not the case. It is evident that to
every non-canonical T-category there is an associated canonical T-category that has the
same underlying T-graph, and that there is a unique isomorphism (see the definition
of morphism that follows) between them. Conversely, if 6 is a canonical T-category,
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Ke To In v1
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Te 2 T
Ie /
[

e

Figure 1.
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then every other choice of two fibre products above gives exactly one non-canonical T-
category to which it is isomorphic. This remark will be tacitly applied to other analogous
structures.

If § = (b,a) and ¢ = (b/,a’) are T-graphs, then a morphism f from 6 to ¢, also
denoted (fo, f1): 0 — €', is determined by a pair of morphisms fy: e — €’ and f;: 7 — 7’
in & between the objects objects and the morphisms objects (respectively) that satisfies
the following relations:

b-fi=fo-b
a'-f1 :Tfo-a,.
We also denote fy by |f| and call it the underlying morphism of f.
If0 = (b,a,) and 8’ = (b',a’, ') are pointed T-graphs, then a morphism (fo, f1): 8 —
@' is defined by a morphism of the underlying T-graphs that further satisfies
i fo=f1-i. (2

Finally, let 8§ = (b,a,i,k) and §' = (V/,a’,4, k") be T-categories; if (fo, f1) defines a
morphism of the underlying pointed T-graphs, then there exist crochets fo: mo —
and f3: m3 — w4 characterised by the relations

vy fo=fi-v vh - fa=Tf1 - vo
wi‘f3=f2"w1 w/2'f3=Tf2'w2

1)

where (v1,v2) and (wi,ws) are the fibre products associated to 6, and (v, v}) and
(w},w}) are the fibre products associated to . Then (fo, f1) defines a morphism of
T-categories, or a T-functor, (fo, f1): 0 — @' if, further,

K- fo=f1k. (3)

Let 2 be the category consisting of two objects, 0 and 1, and a single morphism
0 — 1 (apart from the two identity morphisms). An object of €2 can be identified with
a morphism in &, and (g,¢’): f — f’ can be associated to a morphism in &2 if g, ¢, f, f’
are morphisms in & such that f' - ¢ = ¢g- f. If & admits fibre products, then so too
does &2, and, if T = (T, I, K) is a triple on &, then it induces a triple T2 on &2, where
T2 = (T?,1?,K?), just as for any category of presheaves (i.e. of functors) with values
in §&. If f: e — €’ is a morphism in &, and thus an object in &2, then T2f = Tf, and
I?f and K?2f are the following morphisms:

I?f = (Ie/,Ie): f - Tf
K2%f = (Ké,Ke): TTf - Tf.

If (9,9'): f — f' is a morphism in &2, then its image under T2 is, by definition, the
morphism (T'g,Tg'): Tf — Tf' in &2.

Proposition I.1.1. A T2-category is identifiable with a morphism of T-categories.
Proof. The proof, which is elementary, is left to the reader; we simply note that, if

(fo, f1): @ = @' is a morphism of T-categories, then f; is the objects object, and f; the
morphisms object, of the associated T2-category. O
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We can make analogous remarks for T-graphs and pointed T-graphs.

If 8 is endowed with official finite fibre products, then we denote by Gr(T) and
Cat(T) the categories whose objects are the official T-graphs and the official T-categories
(respectively). If & admits finite fibre products without us having made an official choice,
then we sometimes denote by Gr(T) and Cat(T) the categories (which are equivalent
to the above) whose objects are all T-graphs and all T-categories (respectively). The
composition laws in these categories are evident.

1.2 T-preorders
A regular T-graph is a T-graph (b, a) such that the relations
b-f=b-f and a-f=a-f
imply that f = f’. A T-preorder is a T-category whose underlying graph is regular.

Proposition 1.2.2. If (b,a) is a regular T-graph, e the objects object, m the morphisms
object, T the source of a fibre product of (a,Th), and i: e — 7 and k: w13 — 7 mor-
phisms in & satisfying only conditions (1) to (4) of §I.1, then (b, a,t,k) is a T-preorder.
Furthermore, conditions (2’) and (3’) are consequences of (1°) for a morphism into a
T-preorder.

Proof. We have to show that the axioms of identity and associativity, (7) and (8) of §L.1,
are automatically satisfied. Since (b, a) is regular, the relations

k-in=m=k-is
k-ki=k- ko

lead to the following equalities:
(@) b-k-iy=b=0b-k-iy
B) a-k-i1=a=a-k-is
(7) b-k-k1=b-k-ko

) a-k-ki=a-k-ko.
Indeed,

bok-ii =b-vi-iy =b
oo e

and similarly

bok-ig=b-vy iy =b-i-b=b
2 12 ) 0

which proves (a). Next,
a-k:-z'l(T)Ke-Ta-vg-ilzKe-Ta~Ti-a
:Ke-T(a-i)-a(?)K&TIe-a

=a
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and
a-k-io=Ke-Ta- vy i
=Ke-Ta-Im=Ke-ITe-a

=a
which proves (8). Then

b-k-k1=b-v1-k1=b-k-w1
:b~v1~w1:b'v1~k2

=b-k-ko
whence (7). Finally,

a-k-ky=Ke-Ta-vy-ki=Ke-Ta-Kn-Tvy - wg
=Ke-KTe-TTa -Tvy -wyg = Ke-TKe-TTa-Tvs - we
=Ke-T(Ke-Ta-vy) -wa=Ke-T(a-k) ws
=Ke-Ta-Tk-wy=Ke-Ta-vy - ko
=a-k-ko

which proves (§). The verification of the last claim of the proposition is easy. O

This proposition allows us to identify a T-preorder with its underlying T-graph, and
to sometimes write (b, a) instead of (b, a, i, k) for a T-preorder. Amongst all T-preorders,
many interesting cases can be distinguished by properties of by a and b (see the examples
in 7?). We limit ourselves to noting the following fact:

Proposition 1.2.3. A T-algebra b over e can be identified with a T-preorder (b,a) such
that a = idte, and conversely.

Proof. This is completely evident, since the relation a = idr. implies that ¢ = Ie,
Ta = v = idrre, and k = Ke. O

We denote by Ord(T) and Alg(T) the full subcategories of the category Gr(T) whose
objects are the T-preorders and the T-algebras (respectively). We have just seen that
Alg(T) can be identified with the usual category of T-algebras. Furthermore, when
& = Set is the category of sets associated to a universe, we have:

Proposition 1.2.4. If & = Set, then the category Ord(T) is equivalent to the category
of “relational T-algebras” of Barr [Baj.

Proof. A “relational T-prealgebra” is a relation r: Te — e. It is defined by a subset 7 of
e X Te, which defines a regular T-graph (b, a) by taking b and a to be the composite of
the inclusion m — e x T'e with the projections e x T'e — e and e x Te — Te (respectively).
This is a “relational T-algebra” if it further satisfies the conditions:

(1) ide Cr-Ie
(2) r-TrCr-Ke
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where Tr: TTe — Te is the relation defined by the set
# = {(Tb(2),Ta(z2)) | z€ Tn} C Te x TTe.

We identify every map f: e — €’ with a relation, and we denote by
F={(f(z),z) |zce} Ce xe

its “graph”. We will show that (b, a) is a T-preorder.
For each z € e, set i(z) = (z, Ie(z)); we have that i(z) € 7, since, by (1), (z,z) € id
implies that there exists y € T'e such that

(z,y) er and (y,z) € le

and, since Ie is a map, we have that y = Ie(z); thus i(z) € 7, and i: e — 7 is a map
such that

b-i=id, and a-i=Ie.

An element ((z,y), m) of the fibre product 75 of (a,Tb) is characterised by the rela-
tions (z,y) € 7, m € Tw, and y = Th(m). Set
k((xvy)’m) = (CE, Ke- Ta(m))
which is an element of 7. Indeed, since (T6(m),Ta(m)) € #, condition (2) implies that
(z,Ta(m)) € r - Ke, and so there exists y € Te such that (z,y) € 7 and (y,Ta(m)) €

Ke. Since Ke is an application, we deduce that y = Ke - Ta(m), which shows that
k((z,y),m) € m, and that the map k: mo — 7 satisfies the conditions

b-k=b-v; and a-k=Ke-Ta-vs.

This, by which proposition number? proves that (b,a) is a T-preorder. O

1.3 Properties (projective limits, fibrations, ...)

We have a sequence of forgetful functors
Alg(T) — Ord(T) — Cat(T) — Gr(T) — &. (%)
The first two are full inclusions, the third is faithful and the fourth is (in general) not.

Proposition 1.3.5. If § admits projective A -limits, then so too do each of the categories
appearing in the sequence (*), and the functors in this sequence commute with these
limits.

Proof. We will first show how to construct a projective limit for a functor ¢: A —
Cat(T). To each symbol of an object = in Figure 1 there corresponds an evident functor,
which we denote by U, : Cat(T) — &, that sends a T-category 6 to the object denoted z
in which figure?. Thus

Ue(0) =e
U.0)=mn
Ure(f) =Te

Git commit: 92fc123 14 of 48

p. 232


https://github.com/thosgood/translations/commit/92fc123

etc., and to each symbol of a morphism £: £ — z’ in Figure 1 associates a natural
transformation Ug : U, — U, such that Ug () = . We set

$=U,-¢ and €=U;-¢;
then, for all n € |7|, we have that
$(n) = (b(n), a(n), i(n), k(n).)

If 2: A — & is a functor, then we denote by p%: lim% — Z(n) the n-th canonical
projection of this limit. Similarly, if é : & — %' is a natural transformation, then we
denote by lim€: lim# — lim &’ the unique morphism in & such that lim £ - p% = p= - £(n)
for all n € |7|.2 We set e = lim é.

Let mT® be the unique morphism (again called the crochet) that comes from the
property of the projective limit lim Te, such that pZ® - mTe = Tp¢ for all n € |1|. We
take a fibre product of (lim &, m7®):

lim Te m? Te

We have that mT® - Ie = lim fe. The T-graph (b, a), where b = limb - m™ and a is the
projection defined above, extends to a T-category. Indeed, the relations

limé - lim7i = lim fe = mT¢ - Ie
imply the existence of a bracket i: e — 7 characterised by the relations
m™-i=1lim? and a-i=Ie

and then (b, a, %) is a pointed T-graph.
Let mT™: Tw — lim T'r be the crochet characterised by the relations pZ™-m?™ = Tpr;

we will show that im Tb - mT™ = mTe . Th by obtaining equalities whenever we compose
on the left by the pZ®. It thus follows, since projective limits of fibre products are again
fibre products, that there exists a crochet m™: w9 — lim @5 such that

limds - m™ =mT™ - vy
limd; -m™ =m™ -1,
where (v1,v2) is the fibre product of (a,Tb). The relations
limé - limk - m™ = lim Ke - (limfl/’?z -lim 9y - m%)
=limKe-mTT¢ - Ta - v,

=mT. Ke-Ta - vo

2In a future work, we will consider Figure 1 as the “sketch” of T-categories, with the latter being
exactly the “realisations” of this “sketch” endowed with “typifications” (see the terminology of [Bu], for
example).
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imply the existence of k: mo — 7 such that
a-k=Ke-Ta-vg
m" -k =limk-m™.

It thus follows that b-k = b-v;. It remains only to show that (b,a,i,k) satisfies the
axioms of identity and associativity, which we leave to the reader.

To see that (b,a,i,k) is indeed a projective limit, suppose that (V/,a’,4,k’) is a
T-category, (vi,v5) and (w],w)) the associated fibre products, and €, 7/, 7}, w4 the
objects of paths of length n = 0,1,2,3 (respectively); consider a projective cone from
this structure to the functor ¢: A — Cat(T). For each symbol of an object z in Figure 1,
we denote by ¢%: ' — Z(n) the n-th projection, and by ¢* the crochet characterised
by ¢Z = pZ - ¢® for all n € |A|. By composing with the pZ® on the left, we note that
mTe . Tq® = q"¢, and so

limd-q” :qTe.a/ :mTe.qu.a/
which implies the existence of a crochet g: 7’ — 7 characterised by

!

a-q=Tq¢*-a’ and m™-qg=4q".

We then easily finish the proof by showing that (¢%,q) defines a homomorphism of T-
categories.

The construction of projective limits of T-graphs and of pointed T-graphs is, evi-
dently, “underlying” to that which we have just done. It is then immediate that the
forgetful functor Cat(T) — Gr(T) commutes with these limits. Finally, if in the above
construction of lim ¢ the T-graphs (b(n), a(n)) were regular then so too would be (b, a),
which makes explicit the projective limits in Ord(T), and if the a(n) were simply identi-
ties then so to would be q; thus the “full inclusion” functor Alg(T) — Ord(T) commutes
with these limits. O

Corollary. If T commutes with projective A -limits then the above construction simpli-
fies, and © = lim & for every symbol x.

Proof. This is completely immediate, since the projective A-limits of fibre products are
again fibre products (by the commutativity of projective limits with themselves). O

If U: § — & is a functor, we say that a morphism f: & — € in & is U-cartesian (or
is a U-injection, in the terminology of [Eh]) if, for every morphism g: €’ — € in & and
every relation U(g) = U(f) - h in &, there exists exactly one morphism h: €’ — € in
& such that we have h = U(h). We say that U is fibrant if, for all € € |€| and every
morphism f: ¢’ — U(€) in &, there exists a U-cartesian morphism f: € — € such that
f = U(f); we sometimes denote by f*€ the object €. If U’: & — & is another fibrant
functor, we say that a functor V: & — g is compatible with these fibrations if it sends
every U-cartesian morphism to a U’-cartesian morphism. With the above notation, we
have an isomorphism V(f*e) — f*V(e).

Proposition 1.3.6.  The functors X' — & coming from all the composites of (x) for

X = 0rd(T), Cat(T), and Gr(T) are fibrant, and these fibrations are respected by the
functors from (x) between these categories.
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Proof. Let 0 = (b,a) be a T-graph, and fo: ¢ — e a morphism in &, where e = |0]. We
take a projective limit of the diagram (the solid arrows)

T f
Te 2 Te'
A
I
I
a la
I
I
I
fi ,
M <—mmZeme o T
I
I
]
b 1y’
I
|
A\

(the existence of such a limit follows from that of finite fibre products). We obtain
projections (the dashed arrows) b’, f1, and a’. We thus obtain a T-graph ' = (¥',a’)
and a morphism

(fO,fl): 0/ —0

in Gr(T). Let (f{,f;): ¢’ — 0 be another morphism, where 6" = (b”,a”), and let
go: €’ — € be such that ¢’ = |0”| and f§ = fo - go; we will construct a morphism
(90,91): 6" — 0’ such that f| = fi - g1. Consider the commutative diagram

Tf§

Te Te'
a Tgo-a’
f1 "

b go-b’

The comparison with the projective limit gives a crochet g; : 7/ — 7’ such that p. 236

a g1 =Tgo .a"
fi-g1=fi
v-g1=go-b"
It thus follows that (go,g1): 8” — €’ is a morphism in Gr(T), and that (fo, f1): &/ — 0 is
a U-cartesian morphism for the forgetful functor U: Gr(T) — &. We set 6’ = f;6. Note

also that if 6 is regular then so too is ¢’. 3
Now support that 6§ = (b,a) underlies a T-category 0 = (b, a, i, k); we will construct

a T-category g = (b',a',4', k') such that ff6 = (V/,a’). Consider the commutative
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diagrams

Te Te' Te Te

a Ie' a Ke'-Ta'-vj
T i fo ¢! T i- fo Wé

b id, b b vy

e T 6/ e T e’

where fy: 7, — 7 is defined above, from (fo, f1); these give two crochets
i€ -7’ and k:7h—¢€

such that (¥',d’,4,k’) is the desired T-category, denoted g = fé‘@. Furthermore,
(fo, f1): g 5 0isa morphism in Cat(T). We can then show that, if the T-graph
#" from the previous proof underlies a T-category 5//, and if (fg, f1): 8 = 8 is a mor-
phism in Cat(T), then so too is (go,g1): 6 — 0. Thus (fo, f1): 6 — 0 is cartesian.
Finally, if 6 is a T-preorder, then so too is g. O

Now let TV = (T",I’,K’) be a triple on another category &’ that admits finite fibre
products. Let (M, m): T — T’ be a morphism of triples (see §1.3), where M: & — &’
is a functor that respects finite fibre products. Finally, suppose that & and &' admit
projective A-limits, and that M respects these projective limits. Set M = (M, m).

Proposition 1.3.7. We can construct functors Alg(M), Ord(M), etc. such that the
following diagram commutes:

Alg(T) Ord(T) Cat(T) Gr(T) g
Alg(M) Ord(M) Cat(M) Gr(M) M
Alg(T") Ord(T") Cat(T") Gr(T") &

These functors respect projective A -limits and the fibrations defined in Proposition I.3.6.
Proof. Let 8 = (b,a) be a T-graph, and consider the fibre product

MTe me T'Me

Ma a’

M= i

’
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Then 6’ = (V/,a’), where b’ = Mb-m’, is a T'-graph. This correspondence extends to a
functor Gr(M): Gr(T) — Gr(T").

Now, if (b, a,i,k) is a T-category, then we have a crochet i': Me — 7’ characterised
by

m i =Mi and a' - i =I'Me.

Set m” = mm - T'm’; we will show that MTb - m” = me - T'l, so that there exists a

morphism m’: w, = My that makes the following diagram commute:

"

MTr m T

Muvsy v}
Mmy —™"
Mwv, v
Mn - '

m

(with the data of 7)), 7}, v}, etc. being defined as per usual from the T’-graph (¥, a’)).
The morphism k’: 7}, — n’ is the crochet characterised by the relations

m/ . k_/ — Mk ‘m/l/

a - k'=KMe-Td v

We can easily show that (b, a’,4’, k') is a T'-category, and that the correspondence thus | p. 238
defined extends to a functor

Cat(M): Cat(T) — Cat(T").

The rest of the proof is purely technical, although annoying. O

Remark. As an exercise, it is interesting to examine the case where M = idg, m = I,
and T = (idg,idg,idg): there is an &-category underlying every T-category (in the
terminology of §I11.2).

We will later study the question of whether or not all functors in the sequence (x)
admit adjoints and coadjoints; we will limit ourselves below to only some of them. Recall
that Alg(T) — & has an adjoint. Suppose that & admits finite projective limits.

Proposition 1.3.8. The forgetful functors X' — &, for X' = Gr(T), Cat(T), and
Ord(T), admit adjoints and coadjoints which are further sections of these forgetful func-
tors, and commute with the sequence of functors Ord(T) — Cat(T) — Gr(T).

Proof. Let e € |8|. Set

D(e) = (ide,Ie) and G(e) = (p1,p2)
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with the latter being formed of the canonical projections of a product of (e, Te). Then
D(e) and G(e) are T-graphs, which determine T-categories

B(e) = (id, Ie,id.,id.) and a(e) = (p1, P2, %0, ko)
where iy and kg are the crochets characterised by the relations

p1 -t =ide

P2 - 7:0 =Je

p1-ko=p1-v1

pa ko= Ke-Tpy - vy

where (v1,vs) is a fibre product of (p2, Tp1). Furthermore, we note that D(e) and G/(e)
are T-preorders. It is easy to show that we can thus define an adjoint D and a coadjoint G
to the functor Gr(T) — &, and an adjoint D and a coadjoint G to the functor Cat(T) — &,
which, by restriction, gives an adjoint and a coadjoint to the functor Ord(T) — . O

We call D(e) and G(e) the discrete T-category and the coarse T-category on e (re-
spectively).

Finally, we examine the case of the inclusion Ord(T) — Cat(T).

Suppose that &, as well as satisfying the existence of finite fibre products, also satisfies
the following conditions:

(I) Every morphism f in & decomposes into a monomorphism m and an epimorphism
p,as f=m-p.

(IT) Every epimorphism p of & is a retraction, i.e. there exists a morphism s in & (called
a section of p) such that p - s = id,, where e is the target of p.

By (II), the decomposition of f in (I) is unique up to isomorphism; we call (m,p) a
canonical decomposition of f. More generally, if f = m’-p’, and if m’ is a monomorphism,
then there exists exactly one morphism g such that m’-g=mand g-p=7p'.

Proposition 1.3.9. If § satisfies the above hypotheses, then the inclusion functor
Ord(T) — Cat(T) admits an adjoint that is compatible with the forgetful functors to
é.

Proof. To each T-graph 6 = (b,a) on e, we associate, thanks to the canonical decom-
position of the crochet [0]: 7 — e x Te, a regular T-graph () = (b',a’) on e, and
(ide,p): 6 — (@) is a morphism, where p is the epimorphism in the canonical decompo-
sition of [f)].

Now we will show that, if § = (b,a,4,k) is a T-category on e, then we can form a
T-preorder (f) over (§). If (v1,v2) is the fibre product of (a, Tb) used in the construction
of 6, and if (v}, v}) is a fibre product of (a’,Tb'), let p’: mo — 7}, and s’: m), — w3 be the
crochets characterised by the relations

/ /

V1D =p- 101
/ /

vy-p =Tp-vy
v1-8 =50

vg -8 =Ts-vj
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where s is a section of p; then p’ - s =id,;. Set

-/

i=p-i and kK'=p-k-s;

by composing on the left with a’ and o', we see that ) = (v/,d,4', k') is a T-preorder.

We can further show that (ide,p): 8 — (#) is a morphism that defines a natural trans- | p. 240
formation of an adjunction to the inclusion functor Ord(T) — Cat(T). O

e

In general, the forgetful functor Alg(T) — & is not fibrant. Later on, Proposition 11
resolves the problem of “making” this functor fibrant by universally embedding Alg(T)
into a full subcategory of Ord(T). For this, we will need to generalise [Ba, Proposition 2.4]
by replacing the “category of sets” there with an arbitrary category &, though one that
satisfies the following axiom:

(U) There exists a universe such that:

(a) Homg takes values in this universe

(b) The set of isomorphism classes of subobjects of an arbitrary object e of &, and
the set of isomorphism classes of quotient objects of e, are elements of this
universe.

(¢) & admits projective A-limits for every category A associated to this universe
(i.e. |A| is an element of this universe and Hom ; takes values in this universe).

p. 241
For example, the category Set associated to an arbitrary universe |Set| satisfies this

axiom.

Proposition 1.3.10. (Stone-Cech-Barr). The full inclusion functor Alg(T) — Ord(T)
admits an adjoint.
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Proof. Taking into account hypothesis (b) concerning quotients, which allows us to form
images of morphisms of T-algebras, the proof is the same as that by Barr, which relies
on Freyd’s criteria for existence of adjoints (in a form adapted to the terminology of
universes, which does not pose any problem). We refer the reader to [Bal. O

We denote by mg: 0 — 6 an adjunction morphism associated to a T-preorder
0. Let Equ(T) be the full subcategory of Ord(T) whose objects are the T-preorders 6
for which my is a cartesian morphism (with respect to the forgetful functor to &). The
objects of Equ(T) are called T-equivalences.

Proposition 1.3.11. The forgetful functor Equ(T) — & is fibrant and compatible with
the fibration Ord(T) — &. For every commutative diagram

Alg(T) X X
S

where the forgetful functor of T-algebras factors through a fibrant functor X: X —
&, there exists exactly one (up to equivalence) functor Equ(T) — X that satisfies the
following properties:

(1) The following diagram commutes:

Alg(T) —— Equ(T) —— X

S

&

(2) The functor sends every morphism that is cartesian with respect to Equ(T) — & to
a morphism that is cartesian with respect to U': X — §.3

Proof. Let 6 be an T-equivalence, and f;: e; — |0| be a morphism in 8. If f: ff6 — 6 is
the cartesian morphism such that | f| = fi, we will show that §; = f;0 is a T-equivalence,
i.e. that my, is cartesian. Let g: 02 — 0, be a morphism in Ord(T), and hy : |62] — €1 be
such that |mg, |-h1 = |g|; we will show that there exists exactly one morphism h: 62 — 6,
in Ord(T) such that

me, -h=g and |h|=hy.
So let h: 83 — 6 be such that

|h|=hy and mg-f-h=f-g

(where f is the image of f under the adjoint functor of Proposition 1.5.1077); h
exists, since mg and f are cartesian, as is their composition. The equality mg, - h = g is

3When U is fibrant, we will refrain from assuming that Alg(T) ~ Equ(T) (for example, when
T is the identity triple).
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a consequence of the faithfulness of the functor Ord(T) — &, as is the uniqueness of h.
This proves the first part.

Let X : Alg(T) — X and U’: X’ — & be functors such that U = U’- X is the forgetful
functor of T-algebras and U’ is fibrant. For all # € |Equ(T)|, let X(0) be the source
(which we can also write as |mg|* X (6)) of a cartesian morphism m in X' with target
X (0), such that we have U’(m) = |mg|. It is clear that the family {X () | 8 € |[Equ(T)|}
can be extended in a unique way to a functor X: Equ(T) — X that satisfies the required
conditions. The equivalence between this functor and every other functor that satisfies
the same conditions follows from the fact that two cartesian arrows with the same target
and same underlying morphism are related by an invertible. O

As for inductive limits, we content ourselves with the following result, whose elemen-
tary proof is left as an exercise.

Proposition 1.3.12. If & admits inductive A-limits (further to the hypothesis that
& admits finite fibre products), if these limits commute with fibre products, and if T
commutes with these limits, then the categories appearing in (*) admit inductive A -
limits, and the functors therein commute with these inductive limits.

II Pseudo-algebras and monads

II.1 Pseudo-categories
p. 243
This structure slightly generalises that of a bicategory, defined by Bénabou in [Be];

indeed, in bicategories, the families [, 7, and s considered below reduce to the families
of natural equivalences, which will not always be the case in our examples. (In §III we
will see more general structures.)

A pseudo-category is a septuple

D = (|D|,Homgy, ¢, k,1,7,5)
such that conditions (1) to (8) below are satisfied:
(1) |D| is a set; its elements are called objects of D.

(2) Homy, is a family of categories indexed by |D|?. Saying that f: e — €' is a
morphism in D means that

e,e’ €|D| and f € |Homgy(e,e)l.

Saying that a: f — g: e — €, or simply that a: f — g, is a 2-morphism in D
means that f: e — ¢ and g: e — € are morphisms in @ and a: f — g is a
morphism in Homg (€, e).

(3) ¢ is a family of functors indexed by |D|, of the form ¢(e): 1 — Homgy (e, e) for
each e € |D|, where 1 is the category consisting of a single object 0 and the single
morphism idg. We denote by id(e), or id., or simply e, the morphism ¢(e)(idg): e —

e
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(4) k is a family of functors indexed by |D|3, of the form
k(e’,e',e): Homgy(e”,e') x Homgy (e, e) — Homg (", €)

for each (e”,e/,e) € |D|3. The image of a pair of morphisms or of 2-morphisms
under this functor is called a composition and is denoted by the same symbol,
which will generally be the symbol o in this paper. This composition is called
the first law of D, to distinguish it from the composition laws in the Homg, (€, e).
These latter laws will also be denoted by a unique symbol, called the symbol of

th dl D.
e second law of ». 244

(5) 1 and r are two families of natural transformations, each indexed by |D|2, of the
form

I(e',e): pry — k(€. €, €) - (u(e') x id(Homy (€, €)))

r(¢/,e): pr; = k(€' e,€) - (id(Homy (€', €)) X t(€))
where

pry: 1 x Homy (€', e) — Homg (€', €)

pry: Homg(€',e) x 1 — Homgy (€', €)

denote the canonical projections of the products. In other words, for each morphism
f:e— € in D, r and [ give “natural” 2-morphisms, denoted in shorthand by

I(f): f—ideof and r(f): f— foide
where o is the first law of D.
(6) s is a family of natural transformations, indexed by |D|*, of the form
s(es, €3, €2,€1): Kaa1 -+ (Kaz2 X D21) — Kaz1 - (Da3 X Ka21)
for each (ey, €3, €2,€1) € |D|*, where we set
Kijk = K(ei,ej,ex) and D;; = Homy (e;, ;)

for 1 < 4,7,k < 4. Both these functors have source category D43 X D32 X Do; and
target category @y;1. In other words, if f: e; — e2, g: e2 — e3, and h: eg — e4 are
morphisms in @, then s gives a “natural” 2-morphism, denoted in shorthand by

s(h,g,f): (hog)of—ho(gof).
We also say that s shifts parentheses to the right.

(7) Let e: D33 X D1 — D32 X Dag X D1 be the functor given by the composition of
the trivial functor @D3s X Do; — D32 X 1 X Do; and the functor D3s X 1o X Doy,
using the above notation, as well as setting

v = t(e;)
Sijkl = S(ez‘,ej,ek,@l)
li]‘ = l(ei,ej)

Tij = 'r(ei, ej)
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where e;, €5, e, and e; are objects of .

For each (e1, ez, e3) € |D|3, the following diagram of natural transformations must
commute: p. 245

$3221°€

K321 - (K332 X Da1) - € k321 - (D32 X Ka21) - €

H321'(7'32:<m Afﬁm xl21)

K321

In other words, applying this diagram to a pair of morphisms f: e; — ez and
g: ez — ez, we should obtain a commutative diagram in the category Homg (e3, e1):

s(g,ide, f)

(goide)o f go(ideo f)

T(g‘m A(vf)
gof

(where we set e = e3).

(8) For all (ey, e2,€3,€4,€5) € |D|°, we have a commutative diagram

[ ]
K521°(S5432 XQ)z:)/
N s5321° (K543 X D32 X D21)
°

s5421° (D54 X Kaz2 XD21)

[ ]
55431 (D54 XDa3 XK321)
K541+ (Dsa X 84321)\4
[}

(where the notation of the objects is left to the reader) so that “applying” this
diagram to morphisms in @

fie1 — e
g: ez — €3
h:e3 — ey
k

i eq4 — €E5
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we obtain a commutative diagram in Homg, (es, €1):
(ko (hog))o f 2 (koh)og)o s

s(koh,g,f)

s(k,hog,f) (koh)o(gof)

s(k,h,gof)

ko((hog)of) o fol(holgof))

Remark. Axioms (7) and (8) are called the “coherence axioms”. If r, I, and s are
equivalences (resp. identities) then we recover the notion of bicategory from [Be] (resp. of
2-category). In §III, multicategories will give, as particular cases, both pseudo-categories
and the double categories of Ehresmann.

We say that F': D — D' is a pseudo-functor if ® and @’ are pseudo-categories and
F is a quadruple (|F|, F1,u, ¢) such that:

(1)
(2)

(3)

(4)

|F|: |D| — |D'| is a function.
F is a family of functors
Fi(€',e): Homgy(e',e) — Homgy: (F(€'), F(e))

for each (¢/,€) € |D|2. If e € |D|, we denote by F(e) its image under |F| whenever
there is no risk of confusion. Similarly, if f is a morphism in @ and « a 2-morphism
in @, we denote by F(f) and F(a) their images under F; (respectively).

u is a family of natural transformations indexed by |?D|, between functors whose
source is 1; in other words, u can be considered as a family of morphisms in @ of
the form

u(e): idp(e) — F(ide)
for each e € |D|.
c is a family of natural transformations indexed by |D|2, of the form
c(e” €, e): k(F(e"),F(e),F(e))- (Fi(e",e) x Fi(€,€)) = Fi(e”,e)-k(e", €, e).

In other words, for each pair of morphism f: e — € and g: ¢ — €”, we give a
“natural” 2-morphism, denoted in shorthand by

c(g,f): F(g) o F(f) = F(go f).
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(5’) For each f: e — ¢’ we have two commutative diagrams:

F(r(f)) . . FQ(f))

F(f) F(folde) F(lde’of) F(f)
r(F(f)) e(fride) c(id.r,f) UF(f)
F(f) [¢] idF(e) W F(f) o F(lde) F(ide/) o F(f) m idF(e’) o F(f)

p. 247
(6’) For any triple f: e —> €', g: ¢ — €”,and h: €’ — € in D, we have a commutative
diagram
F() o (F(g) o F(f)) <2220 (B(r) o F(g)) o F(f)
F(h)oc(g,f) c(h,g)oF(f)
F(h)oF(go f) F(hog)oF(f)
c(h,gof) c(hog, f)
F(ho(gof)) F((hog)of)

F(s(h.g,f))

All of these definitions are based on those of bicategories of Bénabou [Be] (we note
that we have, however, reversed the direction of the arrows r and ). We define the
composition of pseudo-functors in a manner analogous to that of bifunctors [Be]. We
could define the notions of natural pseudo-transformation and even of morphisms be-
tween these. This would allow us to define the notation of “pseudo-triple” on a pseudo-
category, which we will not do. We simply note that Proposition 377 later on would
give T-categories a particularly agreeable meaning.

Remarks. —

(1) These definitions of pseudo-category and pseudo-functor should be taken mainly
as provisionary. Indeed, we have simply imitated the definition of bicategories of
Bénabou [Be], which itself was inspired by the definition of monoidal categories of
Mac Lane; but nothing tells us that there are no missing axioms that we would
need in order to obtain the “best” possible structure, nor that the chosen direction
for the coherence morphisms — suggested by the example of T-spans that follows
— is the “good” one. We hope to soon carry out a more serious study of this
structure.

(2) In practical examples, not only are the two morphisms (fog)oh and fo(goh) (where
f, g, and h are “consecutive” morphisms in @) not equal, but they are related to
a third morphism, denoted f o g o h, and, more generally, we have “compositions”
of length n > 2 that are different to the compositions obtained by the grouping
of the factors. This is the case, for example, when we consider the category Set | p. 248
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of sets associated to a universe, endowed with the cartesian product as a first law.
We wait until the notion of multicategory defined later on (??) allows us to unify
these differing notions.

II.2 The pseudo-category of T-spans

Let & be a category endowed with a triple T, admitting finite fibre products and endowed
with a canonical choice of these fibre products. We will associate to this data a pseudo-
category Sp(T) constructed in the following way:

(1) ISp(T)| = [8]
(2) For every e,e € |&|, let Homg,(T)(€e’,e) be the category whose objects are the
T-spans : e — €, i.e. the pairs (b, a), where

b:m—Te and a:7m—e

are morphisms in & with the same source. If §’: e — €’ is another T-span, where
0 = (b/,a’) with ¥/: «/ — Te’ and a': © — e, then a morphism m: § — ¢
in Homsp(T)(€',€) (and thus a 2-morphism in Sp(T)) is defined by a morphism
m: ™ — « in & satisfying the following conditions:

b-m=>b and o -m=a.

The evident composition law on Homg, 1) (€', e) is denoted by - just as for &.

(3) For each e € |&|, we define a T-span (Ie,id.): e — Te, which we also denote by
id, if the context clearly specifies that it is a T-span.

(4) If0: e — € and ¢': ¢/ — €” are T-spans, we define the first composition law of
Sp(T) by setting

0 00=(Ke"-TV -vi,a-v3)

where (v1,v2) is a canonical fibre product of (T'a’,b). The composition of 2-
morphisms is then obtained thanks to the property of fibre products.

TO-DO diagram

Proposition 11.2.13. Iff: e — €', 0 : ¢’ = €”, and 0": " — €

can construct 2-morphisms in Sp(T)

are T-spans, then we

id, 0049 9% goid,

6" 0 (6 00) “00 (97 60 0 0
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(where r(0) is furthermore an isomorphism), which will finish the construction of Sp(T)
as a pseudo-category.

Proof. Set 6 = (b,a); form the canonical fibre products (v},v5) of (idr.,b) and (v1,V2)
of (Ta,Ie). Since idr is an isomorphism, so too is Uy; let 6'2_1 be its inverse. The
relations
(Ke' -TIe %) v, " =%, .9, '=b
(since b - v, = v}) and
(@) v, '=a
allow us to set
10)=v,"": 0 —idy 0.
The relation Ta - IT = Ie - a gives a crochet c: m — w9 such that
virc=Ir and vy-c=a.
The relations

(Ke'-Tb-v1)-c=b

(ide - U2)-c=a
allow us to set
r(@)=c: 0 — 0oid,.

Set ' = (V',a’) and 0" = (b"”,a"”); the construction of the composites (6" 0 6') o 6
and 6” o (0 o 0) leads to forming fibre products that we can follow, for notation, in the
diagrams below.

Firstly, (6" 06') 0 0: e — €' is defined by the pair

(Kelll 'T(K@III‘Tb/I"Ui) 'wl,a"UQ "LUZ)-

TO-DO diagram

(Note that, if (v1, v2) is the canonical fibre product of (T'a’, b), then (w;,ws) is actually
chosen so that (wq,vs - w2) be the canonical fibre product of (Tw) - Ta’,b), which is
evidently possible.)

TO-DO diagram

Secondly, 6" o (' 0 0): e — €' is defined by the pair

(Ke" - TV - W{,a - vy - wh).
By comparing the relations

(Ke" - TV -v1) -we = Ke"’" - TTa" - Tv} - wy = Tad” - (Kn" - Tv] - wy)
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with the fibre product (w], w}) of (Ke”-TV -vi,Ta"), we obtain a crochet s = s(6”,60',0): & —

#/ characterised by the relations

wh - 8 = Wy

wi-s=Knr" -Tvy - w
and so s is the desired associativity morphism, since

Ke" - Tv -w)-s=Ke" - TV - Kr" - Tv] - wy
= Ke" . KTe" - TTV' - Tv, - wn
— K" . TKe" - TTY' - TV, - wy

and
a4 Uy Wh+-S=a-vs- Wo

which shows that s: (8" 06") 06 — 6" o (§' 0 8) defines a morphism in Sp(T).
We now show the coherence axiom (8). Let

0i = (bi,ai): € — €41
(for 1 < ¢ < 4) be a T-span. We set

p = 8(04,03,62) 0 01
p' = 5(04,03 065,07)
p" =04 05(03,02,61)

q=5(040803,05,6,)

q = 5(04,03,02007).

We need to show the relation ¢’ - ¢ = p” - p’ - p. To simplify notation, we will use the
same notation for a morphism between T-spans (i.e. a 2-morphism in Sp(T)) and the
underlying morphism in & that defines it, as long as the context ensures that no confusion
may arise. Finally, we note that the fibre products are not always chosen so as to be
canonical, but instead so as to make the other fibre products canonical.

Construction of ((64 0 63) 0 03) 0 6;. Let (u;,u)) be the canonical fibre product of
(Tasq1,b;) for 1 <@ < 3, so that 6;1100;: e; — e; 42 is defined by (Ke;y1-Tbit1-ui,a:-u})
(for 1 < i < 3). Let (v;,v;) be a fibre product of (T'uj, ;,u;) for 1 < i < 2, so that
(vi,uj - v}) is the fibre product of (Ta;y1 - Tuit1,b;) and (01+2 00;11)080; is deﬁned by
(Keits - T(Kez+3 Thiyo - Uit1) - Vi, a; - u; - v;) for 1 <4 < 2. Let (wy,w]) be the fibre
product of (T}, v1), and 7; and «, the source of a; and u; (respectively).

Construction of 04 0 (83 0 (02 0 61)). Let (mq, m}) be the canonical fibre product of
(Tas, Kez -Tby - u1), so that 65 o (62 0 0;) is defined by (Key - Tbs - mq,aq - uj - mj). Let
(0,0") be the canonical fibre product of (T'as, Key - Ths - my), so that 640 (03 0 (02 06;))
is defined by (Kes - Tby - 0,a1 - uj - m} - o).

Construction of (64 0 03) o (62 001). Let (r,r') be a fibre product of (T'u},m1), so
that (04 0 03) o (A2 0 0;) is defined by

(Kes-T(Kes-Tby - u3z) -rya1 - uj -my-r').
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Construction of q. The relation
T(as - uy) - Kml - Tve - w1 = (Kez - The - uq) - v} - w)

combined with the fibre product (r,m} - ') of (T'(a3 - u}), Kes - Tby - u1) gives a crochet
¢ (a morphism in &) characterised by

r-q=Kn}-Tve-wq

(1)

my-r' - q=v]-wl.
Then

q: ((04063)063)0; — (040863)0(0206;)
is a morphism in Sp(T). Indeed, by (1),

Kes-T(Kes-Tby-u3)-r-q=Kes-TKes - TTby - Tus - Kl - Tvg - wq
= Kes-TKes- KTTes -TTTby - TTus - Tvg - w1
= Kes-T(Kes - KTes - TTby - Tus - v2) - wy
= Kes - T(Kes - T(Kes - Thy - ug) - v2) - wy

and
a;-uy-my-r'-q=ay-uj-v]-wi.
Construction of ¢'. The relations

Tay- (Kmy-Tus-7)=Key-Tbs - Tuj -7
=(Ke4-Tb3-m1)-'r'

combined with the fibre product (0,0’) of (Tay, Keyq - Tbs - my) give a crochet ¢’ (a

morphism in &) characterised by | p. 258
/
o0-¢d =Kmy-Tug-r
/o — / (2)

q': (04 o 03) o (02 o 01) — 040 (03 o (02 o 01))
is a morphism in Sp(T). Indeed, by (2),

(Kes-Tby-0)-q = Kes -Tby- Kng - Tusz -7
= K65 'KT65 TTb4 'TU3 T
= K65 'T(K65 Tb4 "LL3) T

and

a;-uy-mi-o-q¢d =a-u-mi-r.
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Construction of (64 o (03 0 02)) 0 6;. Let (ma, m)}) be the canonical fibre product of
(Tayg, Keyq - Ths - uz), so that 04 o (65 0 02) is defined by (Kes - Thy - ma2, ag - uy - mj), and
let (¢,¢') be a fibre product of (T'mf,v1), so that (64 o (65 0 62)) o 6, is defined by

(Kes-T(Kes - Tby - mg) - t,a1 - uy - v} - t)
(in other words, (¢,u] - v} - t') is the canonical fibre product of (T'ag - Tw), - Tmi, b1)).
Construction of p. The relations
Ta4 . (K7T4 . TU,3 . ’U2) = K64 . Tb3 . T’U,é - V2
= (Ke4 -Tbs - U2) . ’U’2

combined with the fibre product (mg,m)) of (T'as, Kes - Ths - uz) give a crochet do
characterised by

mo - dog = Kmy - Tus - v 3)
md - davh
(this is in fact the morphism in & that defines s(f4,03,62)). Now the relations
Tml - Tds - wy = T(mh - d2) - wy
=Tvh - wy
=v; - W)

combined with the fibre product (¢,t') give a crochet p characterised by

p: ((94 o 03) o 92) o 91 — (04 o (03 o 92)) o 01
is a morphism in Sp(T). Indeed, by (3),
Kes - T(Ke5 -Tby - mg) -t-p=Kes-TKey-TTby - (ng . ng) s wq
(?) K65 . TK€5 . TTb4 . T(Kﬂ'4 . T’U,3 . ’UQ) W1

=Kes -TKes-TKTes -TTTby - TTus - Tvy - wy
= K65 . T(K65 . KT65 . TTb4 . T’LL3 . ’1)2) s Wy
= K65 . T(K€5 . T(K65 . Tb4 . ’LL3) . ’UQ) Wy

and, by (4),

a;-uy vy -t -p=ay-uj v -wl.

Construction of p’. The relations

Ta4 . (K7T4 . Tm2 . t) = K€4 . TTa4 . Tm2 -t
= K64 'T(K€4 Tb3 -UQ) Tm'2 -1
= (Ke4 . T(K64 . Tb3 . 'UQ) . ’Ul) . t/
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combined with the fibre product (n,n’) of (Ta4, Key-T(Key-Ths-uz)-v1) give a crochet

p characterised by

n-p = Kny-Tmgy -t

n.-p=t.
Then
p': (040 (03002)) 061 — 040 ((650862)064)
is a morphism in Sp(T). Indeed, by (5),
Kes-Thy -n-p (?)Ke5-Tb4-K7T4-Tm2-t

:K€5 'KT65 TTb4 -Tm2 7
= K€5 -T(K65 Tb4 -m2) -t

and
ap-uy-vi-np =ay-uf vt
Construction of p”. The relation
Ta,g-Kﬂ'3'T’U,2"U1 =K€3'Tb2"u,1 "Ui
gives a crochet d; characterised by

ml'd1=K7T3'TU,2-’U1

my -dy = v]

(this is in fact the morphism in & that defines s(63, 02, 61)).

Now the relations
Ta4 n = Ke4 . KT64 'TTbg 'TU2 U1 -n’
=Ke4-Tb3'K7l'3'T’LL2 * U1 -n’
= (K64 . Tb3 -ml) . dl . n’

combined with the fibre product (o, 0o') of (T'a4, Key-Ths-m1) give a crochet characterised

by

o ‘p// -n
o ‘p// =d; .
Then

p”: 94 o ((03 o 02) o 91) — 94 [¢] (03 o (91 o 01))

is a morphism in Sp(T), since

Kes -Thy-0-p" =Kes-Thy-n
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and, by (6),
ap-uy-mi-o-p’=a1-ul-mi-di-n
=ay-uj-vp-n.
(6)

Construction of the “deus ex machina” x. The relations
T0,4 . (K7T4 . KT7T4 . TT’LL3 . T’Ug . wl) = K€4 . KT64 . TTbg . TU2 V1 w’l
= (K€4 . T(K64 . Tb3 . ’UQ) . ’Ul) . wi
«?) (K64 Tb3 -ml) . d1 . wi

combined with the fibre product (o,0’) give a crochet = such that
O'.’L'=K7T4'KT7T4'TT’U,3~TU2"£U1
b / (8)
o -x=di-wi.
It is the uniqueness property of this crochet that will allow us to complete the proot;

indeed, it suffices to note that if in (8) we replace = by ¢’ - ¢ or p” - p’ - p then these
relations still hold true. Indeed,

0-¢-q=Kmy-Tuz-r-q
(2)

= Kmy-Tuz - Krjy - Tvg - wy
= K7l'4 . KTﬂ'4 . TTUg . T’U2 - wq

and

/ / / /
0-q-q=r-q=d;-w
q-q @ q 1-Wy
where the last equality is proven by using the universal property of the fibre product,
since, by definition of the fibre product (r, '), we have that

ml."",.q:Tug.fr.q

5 Tuy - K - Tvg - w

= Kng - Tug - v1 - w)
= my-dy W
(©) '
and
li ! / / !/ /
m-r.-q=v - -w; =miy -dy-wi.
o e '
Now we replace z by p” - p' - p in (8), which gives
o-p’-p-p=n-p-p
(7

= Kmg-Tmo-t-p
(5)

@ K7T4 . T(K7T4 . TU3 . ’UQ) * W1

= K7T4 . KT7I'4 . TT’LL3 . T’Uz - W1
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and
O/'p//'p,'p=d1'n/'p/'p
(7)
:dl.t{l.p

= dy - wi.

@
This finishes the proof of the coherence axiom (8). The proof of the coherence axiom (9)
is based on the same method. O

Remark. We could have proven a more general result, and more quickly, by system-
atically using pseudo-triples. Sp(T) would then have appeared as the “Kleisli” pseudo-
category of the pseudo-triple induced by T on Sp(&), where Sp(&) = Sp((ids, idg, idg)).
We canonically obtain a pseudo-functor from the Kleisli category KI(T) of the triple T
to the pseudo-category Sp(T) by sending a morphism f: e — €’ in KI(T) (i.e. f: e — Te
in &) to the T-span

(f,ide): e = €.

We say that a natural transformation m: F — F', where F, F': C — C’ are functors,
is cartesian if, for every morphism f: e — €’ in C, the pair (F(f), m(e)) is a fibre product
of (m(e'), F'(f)). We say that T = (T,1,K) is a cartesian triple if the following two
conditions are satisfied:

(a) E admits finite fibre products, and T commutes with them (which is the case as
soon as I or K are cartesian).

(b) I and K are cartesian natural transformations.

We will see examples of cartesian triples in §III; here is a useful characterisation:

Proposition I1.2.14.  For Sp(T) to be a bicategory (i.e. for r, I, and s to define
natural equivalences), it is necessary and sufficient that T be cartesian.

Proof. We use the notation of Proposition 1. For the construction of r(6), it is clear
that condition (c) implies that the crochet between two fibre products is invertible, and
conversely if it is invertible then (c) is satisfied. We already know that () is always
invertible For the construction of s(6”,6’, ), Figure 1 clearly shows that if (a) and (b)
are satisfied then (K'7”" - Tv; - wq,ws) is a fibre product of (Ta”, Ke” - TV -v1) and, since
s is the crochet arising from the canonical fibre product (wy,ws), it is invertible. The
converse can be proven by considering degenerate cases of this situation. O

II.3 Two interpretations of T-categories

We will give two interpretations, somehow dual to one another, of T-categories.

A monad (or monoid) in a pseudo-category @ is a pseudo-functor p: 1 — D, where
we denote by 1 the pseudo-category consisting of a single object 0, a single morphism,
and a single 2-morphism (this entirely determines the structure). We denote by o the
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first law in @ and by - the second. If e = p(0) and 6 = p(idg), then the data of u is
equivalent to that of two 2-morphisms in ), namely

i:ide -0 and k:000— 0

(which correspond to the families u and ¢ in the definition of pseudo-functors) that make
the following diagrams commute:

00(909)@(009)09

g 99 , g g 90 4 | [ ot
r(e)l fi ol ll(e) 000 000
foid. —— 000 fof «——id.of kl lk

0 id(8) 0

(which correspond to axioms (5’) and (6’) of §II.1).
Let & be a category endowed with a triple T, admitting finite fibre products and
endowed with a canonical choice of these fibre products.

Proposition I1.3.15. The data of a T-category is equivalent to that of a monad in
the pseudo-category Sp(T) on the same object.

Proof. If yu: 1 — Sp(T) is a monad, then the T-span §: e — e is defined by a pair (a, b)
of morphisms in & of the form

a:m—Te and b:m—e.
We will construct the 2-morphism
5(0,0,0): (foB)of —00(fob)

in Sp(T). For this, let (ve,v1) be the canonical fibre product of (Th,a), let (w2, w1) be
the fibre product of (T, v2) that makes the fibre product (ws,v1 - wy) of (Th-Tvy,a)
canonical, and let (w),w]) be the canonical fibre product of (Tb, Ke - Ta - v2); then
5(6,0,0) is defined by the morphism s in & characterised by

wi -8 =w B

wy s = Km-Tvs - wo
which follows from combining the relation
Tb-Km-Tvy-wy =Ke-Ta-vg-wy

with the fibre product (wj,w]).
We now construct the 2-morphisms

1(#): 0 > idcof and r(f): 0 — foid,
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in Sp(T), defined by the morphisms [ and r of & characterised by the relations

uh-l=a
Vi .
uy -l =1id,
_ (2)
ug-r=1Ir
uL-r==0

where (u2,u1) is the canonical fibre product of (T'b,Ie), and (uj,u]) that of (idre,a).
In the rest of this proof, we denote by the same letter £ a 2-morphism z: e — €’ in
Sp(T) and the underlying morphism z: e — ¢’ in &; ¢ and k have the same meaning as
above (the families u and ¢). We will show that 6* = (b,a,%, k) is a (non-canonical; see
the definition in §11.4) T-category if and only if the data (6,4, k) defines a monad u in

Sp(T).
In &, we have the following characterising relations for 106, 8 o4, ko8, and 0 o k:
vo - (i00)=Ti-uj v1-(i06) =)
vg - (0 od) = ug v1-(0oi)=1i-u 3)
vg-(k00)=Tk-'w2 ’U1-(k09)=’01'w1
ve - (B ok)=wj v1-(Bok)=k-w.
Using (1), (2), and (3), we thus deduce the following relations in &:
vy (i00)-1=Ti-a v1-(i00)-1=1d,
ve-(Qoi)=1Im vi-(foi)-r=i-b
va- (ko) =Tk wo v1- (ko) =v-w

v2-(00k)-s:K7r-Tv2-w2 vl-(eok)-s:k-'wl.
If we combine these relations with the characterising relations (2), (3), (4), (5), (6) from
§I.1, then we deduce the relations

’1,1=(7,00)l 22=(00’L)7'

ki=(00k)-s ky=ko6.

The “identity” and “associativity” conditions (7) and (8) from §I.1 can then be written
as

k-(iof)-l=id,=k-(o0i) -7
k-(Bok)-s=k-(kob)

and express the commutativity of the diagrams defined, above, by p, which are extracts
of the following diagram in Sp(T):

§oid, #0808
(8) \ /
id, —° (6,0,0)
m / \
ideo 8 fo(fob)
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which finishes the proof. O

If & satisfies the same hypotheses, we denote by Sp(&) the pseudo-category (which
is really a bicategory) Sp(idg,ids, idg); its morphisms are simply called spans in §&. We
denote by o its first law, and by - its second, and we denote a morphism of spans and
the underlying morphism in § by the same notation. We will now interpret a T-category
in Sp(&) instead of Sp(T). If we had defined the notion of a pseudo-triple on a pseudo-
category (for example, we would see that T induces a pseudo-triple on Sp(§)), then we
could define the notion of pseudo-algebra in full generality. We will content ourselves
with the following definition: we say that (6, 1, I;:) is a T-pseudo-algebraon eif 0: Te — €
is a span in & (and thus defined by morphisms b: @ — e and a: # — Te in &), if

i:ide — 0o Ie
k:00T6 — 0Ke
are 2-morphisms in Sp(&), where we set T@ = (Tb,Ta) and identify every morphism

z: e — €” with the span (z,id./): ¢ — €”, and finally if the following “coherence
axioms” are satisfied:

(koITe)-(i06) =idg = (koTIe)- (0 oTi) (1)
(ko KTe) - (koTTO) = (koTKe) - (f o Tk). (2)

Proposition I1.3.16. The data of a T-category on e is equivalent to the data of a
T-pseudo-algebra on e.

Proof. Let ©: Te — e be a span, with 6 = (b,a); let (uf,u)) be the canonical fibre
product of (a,Ie); then 6 o Ie: e — e is defined by the pair (b- uf,u5). A morphism
i:ide — O o Ie in Sp(8) is defined by a morphism 7: e — 7’ in & (see Figure) such that

b-uy-1=id,

uh + 1 = ide.
Set ¢ = uf - %; we have that

b-i=id,

a-i=1Ie-uy-i=1Ie

and so (b,a,%) is a pointed T-graph on e. Conversely, this data determines a crochet
i: e — 7 that defines the desired morphism % of spans.

TO-DO figure

Let (v1,v2) and (v}, v}) be the canonical fibre products of (a,Tb) and (a, Ke) respec-
tively; then 6 0 T9 and 6 o Ke: TTe — e are defined by the pairs (b - v1,Ta - v2) and
(b-v},v}) respectively. A morphism of spans k: 80T — fo Ke is defined by a morphism
k: my — 7" in & such that

gl

b-vy-k=b-v

t

vy -k ="Ta- vy
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Setk:vi-l;:;wehavethatb-k:b-vl,and

a-k=a-v-k
=Ke-vy-k
=Ke-Ta- vy

which expresses axiom (4) of §1.1. Conversely, if k satisfies (4) then it determines a
crochet % that defines a morphism of spans k: o T — 6 o Ke. Thus it remains only
to show that (b,a,1,k) is a T-category, i.e. that it satisfies axioms (7) and (8) of §I.1,
if and only if the coherence axioms (1) and (2) above are satisfied, which is a routine
verification. O

Remark. By applying the above to T-preorders, we reprove Proposition 1.2.4.

I1.4 Pseudo-monoidal and fibration category of Gr(T)

TO-DO think about section title translation .
A pseudo-monoidal category (or a pseudo-monoid) is a pseudo-category @ with only
one object, which we almost always denote by 1. If @ is the category Homﬁ(l, 1), then its

composition law, which coincides with the “second law” of @ is denoted by - and the “first
law” of D typo? D is generally denoted by the symbol o. We often write @ = (D, 1, o),
and the symbols r, [, and s from axioms (5) and (6) of §II.1 are always used in the same
way; this is why they are easily understood even when denoting @ as a triplet. Similarly,
a pseudo-functor F: @ — D between pseudo-monoidal categories is determined by a
functor F': © — @’ between the underlying categories that “commutes” with the first
laws, i.e. the morphisms u and ¢ from axioms (3’) and (4’) are always denoted in the
same way: u: 1 — F'1 is a morphism in ?’, whereas ¢: O «(F x F) — F - (), where we
denote by O: D X D — D the “first law” functor:

O(m/;m)=m'om

for every pair of morphisms in @, for any pseudo-monoidal category @. All this data
should satisfy “the coherence axioms” (7), (8), (5’), and (6’) of §IL.1.

Let T be a triple on a category & endowed with canonical fibre products. For every
e € |8|, we denote by Gr(T)/e the category Homs,(t)(e,e); this is a subcategory of

Gr(T), and underlies a pseudo-monoidal category Gr(T)/e = (Gr(T)/e,1,0) which is
obtained by “restriction” of the structure of Sp(T): it is actually the dual (for just the
o law) of a sub-pseudo-category of Sp(T).

For every morphism f: e — €’ in &, we define a functor
f*:Gr(T)/e' — Gr(T)/e
m— f*m
(see Proposition 1.5.6).

Proposition I1.4.16. f* is the underlying functor of a pseudo-functor, denoted by
f*:Gr(T) /e’ — Gr(T)/e, for which the morphisms u and ¢ are further uniquely deter-
mined (but are not necessarily isomorphisms, even if T is cartesian).

Git commit: 92fc123 39 of 48

p. 262

p. 263


https://github.com/thosgood/translations/commit/92fc123

Proof. If 0 and ¢’ are T-graphs on e, then the construction of the morphism f*(6' o 6)
by projective limits (which reduces to official fibre products) implies the existence of a
unique morphism

o(@',0): 0’ o f*0 — f*(¢' 0 0)

in Gr(T)/e determined by a crochet ¢(¢’,6): 7/ — «' in &, if 7"/ and 7’ are the objects
of morphisms of T-graphs

f*@’ o f*6 and f*(0' 00)

respectively. We determine a unique morphism u: 1 — f*1 in an analogous way. We
will show that these morphisms satisfy the coherence axioms (5’) and (6’). In fact, we
will limit ourselves to showing, for example, that the following diagram, for any T-graph
0 = (b,a) over e, commutes:

fr(1o8) L2 fro

41,0)[ llf*o

f*lo_f*ﬂ W ]_Of*a

which reduces to showing that we have a commutative diagram with the underlying
morphisms in &, by using the projective limit property of f*(1 o 6). We denote by the
same symbol a morphism in Gr(T) and the underlying morphism in & which it defines.

Let (¥',a’) = f*6 and (b,@) = f*(100); we have projective limits (where the canonical
projections are represented by dashed arrows)

Te <L Te Te <2 e
aT Ta' Ke~Ta~v2T _ TE
§' f

M +----

and where (v1,vs) is the fibre product of (Ie, Tb) which is used to form the composite
lof= (’Ul,Ke' Ta- 1)2).
We are thus led to prove the following equalities:

a-frll9=a-c(1,0)- (uo f*0)-1f*0 (1)
f-f*10=7F-¢(1,0) - (uo f*0)-1f*6 (2)
b-f*10 =b-c(1,0) - (uo f*0) - Lf*0. (3)
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We set f*1 = (bo,a,) and let f, be the third canonical projection that defines f*1:

Te PEr Te'

We first obtain a morphism g in & such that, denoting by (v1., v20) the fibre product of

(a0, TV'), we have
f*]. o f*o = (bo . 'Ulo,Ke/ . Tal . 1)20)
and

v1-9=fo Vo
vo-g=Tf - vo.

The morphism u in & is characterised by the relations

bo-u=idef
foru=f
ao-u=1Ie

and so, if (v],v}) is the fibre product of (Ie’,TV’), we have

lo f*0 = (vy,Ke' - Ta' - v})

and

By the definition of the morphism [0, we have

’Ul'l0=b
1)2'l0=I7T

whence the relations

a-flo=d
f-fro=1-f
b-fre=".

Similarly, the morphism [f*# is characterised by

o 10 =
vy - 1f*0 = In'.
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We also have that
10-f =g-(uof6)-1f*6
(the “naturality” of ), since

’01'9'(U°f*9)()fo-'u1o-(uof*9)

4

;fO'U'Ui

o
(—s)fvl

and

va-g- (uo f0) = Tf -vao- (uo f6) = Tf -0},

6)
Finally, by the definition of ¢(1, ), we have that
-¢(1,0) = Ke' - Ta' - v,
c(L,0)=g
b-c(1,0) =bs - v1o-
We have that

a- f*l0 = d
! (7

=K -Tad - In'

(;Ke'-Ta'-vé-lf*G

5 Ke'-Tad - vy - (uo f*0) - 1f*0

(E)a-c(l,O)-(uof 0)-1f*6
which proves (1). We have that
f-fe=10-f
Foruw =0
=g-(uo f*0)-1f*0
59 (W f0)-1f

= f-c(1,0) - (uo f*0) - 1f*6

(10)

| =l 2l

which proves (2). Finally,
b-f*10 = b
f (M
— ]
5 vy - Lf*0
= bo-u-vy-lf*0

= by V10 (wo f0) - 1f*0

5,0 e(l,0) (o 10) 150
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which proves (3). O

Relative to a universe denoted by |Set|, we denote by Set, Cat, etc. the categories
of sets, of categories, etc. (respectively). We denote by Cat* the category whose ob-
jects are the pseudo-monoidal categories whose underlying category is in Cat and whose
morphisms are the pseudo-functors. Relative to a universe denoted by |Set|, we denote

~ o —f ) ) —
by Set, Cat, Cat', etc. the analogous categories. If & is an element of |Cat|, then the

previous Proposition shows us how, to a morphism f: e — ¢’ in &, we can associate a
morphism

f*: Gr(T)/e! — Gr(T)/e

ot .
in Cat. We define a bifunctor to be a pseudo-functor (F,u,c) such that u and c are
natural equivalences (and not a pseudo-functor between bicategories, as in [Be]).

Proposition I1.4.18. The correspondence that associates to each morphism f in & the
_ —
pseudo-functor f* defines a bifunctor E°® — Cat .

Proof. We leave this simple proof as an exercise; it uses the fact that u and c are crochets
of projective limits. O

IIT Examples

In the first two examples that follow (§I11.2 and ?7?), the triple T possesses properties
that simply its study. These properties ensure not only that the functor Cat(T) — Gr(T)
is tripleable (Proposition I1.1.19), but also that they permit a simple construction of
the adjoint (scolium of Proposition II1.2.21).

ITI.1 Free T-categories (particular case)

Let T be a triple on a category & admitting finite fibre products and endowed with a
canonical choice of these fibre products. Let X be one of the categories Alg(T), Ord(T),
Cat(T), or Gr(T), and e € |8|; we denote by X /e the subcategory of X' whose objects are
the objects € of X such that Ue = e, where U: XX — & is the usual forgetful functor (see
the sequence (*) at the start of §1.3), and whose morphisms are the morphisms fie—n@e
in X such that Uf = id.. Note that Alg(T)/e is a discrete category and Ord(T)/e is a
preorder.

We say that T = (T,1,K) is a strongly cartesian triple if it is cartesian (§I1.2) and
further satisfies the following conditions:

(c) & admits finite and countable sums, and T commutes with these sums.

(d) The sums in & are universal (§0.1) and commute with fibre products.

Proposition II1.1.19. If T is a strongly cartesian triple, then the forgetful functor
T — Gr(T) is tripleable.
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Proof. Let U: Cat(T) — Gr(T) be the usual forgetful functor; we will define an adjoint
functor F': Gr(T) — Cat(T) by using Proposition A.1l in the appendix. For every
e € |8|, by §II.2 and the terminology of §II.4,

Gr(T)/e = (Gr(T)/e, 1,0)

is a monoidal category, and, by §I1.3, Cat(T)/e is isomorphic to the category of monads
Mon(Gr(T)/e) (see the Appendix) and its forgetful functor to Gr(T)/e agrees with a
restriction of U. To show that the functor Cat(T)/e — Gr(T)/e admits an adjoint, it
thus suffices to show that Gr(T)/e is countably distributive (Proposition A.1). The
existence of finite and countable sums follows from hypothesis (c) and from the “creativ-
ity” of the functor Gr(T)/e — & that, to each T-graph 6 over e, associates the object
of the morphisms 7 and §. We show that Gr(T)/e is countably distributive by using
conditions (c) and (d), along with the fact that, if we have an equality of the form
C’'-C =C"in & and if C’ and C” are cartesian natural transformations (§I1.2), then C
is also cartesian. The forgetful functor U.: Cat(T)/e — Gr(T)/e is thus tripleable; we
denote its adjoint by Fe: Gr(T)/e — Cat(T)/e. We then define |F'| by the extension of
the maps |Fe|, where e runs over |€|.

If T is strongly cartesian, then so too is the triple T2 (§I.1), and the forgetful functor
U: Cat(T?) — Gr(T?) can be identified with the functor

U?: Cat(T?) — Gr(T?).

The way in which the adjoint of Proposition A.1 is constructed leads us to define |F2|
as the extension of the maps |F|, where f runs over |€2|, and where we denote by F
the adjoint of the forgetful functor

Uy: Cat(T?)/f — Gr(T2)/f.
These conditions thus allow us to construct a functor
F: Gr(T) — Cat(T)

and this functor is an adjoint of U: Cat(T) — Gr(T); indeed, it suffices to note that the
same proof allows us to construct the natural transformations I’ and K’ of the desired
triple, which we denote by

TI — (TI,I,,KI)
where T" = UF.
It remains to show that the Eilenberg—Moore functor
E: Cat(T) — Alg(T")

is an isomorphism. The triple T, induced by the adjoint pair (F,,U,) can be obtained
by restriction of the triple TV to Gr(T)/e, and, since the associated Eilenberg—Moore
functor E,: Cat(T)/e — Alg(T,) is an isomorphism, we immediately deduce that |E| is
a bijection. By an analogous reasoning, we can show that |E?| is a bijection, since there
is a bijection between T' 2—algebras and morphisms between T'-algebras. This proves
that F is an isomorphism. O
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A morphism in &2 is said to be cartesian if it is cartesian in the sense of §I1.2 (such
a morphism being a natural transformation). We say that an inductive cone in &2 is
cartesian if its canonical injections are all cartesian.

Lemma. If sums in & are universal, then & satisfies the following property:
(e) the canonical injections of sums in & are monomorphisms.

If € satisfies (d) (and thus (e)), then every finite or countable sum in &2 is a cartesian
cone (if & admits a final object, then this is true for every sum), and every crochet of a
sum formed from a cartesian cone in &2 is cartesian.

Proof. The first part is an interesting exercise on the language of categories. We then
show, using condition (e), that, if a sum in &2 is a monomorphism (resp. an epimorphism)
in &, then each of its terms is a monomorphism (resp. an epimorphism) in §. We
subsequently show that the “codiagonal” natural transformations are cartesian by using

the universality of sums, and we finish the proof by using the last part of condition (d).
O

Proposition II1.1.20. If T is a strongly cartesian triple, then so too is the triple
induced by the tripleable functor Cat(T) — Gr(T).

Proof. If T = (T",I',K’) is the induced triple on Gr(T), then the proof of Propo-
sition A.1l in the appendix shows that, for all § € |Gr(T)|, T'¢ is a countable sum,
I'0 is a canonical injection of this sum, and K'6 is a crochet of the sum T'T'0; we
thus immediately deduce that T’ is cartesian. The rest of the proposition is proven by
using the commutativity of projective limits with themselves (fibre products) and the
commutativity of inductive limits with themselves (sums). O

II1.2 &-categories

Suppose that & is a category endowed with finite fibre products. Consider the identity
triple (idg, idg,idg) on &, we denote it simply by & in this section. The category Cat(§)
of 8-categories is precisely what is usually referred to by that name in the literature (or
“&-structured category” in [Eh]). The axioms given in §1.3 then become:

{b-i=ide O
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v - kl =k w1
foh- .

V2 kl = V2 * W2

V1 kg =71 W1
(6)

Vw k2 =k (%)
k-ip =ide =k -ip (7)
k-ki=k- ks (8)
where (v1,v2) and (w1, w2) are the fibre products of (a, b) and (va, v1) respectively. Anal-
ogous remarks can be made for Gr(8), Ord(8), .... The category Alg(8) is isomorphic

to &, and the category Equ(&) defined in §1.3 is precisely the category of equivalence
&-relations.

The identity triple & satisfies, evidently, conditions (a) and (b) of §II.2; it it thus
cartesian. For it to be strongly cartesian, it is necessary and sufficient that & satisfy
conditions (c), (d), and thus (e), of §II.1. In this case, the forgetful functor Cat(8) —
Gr(8) is tripleable, and the triple N thus induced is strongly cartesian (Proposition 20).

Let Set be the category of sets associated to a universe (which is identical to |Set|).
We denote, in principle, by Cat, Gr, ..., the categories of categories, of graphs, of
... (respectively), with these structures being defined in a “local” manner (§1.1). We
then have known injective functors Cat(Set) — Cat, Gr(Set) — Gr, ..., which are equiv-
alences of categories. The disjunction convention made in axiom (2) of §I.1 allows us to
identify Cat(Set) with Cat, Gr(Set) with Gr, .. .; but, although this will be useful, context
will make precise whether the notation Cat, Gr, ...refer to the “local” or “global” def-
initions. Similarly, Ord and Equ denote the categories Ord(Set) and Equ(Set). Relative
to another universe |S/e\t|, we use the notation €a\t, a\r, 6@, E/q\u, ...ete.

We are going to give a description of a strongly cartesian triple, which we will denote
by N = (N, I, K), induced by the tripleable functor Cat — Set; we will do so in “local”
terminology, and, furthermore, in an intrinsic way (i.e. not relative to a universe).

If ¢ is a graph, then NQ is the graph such that |[NG| = |¢| and such that F: e — €
is a morphism in NQ if it is a path in G, i.e. if there exists a sequence of objects
(en,-..,e1,€0) of G, where eg = e and e, = €/, and a sequence of morphism (f,,..., f1)
in @ such that

F=(fn,...,f1) and fi:ei_1—>ei.

Such a sequence is also called a sequence of “consecutive” morphisms. The integer n
is called the length of the path, for simplicity, the path is denoted simply by F. Note
that, if » = 0, then this definition implies that e = ¢’ (= eg) and F = & is the empty
sequence: we denote by id. this path @: e — e of length zero. Next,

IG: @ —> NG and KG: NNG — NG
are the morphisms of graphs such that
G| = |KG| = idg
and defined on morphisms in the following way: I associates, to each morphism f: e —

e/, the path (f): e — €’ of length 1, denoted sometimes simply by f: e — €'; K@
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associates, to each path ¢: e — €’ in NG, the path ¢: e — ¢’ in § given by “erasing the
parentheses” of ¢ (or by “juxtaposition”). In other words, if ¢ = (Fp,..., F1), where

Fi = (finis---s fi,1)

for 1 < i < p, then

F= (fp,nlﬂ .. ',fp,lafp—l,np_la .. ',fl,l)'

The notation of this triple N can be confused with that for the set of positive or zero
integers; if such a confusion risks arising, then we can always identify this set with N1.

We sometimes denote by the same symbol a T-category and its underlying T-graph;
similarly, we also denote by N the free category structure on the graph NG defined by
the free N-algebra K ¢; we call these the category and graph of paths in G (respectively).
We call N the path triple.

Proposition I11.2.21. Let T = (T, 1, K) be a cartesian triple on & and let 6 = (b, a, i, k)
be a T-category on e € |§|; then

(Th,Ke-Ta,Ti,Tk)

is an &-category on Te.

Proof. (Tb,Ke-Ta,Ti) is a pointed &-graph, since
Tb-Ti=Te and Ke-Ta-Ti= Ke-Ie=Te.

Let (v1,v2) and (wy,ws) be the fibre products associated to 6; since the cartesian mor-
phisms of &2 are stable under composition, (Tw;, K7 - Tvs) and (Pw, Km - Tws) are
the fibre products of

(Ke-Ta,Tb) and (K7 -Tvy,Tvy)
respectively. If we replace (b, a, i, k, 1,42, k1, k2) by
(Tb, Ke - Ta, Ti, Tk, Ty, Tis, Tky, Tks)
in equations (1) to (8) above, then they remain true. O

This proposition allows us to very noticeably simplify, in practice, the description of
the free T-category given by §IIL.1. If § = (b,a) is a T-graph on e € |&|, then we denote
by O"0 = (bn,a,) the T-graph of paths of length n > 0, the T-graph obtained by using
the “first law” of Sp(T) (§IL.2); we denote by =, its morphism object.

Scholium. If T is a strongly cartesian triple, then the free T-category 6 = (3, a,1, lAc)
generated by a T-graph 8 = (b,a) on e € |&| has the same object object e as §. The
morphism object & of 0 is the sum of the morphism objects m,, for n € N that we define
by induction: mg = e, m; = 7w, and 7, for n > 2 is the source of the fibre product

a
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where 8’ = (V/,a’) is the &-graph on Te such that ¥’ = Tb and o’ = Ke - Ta, and where
w! _, is the morphism object of the 8-graph O"8' = (b,,al,).

n—1

We
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\section*{Introduction}

\hfill\emph{In friendly homage to José Luis Viviente.}

\bigskip
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If $\TT$ is a triple on a category $\cat{E}$, then $\TT$-categories are more general structures than $\TT$-algebras: they correspond to the passage from ``everywhere-defined laws'' to ``partially defined laws'' (in a very broad sense, in fact) and thus also encompass structures as diverse as topologies and categories.

Manes showed, in \cite{Ma}, that the category of compact topological spaces is a category of $\TT$-algebras, where $\TT$ is the triple of ultrafilters on $\cat{E}=\Cat{Set}$.
This led Barr, in \cite{Ba}, to define ``relational $\TT$-algebras'' so that the category of topological spaces is a category of ``relational $\TT$-algebras''.
But Barr seemed disappointed in the fact that, apart from this particular case, and that of preorders relative to the identity triple, there were few examples.
Independently, the new system of axioms for topologies that we had given in \cite{Bu} led us to a similar idea (unfortunately with the triple of filters\ldots but our goal was to situate topologies amongst quasi-topologies) that consisted in seeing topologies as a notion analogous to that of preorders (it is indicative, indeed, that the structure of a finite topology is equivalent to that of a finite preorder).
But this idea necessitated us to try passing from preorders to categories, and we found, in the definitions of Bénabou \cite{Be} of categories in terms of spans, what we needed in order to define $\TT$-categories.
We show (\cref[proposition:I.2.4]{Proposition~I.2.4}) that the ``relational $\TT$-algebras'' are obtained as a particular case: that of $\TT$-preorders (which are to $\TT$-categories what preorders are to categories).
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The general outline of this article is as follows.
\hyperref[sec:0]{Chapter~0} is dedicated to some details of terminology.
\hyperref[sec:I]{Chapter~I} first gives a definition of $\TT$-categories that demonstrates their relation to categories: if $\cat{E}=\Cat{Set}$, then the morphisms of a $\TT$-category appear, not as arrows going from one object to another object, but as arrows going from one structure on the objects to an object.
In this way, a ``convergence'' in a topology can be represented as an arrow $F\to x$ going from a filter to a point.
It is then easy to observe that these structures must be given by the endofunctor of a triple in order to be able to define the properties of reflexivity, transitivite, identity, and associativity of a $\TT$-category.
Then we will expand on some general properties: those that can we obtain without placing any hypotheses on the triple $\TT$, essentially the existence of projective limits and the fibration of the forgetful functor to $\cat{E}$ (which will allow us, in passing, to resolve the problem that consists of universally embedding the forgetful functor of $\TT$-algebras into a fibrant functor).
Other properties, such as the existence of inductive limits, the adjunction with the forgetful functor to $\TT$-graphs (the analogue of the Stone--Čech--Barr theorem), or the cofibration of the forgetful functor to $\cat{E}$ cannot be obtained unless we suppose the triple $\TT$ to be ``bounded''.

\hyperref[sec:II]{Chapter~II} is essentially dedicated to two interpretations of $\TT$-categories, on one hand as monads (or monoids, if one prefers) in the ``Kleisli pseudo-category'', and on the other as pseudo-algebras in the ``bicatgeory of spans''.

\hyperref[sec:II]{Chapter~III} gives various examples, of which the most detailed is that of multicategories (which generalise those defined by Lambek in \cite{La}).
For this, we have been led to study in Sections~\hyperref[sec:III.1]{III.1} and \hyperref[sec:III.2]{III.2} the particular case where $\TT$ is a ``strongly cartesian'' triple, which not only allows for the construction of free $\TT$-categories over the usual model of free monoids (see the Appendix), but also gives a manageable description of this structure.
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We will thus quantitatively improve the examples given by Barr, and we will also later study other useful examples, but this problem appeared less important to us long as our definition seems more natural and has a more general reach.

\hyperref[sec:IV]{Chapter~IV} is dedicated first of all to the description of various particular cases of $\TT$-functors, for example étale (or ``discrete fibration'') $\TT$-functors, and then a generalisation, of $\TT$-profunctors, that give an approach to $\TT$-natural transformations.

In a subsequent work, we will define tensor $\TT$-categories, that will give various ``coherence'' formulas, in particular those of the ``pseudo-categories'' introduced in \hyperref[sec:II]{Chapter~II}.
We equally hope to undertake a homological study of these structure.

I would like, in closing, to express my thanks to Madame Bastiani, who encouraged me to work on this subject, and who reread the manuscript, which enabled me to correct numerous imperfections and sometimes errors.




%% Content %%

\clearpage
\tableofcontents


\clearpage
\setcounter{section}{-1}
\section{Terminology}
\label{sec:0}
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Categories generalise, at the same time, monoids and preorders;
we thus obtain two types of definitions of categories (and two choices of forgetful functors to sets).
The choice between these definitions depends most of all on practical necessities or the generalisations that we wish to obtain.
The relationship between these two definitions can be clarified by the notions of monad and polyad of Bénabou \cite{Be}.

We will find ourselves in such a situation due to the various structures that we introduce, and we will call these two types of definitions ``global'' and ``local'', respectively.
The only goal of the reminders below is the allow us to make precise the terminology and to give us a model of ``local'' definitions, but, of course, we suppose that the reader knows the elements of the theory of categories and of triples, and this chapter can be quickly skimmed over.


\subsection{Categories}
\label{sec:0.1}

A \emph{category} is a quadruple $\cat{E}=(\set{\cat{E}}, \Hom_\cat{E}, i, k)$ satisfying conditions~(1) to (6) below:

\begin{enumerate}
  \item[(1)] $\set{\cat{E}}$ is a set; its elements are called \emph{objects of $\cat{E}$}.

  \item[(2)] $\Hom_\cat{E}$ is a family of sets (that we suppose to be disjoint from one another, and disjoint from $\set{\cat{E}}$, to simplify constructions; but this is rarely the case in practice and, in theory, it is not indispensable).
    This family is indexed by $\set{\cat{E}}^2$, and the relations
    \[
      e\in\set{\cat{E}},
      e'\in\set{\cat{E}},
      f\in\Hom_\cat{E}(e',e)
    \]
    are expressed by simply saying that $f\colon e\to e'$ is a \emph{morphism} (in $\set{\cat{E}}$);
    we call $e$ the \emph{source of $f$} and $e'$ the \emph{target of $f$}.

  \item[(3)] $i$ is a family of maps of the form
    \[
      i(e)\colon \{\varnothing\}
      \to \Hom_\cat{E}(e,e),
    \]
    where the index $e$ runs over the set $\set{\cat{E}}$.
    We denote by $\id(e)$, $\id_e$, or even simply $e$, the morphism $i(e)(\varnothing)\colon e\to e$.
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    (This is a sophisticated way of giving a family of morphisms $\id_e\colon e\to e$, where $e\in\set{\cat{E}}$).

  \item[(4)] $k$ is a family of maps of the form
    \[
      k(e'',e',e)\colon
      \Hom_\cat{E}(e'',e')\times\Hom_\cat{E}(e',e)
      \to \Hom_\cat{E}(e'',e),
    \]
    where the index $(e'',e',e)$ runs over the set $\set{\cat{E}}^3$.
    We generally denote by $g\cdot f$ the composite, i.e. the image under such a map of a pair $(g,f)$.

  \item[(5)] If $f\colon e\to e'$ is a morphism in $\cat{E}$, then
    \[
      f\cdot\id_e
      = f
      = \id_{e'}\cdot f.
    \]

  \item[(6)] If $f\colon e\to e'$, $g\colon e'\to e''$, and $h\colon e''\to e'''$ are ``consecutive'' morphisms in $\cat{E}$, then
    \[
      h\cdot(g\cdot f)
      = (h\cdot g)\cdot f,
    \]
    which allows to us to denote this morphism by $h\cdot g\cdot f$.
\end{enumerate}

A pair $(\set{\cat{E}},\Hom_\cat{E})$ satisfying conditions~1 and 2 is called a \emph{graph}; a triple $(\set{\cat{E}},\Hom_\cat{E},i)$ satisfying conditions~1, 2, and 3 is called a \emph{pointed graph}; and in both cases we use the corresponding terminology of conditions~1, 2, and 3.

We say that $F\colon\cat{E}\to\cat{E}'$ is a \emph{functor} if $\cat{E}$ and $\cat{E}'$ are categories and $F$ is a pair $(\set{F},F_1)$ such that

\begin{enumerate}
  \item[(1')] $\set{F}\colon\set{\cat{E}}\to\set{\cat{E}'}$ is a map.
    We denote simply by $F(e)$ the object $\set{F}(e)$, for all $e\in\set{\cat{E}}$.

  \item[(2')] $F_1$ is a family of maps of the form
    \[
      F_1(e',e)\colon
      \Hom_\cat{E}(e',e)
      \to \Hom_{\cat{E}'}(F(e'),F(e)),
    \]
    where the index $(e',e)$ runs over the set $\set{\cat{E}}^2$.
    If $f\colon e\to e'$ is a morphism in $\cat{E}$, we denote simply by $F(f)$ the morphism $F_1(e',e)(f)$.

  \item[(3')] $F(\id_e)=\id_{F(e)}$ for all $e\in\set{\cat{E}}$.

  \item[(4')] $F(g\cdot f)=F(g)\cdot F(f)$, if $f\colon e\to e'$ and $g\colon e'\to e''$ are consecutive morphisms in $\cat{E}$.
\end{enumerate}

A \emph{natural transformation $I\colon F\to F'$}, where $F,F'\colon\cat{E}\to\cat{E}'$ are functors with the same source and target, is given by a family of morphisms in $\cat{E}'$ of the form $I(e)\colon F(e)\to F'(e)$, where the index $e$ runs over the set $\set{\cat{E}}$, such that for every morphism $f\colon e\to e'$ in $\cat{E}$ we have the relation $I(e')\cdot F(f)=F'(f)\cdot I(e)$.
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We denote by $\cat{E}'^{\cat{E}}$ the usual category whose objects are the functors $F\colon\cat{E}\to\cat{E}'$ and whose morphisms are the natural transformations between these functors.
The composition law in $\cat{E}'^{\cat{E}}$ will generally borrow the notation from that of $\cat{E}'$, which risks producing confusion.
Indeed, if $F\colon\cat{E}\to\cat{E}'$ and $G\colon\cat{E}'\to\cat{E}''$ are consecutive functors, then we denote by $G\cdot F\colon\cat{E}\to\cat{E}''$ the usual composite.
Such a composition extends to natural transformations: if $I\colon F\to F'$ is a morphism in $\cat{E}'^{\cat{E}}$ and $J\colon G\to G'$ a morphism in $\cat{E}''^{\cat{E}'}$, then we define a composite $J\cdot I\colon G\cdot F\to G'\cdot F'$ by the formula
\[
  (J\cdot I)(e)
  = J(F'(e))\cdot G(I(e))
  = G'(I(e))\cdot J(F(e)).
\]
But the notation of a dot for this composition risks being confused with the composition in $\cat{E}^\cat{E}$, when, for example, $\cat{E}=\cat{E}'=\cat{E}''$ and the composition in $\cat{E}$ is denoted by a dot.
Also, even though we generally denote by a point the compositions of ``morphisms between structures'', we often denote by $JI$ the composite $J\cdot I$ above, so that, for example, we can write
\[
  JI
  = JF'\cdot GI
  = G'I\cdot JF.
\]

Similarly, we often write $Fe$, $Ff$, and $Ie$ instead of $F(e)$, $F(f)$, and $I(e)$, respectively; this convention is used most of all when the previous convention on the notation $JI$ instead of $J\cdot I$ is in force.

As for \emph{limits}, we adopt the following notation: if $e\in\set{\cat{E}}$, and if $\phi\colon \cat{A}\to\cat{E}$ is a functor, then we say that $C\colon e\to\phi$ is a \emph{projective cone} if $C$ is a family of morphisms in $\cat{E}$, called the \emph{canonical projections of $C$}, of the form $C(n)\colon e\to\phi(n)$ for all $n\in\set{\cat{A}}$ such that, for every morphism $x\colon n\to n'$ in $\cat{A}$, we have that $\phi(x)\cdot C(n)=C(n')$.
We say that the projective cone $C$ is a \emph{projective limit}, or simply that $e$ is the \emph{projective limit of $\phi$}, if, for every projective cone of the form $C'\colon e'\to\phi$, there exists exactly one morphism $f\colon e'\to e$ in $\cat{E}$ such that $C'(n)=C(n)\cdot f$ for all $n\in\set{\cat{A}}$.
We call $f$ the \emph{crochet}\todo{translator footnote here about ``crochet''} of $C'$ with respect to the limit $C$.
This terminology is often modified for particular limits: products, fibre products, various diagrams.
For example, we say that the following commutative diagram
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\[
  \begin{tikzcd}[sep=huge]
    e'' \ar[d,swap,"g"]
  & \pi \ar[l,swap,"v_2"] \ar[d,"v_1"]
  \\e
  & e' \ar[l,"f"]
  \end{tikzcd}
\]
is a \emph{cartesian square}, or a \emph{fibre product}\footnote{This terminology supposes that we consider the diagram as oriented within the plane.}, or we say that $(v_1,v_2)$, or simply $\pi$, is a \emph{fibre product} of $(f,g)$, if the relation $f\cdot f'=g\cdot g'$ in $\cat{E}$ implies the existence and universality of a crochet $h$ such that $f'=v_1\cdot h$ and $g'=v_2\cdot h$.
We use analogous conventions for inductive limits, but the expression ``canonical projection''  should be replaced by \emph{canonical injection}.
We say that $\cat{E}$ \emph{admits projective $\cat{A}$-limits}, for example, if, for every $\phi\in\set{\cat{E}^\cat{A}}$, there exists a projective limit $C\colon e\to\phi$;
and if we have chosen such a limit for all $\phi$, we say that $\cat{E}$ is endowed with a \emph{canonical} (or \emph{official}) choice of projective $\cat{A}$-limits.
We use analogous conventions for fibre products, inductive limits, etc. \ldots.
Often such a choice is classical and is made tacitly.

We will not cover the notion of a functor \emph{commuting with limits}, nor that of limits commuting with one another;
these notions are clear enough.

Recall that, if $C\colon\phi\to e$ is an inductive cone, where $\phi\colon\cat{A}\to\cat{E}$ is a functor, if $f\colon e'\to e$ is a morphism in $\cat{E}$, and if we can form, for all $n\in\set{\cat{A}}$, a fibre product
\[
  \begin{tikzcd}[sep=huge]
    \phi(n) \ar[d,swap,"C(n)"]
  & \phi'(n) \ar[l,swap,"t(n)"] \ar[d,"C'(n)"]
  \\e
  & e' \ar[l,"f"]
  \end{tikzcd}
\]
then the family $\phi'(n)$ extends to a functor $\phi'\colon\cat{A}\to\cat{E}$ in a way entirely determined by the condition that $t\colon\phi'\to\phi$ be a natural transformation.
We say that the cone $C'\colon\phi'\to e'$ is obtained by the \emph{change of base $f$}, and we sometimes denote it by $f^*C$.
We say that, in $\cat{E}$, the \emph{inductive $\cat{A}$-limits are universal} if, whenever $C$ is an inductive $\cat{A}$-limit and $C'$ exists, then $C'$ is an inductive $\cat{A}$-limit.


\subsection{Triples}
\label{sec:0.2}
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Let $\cat{E}$ be a category.
We say that $\TT=(T,I,K)$ is a \emph{triple} on $\cat{E}$ if $T\colon\cat{E}\to\cat{E}$ is a functor, and $I\colon\id_\cat{E}\to T$ and $K\colon TT\to T$ are natural transformations such that
\[
  \begin{gathered}
    K\cdot TI
    = T
    = K\cdot IT
  \\K\cdot TK
    = K\cdot KT
  \end{gathered}
  \tag{1}
\]
We say that $(M,m)\colon\TT\to\TT'$ is a \emph{morphism of triples} if $\TT=(T,I,K)$ is a triple on $\cat{E}$, $\TT'=(T',I',K')$ is a triple on another category $\cat{E}'$, $M\colon\cat{E}\to\cat{E}'$ is a functor, and $m\colon T'M\to MT$ is a natural transformation such that
\[
  \begin{aligned}
    m\cdot I'M
  & = MI
  \\m\cdot K'M
  & = MK\cdot mT\cdot T'm.
  \end{aligned}
  \tag{2}
\]
In general, when there is no risk of confusion, we use the same notation $I$ and $K$ for all triples.

We say that the functor $F\colon\cat{E}\to\overline{\cat{E}}$ is an \emph{adjoint functor} of the functor $U\colon\overline{\cat{E}}\to\cat{E}$ if there exist natural transformations $I\colon\id_\cat{E}\to UF$ and $\overline{I}\colon FU\to\id_{\overline{\cat{E}}}$ such that
\[
  \begin{aligned}
    U\overline{I}\cdot IU
  & = U
  \\\overline{I}F\cdot FI
  & = F.
  \end{aligned}
  \tag{3}
\]
For all $e\in\set{\cat{E}}$, we call $Ie$ the \emph{adjunction morphism} associated to $e$; for all $\overline{e}\in\set{\overline{\cat{E}}}$, we call $\overline{I}\overline{e}$ the \emph{coadjunction morphism} associated to $\overline{e}$.
We will show that $\TT=(UF,I,U\overline{I}F)$ is a triple on $\cat{E}$: we say that it is \emph{induced from the adjoint pair $(F,U)$};
it depends on the choice (tacit, in general) of $I$ and $\overline{I}$.

Recall that, if $\TT$ is a triple on $\cat{E}$, then we denote by $\Alg{\TT}$ the category of \emph{$\TT$-algebras}: a $\TT$-algebra on $e\in{\set{\cat{E}}}$ is a morphism in $\cat{E}$ of the form $b\colon Te\to e$ such that
\[
  \begin{aligned}
    b\cdot Ie
    &= e
  \\b\cdot Ke
    &= b\cdot Tb
  \end{aligned}
  \tag{4}
\]
and a morphism $f\colon b\to b'$ in $\Alg{\TT}$ is defined by a morphism $f\colon e\to e'$ in $\cat{E}$ such that $b$ is an algebra on $e$, $b'$ is an algebra on $e'$, and
\[
  f\cdot b
  = b'\cdot Tf.
  \tag{5}
\]
We denote by $\Kl{\TT}$ the \emph{Kleisli category} of $\TT$: it has the same objects as $\cat{E}$, and a morphism $g\colon e\to e'$ in $\Kl{\TT}$ is a morphism $g\colon Te\to Te'$ in $\cat{E}$ such that $g\colon Ke\to Ke'$ is a morphism in $\Alg{\TT}$.
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Recall that such a morphism is equivalent to giving a morphism $h\colon e\to Te'$, and that the composite of $h$ with another morphism $h'\colon e'\to Te''$ in $\Kl{\TT}$ is equal to $Ke''\cdot Th'\cdot h\colon e\to Te''$.
The forgetful functors $\Alg{\TT}\to\cat{E}$ and $\Kl{\TT}\to\cat{E}$ (with the latter sending the morphism $g\colon e\to e'$ in $\Kl{\TT}$ to the morphism $g\colon Te\to Te'$ in $\cat{E}$) admit adjoints, and $\TT$ is the triple induced form each of these adjoint pairs.

Recall, finally, that if $\TT$ is the triple induced by an adjoint pair $(F,U)$, then we have a commutative diagram
\[
  \begin{tikzcd}
    \Kl{\TT} \ar[r] \ar[dr]
  & \overline{\cat{E}} \ar[r] \ar[d]
  & \Alg{\TT} \ar[dl]
  \\
  & \cat{E}
  \end{tikzcd}
\]
with the horizontal arrows being furthermore unique whenever they make the diagram obtained by replacing the three functors to $\cat{E}$ with their adjoints commute.
The functor $\overline{\cat{E}}\to\Alg{\TT}$ is called the \emph{Eilenberg--Moore functor} associated to $(F,U)$, or simply to $U$.
When this functor is an isomorphism, we say that $U$ is \emph{tripleable}.
For example, the Eilenberg--Moore functor $\Kl{\TT}\to\Alg{\TT}$ is fully faithful, but not always injective.




\renewcommand{\thesection}{\Roman{section}}
\section{General properties of $\TT$-categories}
\label{sec:I}
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We are going to replace the morphism $b\colon Te\to e$ of a $\TT$-algebra, where $\TT$ is a triple on a category $\cat{E}$, by a span, i.e. by a pair of morphism in $\cat{E}$ with the same target
\[
  b\colon\pi\to e
  \textand
  a\colon\pi\to Te
\]
and define the notion of a $\TT$-category by adding data and conditions to this span, in a way that generalises the notion of a ``relational $\TT$-algebra'' of Barr \cite{Ba}.
In Chapter~II, we will see that this generalisation is natural;
below, we will draw inspiration from the ``global'' definition of a category in order to choose our axioms.


\subsection{$\TT$-categories}
\label{sec:I.1}

In the rest of this chapter, $\cat{E}$ will be a category admitting finite fibre products, and $\TT=(T,I,K)$ a triple on $\cat{E}$.

A \emph{$\TT$-graph} on an object $e\in\set{\cat{E}}$ is a pair $(b,a)$, where
\[
  b\colon\pi\to e
  \textand
  a\colon\pi\to Te
\]
are morphisms in $\cat{E}$.

A \emph{pointed $\TT$-graph} is a triple $(b,a,i)$ such that $(b,a)$ is a $\TT$-graph on $e$, and $i\colon e\to\pi$ is a morphism in $\cat{E}$ such that
\[
  b\cdot i = \id_e
  \textand
  a\cdot i= Ie.
  \tag{1}
\]
We then form a fibre product of $(a,Tb)$:
\[
  \begin{tikzcd}[sep=huge]
    T\pi
      \ar[d,swap,"Tb"]
  & \pi_2
      \ar[l,swap,"v_2"]
      \ar[d,"v_1"]
  \\Te
  & \pi
      \ar[l,"a"]
  \end{tikzcd}
\]
The relations
\[
  \begin{gathered}
    a\cdot\id_\pi
    = a
    = \id_{Te}\cdot a
    = Tb\cdot(Ti\cdot a)
  \\a\cdot(i\cdot b)
    = Ie\cdot b
    = Tb\cdot I\pi
  \end{gathered}
\]
imply the existence of crochets $i_1,i_2\colon\pi\to\pi_2$ such that
\[
  v_1\cdot i_1
  = \id_p
  \qquad
  v_2\cdot i_1
  = Ti\cdot a
  \tag{2}
\]
\[
  v_1\cdot i_2
  = i\cdot b
  \qquad
  v_2\cdot i_2
  = I\pi.
  \tag{3}
\]
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We then form a fibre product $(w_1,w_2)$ of $(v_2,Tv_1)$.
If $k\colon\pi_2\to\pi$ is a morphism that satisfies
\[
  \begin{aligned}
    b\cdot k
    &= b\cdot v_1
  \\a\cdot k
    &= Ke\cdot Ta\cdot v_2
  \end{aligned}
  \tag{4}
\]
then the relations
\[
  \begin{gathered}
    a\cdot(k\cdot w_1)
    = Ke\cdot Ta\cdot v_2\cdot w_1
    = Ke\cdot TTb\cdot Tv_2\cdot w_2
    = Tb\cdot(K\pi\cdot Tv_w\cdot w_2)
  \\a\cdot(v_1\cdot w_1)
    = Tb\cdot Tv_1\cdot w_2
    = Tb\cdot (Tk\cdot w_2)
  \end{gathered}
\]
imply the existence of crochets $k_1,k_2\colon\pi_3\to\pi_2$ such that
\[
  v_1\cdot k_1
  = k\cdot w_1
  \qquad
  v_2\cdot k_1
  = K\pi\cdot Tv_2\cdot w_2
  \tag{5}
\]
\[
  v_1\cdot k_2
  = v_1\cdot w_1
  \qquad
  v_2\cdot k_2
  = Tk\cdot w_2
  \tag{6}
\]

\begin{figure}
  \[
    \begin{tikzcd}[sep=6em]
      TTTe
        \ar[d,swap,"KTe",bend right=20]
        \ar[d,"TKe",bend left=20]
    & TT\pi
        \ar[l,swap,"TTa"]
        \ar[d,"K\pi"]
        \ar[dl,"TTb"]
    & T\pi_2
        \ar[l,swap,"Tv_2"]
        \ar[dl,swap,near start,"Tv_1"]
        \ar[dl,"Tk",bend left=20]
    & \pi_3
        \ar[l,swap,"w_2"]
        \ar[dl,swap,"w_1"]
        \ar[dl,swap,"k_2",bend left=30]
        \ar[dl,"k_1",bend left=50]
    \\TTe
        \ar[d,swap,"Ke"]
    & T\pi
        \ar[l,swap,"Ta"]
        \ar[dl,swap,"Tb"]
    & \pi_2
        \ar[l,swap,"v_2"]
        \ar[u,swap,"I\pi_2"]
        \ar[dl,swap,"v_1"]
        \ar[dl,swap,"k",bend left=25]
    \\Te
        \ar[u,near end,"ITe",bend left=40]
        \ar[u,swap,near end,"TIe",bend right=40]
        \ar[ur,swap,"Ti",bend right=20]
    & \pi
        \ar[l,swap,"a"]
        \ar[u,swap,"I\pi"]
        \ar[ur,"i_1",bend right=55]
        \ar[ur,swap,"i_2",bend right=70]
        \ar[dl,swap,"b"]
    \\e
        \ar[u,"Ie"]
        \ar[ur,swap,"i",bend right=25]
    \end{tikzcd}
  \]
  \caption{~}
  \label{fig:figure-1}
\end{figure}

A \emph{$\TT$-category}, then, is a quadruple $\theta=(b,a,i,k)$ such that $(b,a,i)$ is a pointed $\TT$-graph and further satisfying axioms~(4), (5), (6), as well as (7) and (8) below:
\begin{enumerate}
  \item[(7)] $k\cdot i_1 = \id_\pi = k\cdot i_2$ (``identity'')
  \item[(8)] $k\cdot k_1 = k\cdot k_2$ (``associativity'').
\end{enumerate}

\begin{rmenv}{Remark}
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  In reality, $\theta$ depends on the choice of the fibre products $(v_1,v_2)$ and $(w_1,w_2)$, and we call these pairs the fibre products \emph{associated} to the $\TT$-category $\theta$;
  their data is implicit in the quadruple $(b,a,i,k)$.
  We call $b$ and $a$ the \emph{target morphism} and \emph{source morphism} (respectively) in $\theta$;
  the object $e$ is denoted $\set{\theta}$ and called the \emph{object of objects} (or simply the \emph{objects object}), and the object $\pi$ is called the \emph{object of morphisms} (or simply the \emph{morphisms object}).
  More generally, $\pi_n$ for $n=0,1,2,3$, where $\pi_0=e$ and $\pi_1=\pi$, is called the \emph{object of paths of length $n$} in $\theta$.
  (All this terminology can also be applied to a $\TT$-graph.)

  When $\cat{E}$ is endowed with a canonical choice of fibre products, and $(v_1,v_2)$ and $(w_1,w_2)$ are canonically chosen, we say that $\theta$ is a \emph{canonical} (or \emph{official}) \emph{$\TT$-category}.
  In the case where $\cat{E}$ is endowed with such a choice, it will be implicit that the $\TT$-category is canonical, and we will explicitly point out if this is not the case.
  It is evident that to every non-canonical $\TT$-category there is an associated canonical $\TT$-category that has the same underlying $\TT$-graph, and that there is a unique isomorphism (see the definition of morphism that follows) between them.
  Conversely, if $\theta$ is a canonical $\TT$-category, then every other choice of two fibre products above gives exactly one non-canonical $\TT$-category to which it is isomorphic.
  This remark will be tacitly applied to other analogous structures.
\end{rmenv}

If $\theta=(b,a)$ and $\theta'=(b',a')$ are $\TT$-graphs, then a \emph{morphism} $f$ from $\theta$ to $\theta'$, also denoted $(f_0,f_1)\colon\theta\to\theta'$, is determined by a pair of morphisms $f_0\colon e\to e'$ and $f_1\colon\pi\to\pi'$ in $\cat{E}$ between the objects objects and the morphisms objects (respectively) that satisfies the following relations:
\[
  \begin{aligned}
    b'\cdot f_1
    &= f_0\cdot b
  \\a'\cdot f_1
    &= Tf_0\cdot a.
  \end{aligned}
  \tag{1'}
\]
We also denote $f_0$ by $\set{f}$ and call it the \emph{underlying morphism of $f$}.

If $\theta=(b,a,i)$ and $\theta'=(b',a',i')$ are pointed $\TT$-graphs, then a morphism $(f_0,f_1)\colon\theta\to\theta'$ is defined by a morphism of the underlying $\TT$-graphs that further satisfies
\[
  i'\cdot f_0
  = f_1\cdot i.
  \tag{2'}
\]
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Finally, let $\theta=(b,a,i,k)$ and $\theta'=(b',a',i',k')$ be $\TT$-categories;
if $(f_0,f_1)$ defines a morphism of the underlying pointed $\TT$-graphs, then there exist crochets $f_2\colon\pi_2\to\pi'_2$ and $f_3\colon\pi_3\to\pi'_3$ characterised by the relations
\[
  \begin{gathered}
    v'_1\cdot f_2
    = f_1\cdot v_1
    \qquad
    v'_2\cdot f_2
    = Tf_1\cdot v_2
  \\w'_1\cdot f_3
    = f_2\cdot w_1
    \qquad
    w'_2\cdot f_3
    = T f_2\cdot w_2
  \end{gathered}
\]
where $(v_1,v_2)$ and $(w_1,w_2)$ are the fibre products associated to $\theta$, and $(v'_1,v'_2)$ and $(w'_1,w'_2)$ are the fibre products associated to $\theta'$.
Then $(f_0,f_1)$ defines a \emph{morphism of $\TT$-categories}, or a \emph{$\TT$-functor}, $(f_0,f_1)\colon\theta\to\theta'$ if, further,
\[
  k'\cdot f_2
  = f_1\cdot k.
  \tag{3'}
\]

Let $\mathbf{2}$ be the category consisting of two objects, $0$ and $1$, and a single morphism $0\to1$ (apart from the two identity morphisms).
An object of $\cat{E}^\mathbf{2}$ can be identified with a morphism in $\cat{E}$, and $(g,g')\colon f\to f'$ can be associated to a morphism in $\cat{E}^\mathbf{2}$ if $g,g',f,f'$ are morphisms in $\cat{E}$ such that $f'\cdot g'=g\cdot f$.
If $\cat{E}$ admits fibre products, then so too does $\cat{E}^\mathbf{2}$, and, if $\TT=(T,I,K)$ is a triple on $\cat{E}$, then it induces a triple $\TT^\mathbf{2}$ on $\cat{E}^\mathbf{2}$, where $\TT^\mathbf{2}=(T^\mathbf{2},I^\mathbf{2},K^\mathbf{2})$, just as for any category of presheaves (i.e. of functors) with values in $\cat{E}$.
If $f\colon e\to e'$ is a morphism in $\cat{E}$, and thus an object in $\cat{E}^\mathbf{2}$, then $T^\mathbf{2}f=Tf$, and $I^\mathbf{2}f$ and $K^\mathbf{2}f$ are the following morphisms:
\[
  \begin{aligned}
    I^\mathbf{2}f
    &= (Ie',Ie)
    \colon f
    \to Tf
  \\K^\mathbf{2}f
    &= (Ke', Ke)
    \colon TTf
    \to Tf.
  \end{aligned}
\]
If $(g,g')\colon f\to f'$ is a morphism in $\cat{E}^\mathbf{2}$, then its image under $T^\mathbf{2}$ is, by definition, the morphism $(Tg,Tg')\colon Tf\to Tf'$ in $\cat{E}^\mathbf{2}$.

\begin{itenv}{Proposition~I.1.1}
  A $\TT^\mathbf{2}$-category is identifiable with a morphism of $\TT$-categories.
\end{itenv}

\begin{proof}
  The proof, which is elementary, is left to the reader;
  we simply note that, if $(f_0,f_1)\colon\theta\to\theta'$ is a morphism of $\TT$-categories, then $f_0$ is the objects object, and $f_1$ the morphisms object, of the associated $\TT^\mathbf{2}$-category.
\end{proof}

We can make analogous remarks for $\TT$-graphs and pointed $\TT$-graphs.
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If $\cat{E}$ is endowed with official finite fibre products, then we denote by $\Gr{\TT}$ and $\Cat{Cat}(\TT)$ the categories whose objects are the official $\TT$-graphs and the official $\TT$-categories (respectively).
If $\cat{E}$ admits finite fibre products without us having made an official choice, then we sometimes denote by $\Gr{\TT}$ and $\Cat{Cat}(\TT)$ the categories (which are equivalent to the above) whose objects are all $\TT$-graphs and all $\TT$-categories (respectively).
The composition laws in these categories are evident.


\subsection{$\TT$-preorders}
\label{sec:I.2}

A \emph{regular} $\TT$-graph is a $\TT$-graph $(b,a)$ such that the relations
\[
  b\cdot f = b\cdot f'
  \textand
  a\cdot f = a\cdot f'
\]
imply that $f=f'$.
A \emph{$\TT$-preorder} is a $\TT$-category whose underlying graph is regular.

\begin{itenv}{Proposition~I.2.2}
  If $(b,a)$ is a regular $\TT$-graph, $e$ the objects object, $\pi$ the morphisms object, $\pi_2$ the source of a fibre product of $(a,Tb)$, and $i\colon e\to\pi$ and $k\colon\pi_2\to\pi$ morphisms in $\cat{E}$ satisfying only conditions~(1) to (4) of \cref{sec:I.1}, then $(b,a,i,k)$ is a $\TT$-preorder.
  Furthermore, conditions~(2') and (3') are consequences of (1') for a morphism into a $\TT$-preorder.
\end{itenv}

\begin{proof}
  We have to show that the axioms of identity and associativity, (7) and (8) of \cref{sec:I.1}, are automatically satisfied.
  Since $(b,a)$ is regular, the relations
  \[
    \begin{gathered}
      k\cdot i_1
      = \pi
      = k\cdot i_2
    \\k\cdot k_1
      = k\cdot k_2
    \end{gathered}
  \]
  lead to the following equalities:
  \begin{enumerate}
    \item[($\alpha$)] $b\cdot k\cdot i_1=b=b\cdot k\cdot i_2$
    \item[($\beta$)] $a\cdot k\cdot i_1=a=a\cdot k\cdot i_2$
    \item[($\gamma$)] $b\cdot k\cdot k_1=b\cdot k\cdot k_2$
    \item[($\delta$)] $a\cdot k\cdot k_1=a\cdot k\cdot k_2$.
  \end{enumerate}
  Indeed,
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  \[
    b\cdot k\cdot i_1
    \underset{(4)}{=} b\cdot v_1\cdot i_1
    \underset{(2)}{=} b
  \]
  and similarly
  \[
    b\cdot k\cdot i_2
    = b\cdot v_1\cdot i_2
    \underset{(3)}{=} b\cdot i\cdot b
    \underset{(1)}{=} b
  \]
  which proves ($\alpha$).
  Next,
  \[
    \begin{aligned}
      a\cdot k\cdot i_1
      &\underset{(4)}{=} Ke\cdot Ta\cdot v_2\cdot i_1
      = Ke\cdot Ta\cdot Ti\cdot a
    \\&= Ke\cdot T(a\cdot i)\cdot a
      \underset{(1)}{=} Ke\cdot TIe\cdot a
    \\&= a
    \end{aligned}
  \]
  and
  \[
    \begin{aligned}
      a\cdot k\cdot i_2
      &= Ke\cdot Ta\cdot v_2\cdot i_2
    \\&= Ke\cdot Ta\cdot I\pi
      =Ke\cdot ITe\cdot a
    \\&= a
    \end{aligned}
  \]
  which proves ($\beta$).
  Then
  \[
    \begin{aligned}
      b\cdot k\cdot k_1
      &= b\cdot v_1\cdot k_1
      = b\cdot k\cdot w_1
    \\&= b\cdot v_1\cdot w_1
      = b\cdot v_1\cdot k_2
    \\&= b\cdot k\cdot k_2
    \end{aligned}
  \]
  whence ($\gamma$).
  Finally,
  \[
    \begin{aligned}
      a\cdot k\cdot k_1
      &= Ke\cdot Ta\cdot v_2\cdot k_1
      = Ke\cdot Ta\cdot K\pi\cdot Tv_2\cdot w_2
    \\&= Ke\cdot KTe\cdot TTa\cdot Tv_2\cdot w_2
      = Ke\cdot TKe\cdot TTa\cdot Tv_2\cdot w_2
    \\&= Ke\cdot T(Ke\cdot Ta\cdot v_2)\cdot w_2
      = Ke\cdot T(a\cdot k)\cdot w_2
    \\&= Ke\cdot Ta\cdot Tk\cdot w_2
      = Ke\cdot Ta\cdot v_2\cdot k_2
    \\&= a\cdot k\cdot k_2
    \end{aligned}
  \]
  which proves ($\delta$).
  The verification of the last claim of the proposition is easy.
\end{proof}

This proposition allows us to identify a $\TT$-preorder with its underlying $\TT$-graph, and to sometimes write $(b,a)$ instead of $(b,a,i,k)$ for a $\TT$-preorder.
Amongst all $\TT$-preorders, many interesting cases can be distinguished by properties of by $a$ and $b$ (see the examples in \unsure{\cref{sec:IV}}).
We limit ourselves to noting the following fact:

\begin{itenv}{Proposition~I.2.3}
  A $\TT$-algebra $b$ over $e$ can be identified with a $\TT$-preorder $(b,a)$ such that $a=\id_{Te}$, and conversely.
\end{itenv}

\begin{proof}
  This is completely evident, since the relation $a=\id_{Te}$ implies that $i=Ie$, $Ta=v_2=\id_{TTe}$, and $k=Ke$.
\end{proof}
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We denote by $\Ord{\TT}$ and $\Alg{\TT}$ the full subcategories of the category $\Gr{\TT}$ whose objects are the $\TT$-preorders and the $\TT$-algebras (respectively).
We have just seen that $\Alg{\TT}$ can be identified with the usual category of $\TT$-algebras.
Furthermore, when $\cat{E}=\Cat{Set}$ is the category of sets associated to a universe, we have:

\begin{itenv}{Proposition~I.2.4}
\label{proposition:I.2.4}
  If $\cat{E}=\Cat{Set}$, then the category $\Ord{\TT}$ is equivalent to the category of ``relational $\TT$-algebras'' of Barr {\cite{Ba}}.
\end{itenv}

\begin{proof}
  A ``relational $\TT$-prealgebra'' is a relation $r\colon Te\to e$.
  It is defined by a subset $\pi$ of $e\times Te$, which defines a regular $\TT$-graph $(b,a)$ by taking $b$ and $a$ to be the composite of the inclusion $\pi\to e\times Te$ with the projections $e\times Te\to e$ and $e\times Te\to Te$ (respectively).
  This is a ``relational $\TT$-algebra'' if it further satisfies the conditions:
  \begin{enumerate}
    \item[(1)] $\id_e\subset r\cdot Ie$
    \item[(2)] $r\cdot\tilde{T}r\subset r\cdot Ke$
  \end{enumerate}
  where $\tilde{T}r\colon TTe\to Te$ is the relation defined by the set
  \[
    \hat{\pi}
    = \big\{
      \big(Tb(z), Ta(z)\big)
      \mid z\in T\pi
    \big\}
    \subset Te\times TTe.
  \]
  We identify every map $f\colon e\to e'$ with a relation, and we denote by
  \[
    \tilde{f}
    = \big\{
      \big(f(x),x\big)
      \mid x\in e
    \big\}
    \subset e'\times e
  \]
  its ``graph''.
  We will show that $(b,a)$ is a $\TT$-preorder.

  For each $x\in e$, set $i(x)=(x,Ie(x))$;
  we have that $i(x)\in\pi$, since, by (1), $(x,x)\in\id_e$ implies that there exists $y\in Te$ such that
  \[
    (x,y)\in r
    \textand
    (y,x)\in Ie
  \]
  and, since $Ie$ is a map, we have that $y=Ie(x)$;
  thus $i(x)\in\pi$, and $i\colon e\to\pi$ is a map such that
  \[
    b\cdot i = \id_e
    \textand
    a\cdot i = Ie.
  \]

  An element $((x,y),m)$ of the fibre product $\pi_2$ of $(a,Tb)$ is characterised by the relations $(x,y)\in\pi$, $m\in T\pi$, and $y=Tb(m)$.
  Set
  \[
    k((x,y),m)
    = (x,Ke\cdot Ta(m))
  \]
  which is an element of $\pi$.
  Indeed, since $(Tb(m),Ta(m))\in\hat{\pi}$, condition~(2) implies that $(x,Ta(m))\in r\cdot Ke$, and so there exists $y\in Te$ such that $(x,y)\in\pi$ and $(y,Ta(m))\in Ke$.
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  Since $Ke$ is an application, we deduce that $y=Ke\cdot Ta(m)$, which shows that $k((x,y),m)\in\pi$, and that the map $k\colon\pi_2\to\pi$ satisfies the conditions
  \[
    b\cdot k = b\cdot v_1
    \textand
    a\cdot k = Ke\cdot Ta\cdot v_2.
  \]
  This, by \unsure{which proposition number?} proves that $(b,a)$ is a $\TT$-preorder.
\end{proof}


\subsection{Properties (projective limits, fibrations, \ldots)}
\label{sec:I.3}

We have a sequence of forgetful functors
\[
  \Alg{\TT}
  \to \Ord{\TT}
  \to \Cat{Cat}(\TT)
  \to \Gr{\TT}
  \to \cat{E}.
  \tag{$\ast$}
\]
The first two are full inclusions, the third is faithful and the fourth is (in general) not.

\begin{itenv}{Proposition~I.3.5}
  If $\cat{E}$ admits projective $\cat{A}$-limits, then so too do each of the categories appearing in the sequence ($\ast$), and the functors in this sequence commute with these limits.
\end{itenv}

\begin{proof}
  We will first show how to construct a projective limit for a functor $\phi\colon\cat{A}\to\Cat{Cat}(\TT)$.
  To each \emph{symbol} of an object $x$ in \cref{fig:figure-1} there corresponds an evident functor, which we denote by $U_x\colon\Cat{Cat}(\TT)\to\cat{E}$, that sends a $\TT$-category $\theta$ to the object denoted $x$ in \unsure{which figure?}.
  Thus
  \[
    \begin{aligned}
      U_e(\theta)
      &= e
    \\U_\pi(\theta)
      &= \pi
    \\U_Te(\theta)
      &= Te
    \end{aligned}
  \]
  etc., and to each \emph{symbol} of a morphism $\xi\colon x\to x'$ in \cref{fig:figure-1} associates a natural transformation $U_\xi\colon U_x\to U_{x'}$ such that $U_\xi(\theta)=\xi$.
  We set
  \[
    \hat{x} = U_x\cdot\phi
    \textand
    \hat{\xi} = U_\xi\cdot\phi;
  \]
  then, for all $n\in\set{\cat{A}}$, we have that
  \[
    \phi(n)
    = \big(
      \hat{b}(n),
      \hat{a}(n),
      \hat{i}(n),
      \hat{k}(n).
    \big)
  \]
  If $\hat{x}\colon\cat{A}\to\cat{E}$ is a functor, then we denote by $p_n^x\colon\lim\hat{x}\to\hat{x}(n)$ the $n$-th canonical projection of this limit.
  Similarly, if $\hat{\xi}\colon\hat{x}\to\hat{x}'$ is a natural transformation, then we denote by $\lim\hat{\xi}\colon\lim\hat{x}\to\lim\hat{x}'$ the unique morphism in $\cat{E}$ such that $\lim\hat{\xi}\cdot p_n^x=p_n^{x'}\cdot\hat{\xi}(n)$ for all $n\in\set{\cat{A}}$.\footnote{In a future work, we will consider \cref{fig:figure-1} as the ``sketch'' of $\TT$-categories, with the latter being exactly the ``realisations'' of this ``sketch'' endowed with ``typifications'' (see the terminology of \cite{Bu}, for example).}
  We set $e=\lim\hat{e}$.
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  Let $m^{Te}$ be the unique morphism (again called the crochet) that comes from the property of the projective limit $\lim\widehat{Te}$, such that $p_n^{Te}\cdot m^{Te}=Tp_n^e$ for all $n\in\set{\cat{A}}$.
  We take a fibre product of $(\lim\hat{a},m^{Te})$:
  \[
    \begin{tikzcd}[sep=huge]
      \lim\widehat{Te}
    & Te
        \ar[l,swap,"m^{Te}"]
    \\\lim\hat{\pi}
        \ar[u,"\lim\hat{a}"]
    & \pi
        \ar[l,"m^\pi"]
        \ar[u,swap,"a"]
    \end{tikzcd}
  \]
  We have that $m^{Te}\cdot Ie=\lim\widehat{Ie}$.
  The $\TT$-graph $(b,a)$, where $b=\lim\hat{b}\cdot m^\pi$ and $a$ is the projection defined above, extends to a $\TT$-category.
  Indeed, the relations
  \[
    \lim\hat{a}\cdot\lim\hat{i}
    = \lim\widehat{Ie}
    = m^{Te}\cdot Ie
  \]
  imply the existence of a bracket $i\colon e\to\pi$ characterised by the relations
  \[
    m^\pi\cdot i
    = \lim\hat{i}
    \textand
    a\cdot i
    = Ie
  \]
  and then $(b,a,i)$ is a pointed $\TT$-graph.

  Let $m^{T\pi}\colon T\pi\to\lim\widehat{T\pi}$ be the crochet characterised by the relations $p_n^{T\pi}\cdot m^{T\pi}=Tp_n^\pi$;
  we will show that $\lim\widehat{Tb}\cdot m^{T\pi}=m^{Te}\cdot Tb$ by obtaining equalities whenever we compose on the left by the $p_n^{Te}$.
  It thus follows, since projective limits of fibre products are again fibre products, that there exists a crochet $m^{\pi_2}\colon\pi_2\to\lim\hat{\pi}_2$ such that
  \[
    \begin{aligned}
      \lim\hat{v}_2\cdot m^{\pi_2}
      &= m^{T\pi}\cdot v_2
    \\\lim\hat{v}_1\cdot m^{\pi_2}
      &= m^\pi\cdot v_1
    \end{aligned}
  \]
  where $(v_1,v_2)$ is the fibre product of $(a,Tb)$.
  The relations
  \[
    \begin{aligned}
      \lim\hat{a}\cdot\lim\hat{k}\cdot m^{\pi_2}
      &= \lim\widehat{Ke}\cdot(\lim\widehat{Ta}\cdot\lim\hat{v}_2\cdot m^\pi_2)
    \\&= \lim\widehat{Ke}\cdot m^{TTe}\cdot Ta\cdot v_2
    \\&= m^{Te}\cdot Ke\cdot Ta\cdot v_2
    \end{aligned}
  \]
  imply the existence of $k\colon\pi_2\to\pi$ such that
  \[
    \begin{aligned}
      a\cdot k
      &= Ke\cdot Ta\cdot v_2
    \\m^\pi\cdot k
      &= \lim\hat{k}\cdot m^{\pi_2}.
    \end{aligned}
  \]
  It thus follows that $b\cdot k=b\cdot v_1$.
  It remains only to show that $(b,a,i,k)$ satisfies the axioms of identity and associativity, which we leave to the reader.
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  To see that $(b,a,i,k)$ is indeed a projective limit, suppose that $(b',a',i',k')$ is a $\TT$-category, $(v'_1,v'_2)$ and $(w'_1,w'_2)$ the associated fibre products, and $e'$, $\pi'$, $\pi'_2$, $\pi'_3$ the objects of paths of length $n=0,1,2,3$ (respectively); consider a projective cone from this structure to the functor $\phi\colon\cat{A}\to\Cat{Cat}(\TT)$.
  For each symbol of an object $x$ in \cref{fig:figure-1}, we denote by $q_n^x\colon x'\to\hat{x}(n)$ the $n$-th projection, and by $q^x$ the crochet characterised by $q_n^x=p_n^x\cdot q^x$ for all $n\in\set{\cat{A}}$.
  By composing with the $p_n^{Te}$ on the left, we note that $m^{Te}\cdot Tq^e=q^{Te}$, and so
  \[
    \lim\hat{a}\cdot q^\pi
    = q^{Te}\cdot a'
    = m^{Te}\cdot Tq^e\cdot a'
  \]
  which implies the existence of a crochet $\overline{q}\colon\pi'\to\pi$ characterised by
  \[
    a\cdot\overline{q} = Tq^e\cdot a'
    \textand
    m^\pi\cdot\overline{q} = q^\pi.
  \]
  We then easily finish the proof by showing that $(q^e,\overline{q})$ defines a homomorphism of $\TT$-categories.

  The construction of projective limits of $\TT$-graphs and of pointed $\TT$-graphs is, evidently, ``underlying'' to that which we have just done.
  It is then immediate that the forgetful functor $\Cat{Cat}(\TT)\to\Gr{\TT}$ commutes with these limits.
  Finally, if in the above construction of $\lim\phi$ the $\TT$-graphs $(b(n),a(n))$ were regular then so too would be $(b,a)$, which makes explicit the projective limits in $\Ord{\TT}$, and if the $a(n)$ were simply identities then so to would be $a$;
  thus the ``full inclusion'' functor $\Alg{\TT}\to\Ord{\TT}$ commutes with these limits.
\end{proof}

\begin{itenv}{Corollary}
  If $\TT$ commutes with projective $\cat{A}$-limits then the above construction simplifies, and $x=\lim\hat{x}$ for every symbol $x$.
\end{itenv}

\begin{proof}
  This is completely immediate, since the projective $\cat{A}$-limits of fibre products are again fibre products (by the commutativity of projective limits with themselves).
\end{proof}

If $U\colon\overline{\cat{E}}\to\cat{E}$ is a functor, we say that a morphism $\overline{f}\colon\overline{e}'\to\overline{e}$ in $\overline{\cat{E}}$ is \emph{$U$-cartesian} (or is a \emph{$U$-injection}, in the terminology of \cite{Eh}) if, for every morphism $\overline{g}\colon\overline{e}''\to\overline{e}$ in $\overline{\cat{E}}$ and every relation $U(\overline{g})=U(\overline{f})\cdot h$ in $\cat{E}$, there exists exactly one morphism $\overline{h}\colon\overline{e}''\to\overline{e}'$ in $\overline{\cat{E}}$ such that we have $h=U(\overline{h})$.
We say that $U$ is \emph{fibrant} if, for all $\overline{e}\in\set{\overline{\cat{E}}}$ and every morphism $f\colon e'\to U(\overline{e})$ in $\cat{E}$, there exists a $U$-cartesian morphism $\overline{f}\colon\overline{e}'\to\overline{e}$ such that $f=U(\overline{f})$;
we sometimes denote by $f^*\overline{e}$ the object $\overline{e}'$.
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If $U'\colon\overline{\cat{E}}'\to\cat{E}$ is another fibrant functor, we say that a functor $V\colon\overline{\cat{E}}\to\overline{\cat{E}}'$ is \emph{compatible with these fibrations} if it sends every $U$-cartesian morphism to a $U'$-cartesian morphism.
With the above notation, we have an isomorphism $V(f^*\overline{e})\to f^*V(\overline{e})$.

\begin{itenv}{Proposition~I.3.6}
\label{proposition:I.3.6}
  The functors $\cat{X}\to\cat{E}$ coming from all the composites of ($\ast$) for $\cat{X}=\Ord{\TT}$, $\Cat{Cat}(\TT)$, and $\Gr{\TT}$ are fibrant, and these fibrations are respected by the functors from ($\ast$) between these categories.
\end{itenv}

\begin{proof}
  Let $\theta=(b,a)$ be a $\TT$-graph, and $f_0\colon e'\to e$ a morphism in $\cat{E}$, where $e=\set{\theta}$.
  We take a projective limit of the diagram (the solid arrows)
  \[
    \begin{tikzcd}[sep=huge]
      Te
    & Te'
        \ar[l,swap,"Tf_0"]
    \\\pi
        \ar[u,"a"]
        \ar[d,swap,"b"]
    & \pi'
        \ar[u,dashed,swap,"a'"]
        \ar[l,dashed,swap,"f_1"]
        \ar[d,dashed,"b'"]
    \\e
    & e'
        \ar[l,"f_0"]
    \end{tikzcd}
  \]
  (the existence of such a limit follows from that of finite fibre products).
  We obtain projections (the dashed arrows) $b'$, $f_1$, and $a'$.
  We thus obtain a $\TT$-graph $\theta'=(b',a')$ and a morphism
  \[
    (f_0,f_1)\colon\theta'\to\theta
  \]
  in $\Gr{\TT}$.
  Let $(f'_0,f'_1)\colon\theta''\to\theta$ be another morphism, where $\theta''=(b'',a'')$, and let $g_0\colon e''\to e'$ be such that $e''=\set{\theta''}$ and $f'_0=f_0\cdot g_0$;
  we will construct a morphism $(g_0,g_1)\colon\theta''\to\theta'$ such that $f'_1=f_1\cdot g_1$.
  Consider the commutative diagram
  \[
    \begin{tikzcd}[sep=huge]
      Te
    & Te'
        \ar[l,swap,"Tf'_0"]
    \\\pi
        \ar[u,"a"]
        \ar[d,swap,"b"]
    & \pi''
        \ar[u,swap,"Tg_0\cdot a'"]
        \ar[l,swap,"f'_1"]
        \ar[d,"g_0\cdot b'"]
    \\e
    & e'
        \ar[l,"f'_0"]
    \end{tikzcd}
  \]
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  The comparison with the projective limit gives a crochet $g_1\colon\pi''\to\pi'$ such that
  \[
    \begin{aligned}
      a'\cdot g_1
    & = Tg_0\cdot a''
    \\f_1\cdot g_1
    & = f'_1
    \\b'\cdot g_1
    & = g_0\cdot b''.
    \end{aligned}
  \]
  It thus follows that $(g_0,g_1)\colon\theta''\to\theta'$ is a morphism in $\Gr{\TT}$, and that $(f_0,f_1)\colon\theta'\to\theta$ is a $U$-cartesian morphism for the forgetful functor $U\colon\Gr{\TT}\to\cat{E}$.
  We set $\theta'=f_0^*\theta$.
  Note also that if $\theta$ is regular then so too is $\theta'$.

  Now support that $\theta=(b,a)$ underlies a $\TT$-category $\overline{\theta}=(b,a,i,k)$;
  we will construct a $\TT$-category $\overline{\theta}'=(b',a',i',k')$ such that $f_0^*\theta=(b',a')$.
  Consider the commutative diagrams
  \[
    \begin{tikzcd}[sep=huge]
      Te
    & Te'
        \ar[l,swap,"Tf_0"]
    \\\pi
        \ar[u,"a"]
        \ar[d,swap,"b"]
    & e'
        \ar[u,swap,"Ie'"]
        \ar[l,swap,"i\cdot f_0"]
        \ar[d,"\id_{e'}"]
    \\e
    & e'
        \ar[l,"f_0"]
    \end{tikzcd}
    \qquad\qquad
    \begin{tikzcd}[sep=huge]
      Te
    & Te'
        \ar[l,swap,"Tf_0"]
    \\\pi
        \ar[u,"a"]
        \ar[d,swap,"b"]
    & \pi'_2
        \ar[u,swap,"Ke'\cdot Ta'\cdot v'_2"]
        \ar[l,swap,"i\cdot f_0"]
        \ar[d,"b'\cdot v'_1"]
    \\e
    & e'
        \ar[l,"f_0"]
    \end{tikzcd}
  \]
  where $f_2\colon\pi'_2\to\pi_2$ is defined above, from $(f_0,f_1)$;
  these give two crochets
  \[
    i'\colon e'\to\pi'
    \textand
    k'\colon\pi'_2\to e'
  \]
  such that $(b',a',i',k')$ is the desired $\TT$-category, denoted $\overline{\theta}'=f_0^*\overline{\theta}$.
  Furthermore, $(f_0,f_1)\colon\overline{\theta}'\to\overline{\theta}$ is a morphism in $\Cat{Cat}(\TT)$.
  We can then show that, if the $\TT$-graph $\theta''$ from the previous proof underlies a $\TT$-category $\overline{\theta}''$, and if $(f'_0,f'_1)\colon\overline{\theta}''\to\overline{\theta}$ is a morphism in $\Cat{Cat}(\TT)$, then so too is $(g_0,g_1)\colon\overline{\theta}''\to\overline{\theta}'$.
  Thus $(f_0,f_1)\colon\overline{\theta}'\to\overline{\theta}$ is cartesian.
  Finally, if $\overline{\theta}$ is a $\TT$-preorder, then so too is $\overline{\theta}'$.
\end{proof}

Now let $\TT'=(T',I',K')$ be a triple on another category $\cat{E}'$ that admits finite fibre products.
Let $(M,m)\colon\TT\to\TT'$ be a morphism of triples (see \cref{sec:I.3}), where $M\colon\cat{E}\to\cat{E}'$ is a functor that respects finite fibre products.
Finally, suppose that $\cat{E}$ and $\cat{E}'$ admit projective $\cat{A}$-limits, and that $M$ respects these projective limits.
Set $\MM=(M,m)$.
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\begin{itenv}{Proposition~I.3.7}
  We can construct functors $\Alg{\MM}$, $\Ord{\MM}$, etc. such that the following diagram commutes:
  \[
    \begin{tikzcd}[sep=huge]
      \Alg{\TT}
        \ar[d,swap,"\Alg{\MM}"]
        \ar[r]
    & \Ord{\TT}
        \ar[d,swap,"\Ord{\MM}"]
        \ar[r]
    & \Cat{Cat}(\TT)
        \ar[d,swap,"\Cat{Cat}(\MM)"]
        \ar[r]
    & \Gr{\TT}
        \ar[d,swap,"\Gr{\MM}"]
        \ar[r]
    & \cat{E}
        \ar[d,"\MM"]
    \\\Alg{\TT'}
        \ar[r]
    & \Ord{\TT'}
        \ar[r]
    & \Cat{Cat}(\TT')
        \ar[r]
    & \Gr{\TT'}
        \ar[r]
    & \cat{E'}
    \end{tikzcd}
  \]
  These functors respect projective $\cat{A}$-limits and the fibrations defined in \hyperref[proposition:I.3.6]{Proposition~I.3.6}.
\end{itenv}

\begin{proof}
  Let $\theta=(b,a)$ be a $\TT$-graph, and consider the fibre product
  \[
    \begin{tikzcd}[sep=huge]
      MTe
    & T'Me
        \ar[l,swap,"me"]
    \\M\pi
        \ar[u,"Ma"]
    & \pi'
        \ar[l,"m'"]
        \ar[u,swap,"a'"]
    \end{tikzcd}
  \]
  Then $\theta'=(b',a')$, where $b'=Mb\cdot m'$, is a $\TT'$-graph.
  This correspondence extends to a functor $\Gr{\MM}\colon\Gr{\TT}\to\Gr{\TT'}$.

  Now, if $(b,a,i,k)$ is a $\TT$-category, then we have a crochet $i'\colon Me\to\pi'$ characterised by
  \[
    m'\cdot i' = Mi
    \textand
    a'\cdot i' = I'Me.
  \]
  Set $m''=m\pi\cdot T'm'$;
  we will show that $MTb\cdot m''=me\cdot T'b'$, so that there exists a morphism $m'''\colon\pi'_2\to M\pi_2$ that makes the following diagram commute:
  \[
    \begin{tikzcd}[sep=huge]
      MT\pi
    & T'\pi'
        \ar[l,swap,"m''"]
    \\M\pi_2
        \ar[u,"Mv_2"]
        \ar[d,swap,"Mv_1"]
    & \pi'_2
        \ar[u,swap,"v'_2"]
        \ar[l,swap,"m'''"]
        \ar[d,"v'_1"]
    \\M\pi
    & \pi'
        \ar[l,"m'"]
    \end{tikzcd}
  \]
  (with the data of $\pi'_2$, $\pi'_3$, $v'_1$, etc. being defined as per usual from the $\TT'$-graph $(b',a')$).
  The morphism $k'\colon\pi'_2\to\pi'$ is the crochet characterised by the relations
  \[
    \begin{aligned}
      m'\cdot k'
    & = Mk\cdot m'''
    \\a'\cdot k'
    & = K'Me\cdot T'a'\cdot v'_2.
    \end{aligned}
  \]
  \oldpage{238}
  We can easily show that $(b',a',i',k')$ is a $\TT'$-category, and that the correspondence thus defined extends to a functor
  \[
    \Cat{Cat}(\MM)\colon \Cat{Cat}(\TT)\to\Cat{Cat}(\TT').
  \]

  The rest of the proof is purely technical, although annoying.
\end{proof}

\begin{rmenv}{Remark}
  As an exercise, it is interesting to examine the case where $M=\id_\cat{E}$, $m=I$, and $\TT=(\id_\cat{E},\id_\cat{E},\id_\cat{E})$: there is an $\cat{E}$-category underlying every $\TT$-category (in the terminology of \cref{sec:III.2}).
\end{rmenv}

We will later study the question of whether or not all functors in the sequence ($\ast$) admit adjoints and coadjoints;
we will limit ourselves below to only some of them.
Recall that $\Alg{\TT}\to\cat{E}$ has an adjoint.
Suppose that $\cat{E}$ admits finite projective limits.

\begin{itenv}{Proposition~I.3.8}
  The forgetful functors $\cat{X}\to\cat{E}$, for $\cat{X}=\Gr{\TT}$, $\Cat{Cat}(\TT)$, and $\Ord{\TT}$, admit adjoints and coadjoints which are further sections of these forgetful functors, and commute with the sequence of functors $\Ord{\TT}\to\Cat{Cat}(\TT)\to\Gr{\TT}$.
\end{itenv}

\begin{proof}
  Let $e\in\set{\cat{E}}$.
  Set
  \[
    D(e) = (\id_e,Ie)
    \textand
    G(e) = (p_1,p_2)
  \]
  with the latter being formed of the canonical projections of a product of $(e,Te)$.
  Then $D(e)$ and $G(e)$ are $\TT$-graphs, which determine $\TT$-categories
  \[
    \overline{D}(e) = (\id_e,Ie,\id_e,\id_e)
    \textand
    \overline{G}(e) = (p_1,p_2,i_0,k_0)
  \]
  where $i_0$ and $k_0$ are the crochets characterised by the relations
  \[
    \begin{aligned}
      p_1\cdot i_0
    & = \id_e
    \\p_2\cdot i_0
    & = Ie
    \\p_1\cdot k_0
    & = p_1\cdot v_1
    \\p_2\cdot k_0
    & = Ke\cdot Tp_2\cdot v_2
    \end{aligned}
  \]
  where $(v_1,v_2)$ is a fibre product of $(p_2,Tp_1)$.
  Furthermore, we note that $\overline{D}(e)$ and $\overline{G}(e)$ are $\TT$-preorders.
  It is easy to show that we can thus define an adjoint $D$ and a coadjoint $G$ to the functor $\Gr{\TT}\to\cat{E}$, and an adjoint $\overline{D}$ and a coadjoint $\overline{G}$ to the functor $\Cat{Cat}(\TT)\to\cat{E}$, which, by restriction, gives an adjoint and a coadjoint to the functor $\Ord{\TT}\to\cat{E}$.
\end{proof}
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We call $\overline{D}(e)$ and $\overline{G}(e)$ the \emph{discrete $\TT$-category} and the \emph{coarse $\TT$-category} on $e$ (respectively).

Finally, we examine the case of the inclusion $\Ord{\TT}\to\Cat{Cat}(\TT)$.

Suppose that $\cat{E}$, as well as satisfying the existence of finite fibre products, also satisfies the following conditions:

\begin{enumerate}
  \item[(I)] Every morphism $f$ in $\cat{E}$ decomposes into a monomorphism $m$ and an epimorphism $p$, as $f=m\cdot p$.
  \item[(II)] Every epimorphism $p$ of $\cat{E}$ is a retraction, i.e. there exists a morphism $s$ in $\cat{E}$ (called a \emph{section of $p$}) such that $p\cdot s=\id_e$, where $e$ is the target of $p$.
\end{enumerate}

By (II), the decomposition of $f$ in (I) is unique up to isomorphism;
we call $(m,p)$ a \emph{canonical decomposition} of $f$.
More generally, if $f=m'\cdot p'$, and if $m'$ is a monomorphism, then there exists exactly one morphism $g$ such that $m'\cdot g=m$ and $g\cdot p=p'$.

\begin{itenv}{Proposition~I.3.9}
  If $\cat{E}$ satisfies the above hypotheses, then the inclusion functor $\Ord{\TT}\to\Cat{Cat}(\TT)$ admits an adjoint that is compatible with the forgetful functors to $\cat{E}$.
\end{itenv}

\begin{proof}
  To each $\TT$-graph $\theta=(b,a)$ on $e$, we associate, thanks to the canonical decomposition of the crochet $[\theta]\colon\pi\to e\times Te$, a regular $\TT$-graph $\langle\theta\rangle=(b',a')$ on $e$, and $(\id_e,p)\colon\theta\to\langle\theta\rangle$ is a morphism, where $p$ is the epimorphism in the canonical decomposition of $[\theta]$.

  Now we will show that, if $\overline{\theta}=(b,a,i,k)$ is a $\TT$-category on $e$, then we can form a $\TT$-preorder $\langle\overline{\theta}\rangle$ over $\langle\theta\rangle$.
  If $(v_1,v_2)$ is the fibre product of $(a,Tb)$ used in the construction of $\overline{\theta}$, and if $(v'_1,v'_2)$ is a fibre product of $(a',Tb')$, let $p'\colon\pi_2\to\pi'_2$ and $s'\colon\pi'_2\to\pi_2$ be the crochets characterised by the relations
  \[
    \begin{aligned}
      v'_1\cdot p'
    & = p\cdot v_1
    \\v'_2\cdot p'
    & = Tp\cdot v_2
    \\v_1\cdot s'
    & = s\cdot v'_1
    \\v_2\cdot s'
    & = Ts\cdot v'_2
    \end{aligned}
  \]
  where $s$ is a section of $p$;
  then $p'\cdot s'=\id_{\pi'_2}$.
  Set
  \[
    i' = p\cdot i
    \textand
    k' = p\cdot k\cdot s;
  \]
  by composing on the left with $a'$ and $b'$, we see that $\langle\overline{\theta}\rangle=(b',a',i',k')$ is a $\TT$-preorder.
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  We can further show that $(\id_e,p)\colon\overline{\theta}\to\langle\overline{\theta}\rangle$ is a morphism that defines a natural transformation of an adjunction to the inclusion functor $\Ord{\TT}\to\Cat{Cat}(\TT)$.
\end{proof}

\[
  \begin{tikzcd}
  &&&T\pi
      \ar[dlll,swap,"Ta"]
      \ar[dl,"Tp"description]
      \ar[dddlll,"Tb"]
  &&\pi_2
      \ar[ll,near end,swap,"v_2"]
      \ar[dl,"p'"description]
      \ar[ddll,"v_1"]
  \\[-1em]TTe
  && T\pi'
      \ar[ur,bend left=50,near end,"Ts",crossing over]
      \ar[ll,"Ta'"]
      \ar[ddll,swap,"Tb'"]
  &&\pi'_2
      \ar[ur,bend left=50,near end,"s'",crossing over]
      \ar[ll,near start,swap,"v'_2",crossing over]
  \\[2em]
  &&&\pi
      \ar[dlll,swap,"a"]
      \ar[dl,"p"description]
      \ar[dddlll,"b"]
  \\[-1em]Te
  && \pi'
      \ar[from=2-5,near start,swap,"v'_1",crossing over]
      \ar[ll,"a'"]
      \ar[ddll,swap,"b'"]
      \ar[ur,bend left=50,"s",crossing over]
  \\{}
  \\[2em]e
  \end{tikzcd}
\]

In general, the forgetful functor $\Alg{\TT}\to\cat{E}$ is not fibrant.
Later on, \unsure{Proposition~11} resolves the problem of ``making'' this functor fibrant by universally embedding $\Alg{\TT}$ into a full subcategory of $\Ord{\TT}$.
For this, we will need to generalise \cite[Proposition~2.4]{Ba} by replacing the ``category of sets'' there with an arbitrary category $\cat{E}$, though one that satisfies the following axiom:
\begin{enumerate}
  \item[(U)] There exists a universe such that:
    \begin{enumerate}
      \item[(a)] $\Hom_\cat{E}$ takes values in this universe

      \item[(b)] The set of isomorphism classes of subobjects of an arbitrary object $e$ of $\cat{E}$, and the set of isomorphism classes of quotient objects of $e$, are elements of this universe.

      \item[(c)] $\cat{E}$ admits projective $\cat{A}$-limits for every category $\cat{A}$ associated to this universe (i.e. $\set{\cat{A}}$ is an element of this universe and $\Hom_\cat{A}$ takes values in this universe).
    \end{enumerate}
\end{enumerate}
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For example, the category $\Cat{Set}$ associated to an arbitrary universe $\set{\Cat{Set}}$ satisfies this axiom.

\begin{itenv}{Proposition~I.3.10}
  \emph{(Stone--Čech--Barr).}
  The full inclusion functor $\Alg{\TT}\to\Ord{\TT}$ admits an adjoint.
\end{itenv}

\begin{proof}
  Taking into account hypothesis~(b) concerning quotients, which allows us to form images of morphisms of $\TT$-algebras, the proof is the same as that by Barr, which relies on Freyd's criteria for existence of adjoints (in a form adapted to the terminology of universes, which does not pose any problem).
  We refer the reader to \cite{Ba}.
\end{proof}

We denote by $m_\theta\colon\theta\to\hat{\theta}$ an \unsure{adjunction morphism} associated to a $\TT$-preorder $\theta$.
Let $\Equ{\TT}$ be the full subcategory of $\Ord{\TT}$ whose objects are the $\TT$-preorders $\theta$ for which $m_\theta$ is a cartesian morphism (with respect to the forgetful functor to $\cat{E}$).
The objects of $\Equ{\TT}$ are called \emph{$\TT$-equivalences}.

\begin{itenv}{Proposition~I.3.11}
  The forgetful functor $\Equ{\TT}\to\cat{E}$ is fibrant and compatible with the fibration $\Ord{\TT}\to\cat{E}$.
  For every commutative diagram
  \[
    \begin{tikzcd}
      \Alg{\TT}
        \ar[rr,"X"]
        \ar[dr,swap,"U"]
    &&\cat{X}
        \ar[dl,"U'"]
    \\&\cat{E}
    \end{tikzcd}
  \]
  where the forgetful functor of $\TT$-algebras factors through a fibrant functor $X\colon\cat{X}\to\cat{E}$, there exists exactly one (up to equivalence) functor $\Equ{\TT}\to\cat{X}$ that satisfies the following properties:
  \begin{enumerate}
    \item[(1)] The following diagram commutes:
      \[
        \begin{tikzcd}
          \Alg{\TT}
            \ar[r]
            \ar[dr,swap,"U"]
        & \Equ{\TT}
            \ar[r]
            \ar[d]
        & \cat{X}
            \ar[dl,"U'"]
        \\&\cat{E}
        \end{tikzcd}
      \]

    \item[(2)] The functor sends every morphism that is cartesian with respect to $\Equ{\TT}\to\cat{E}$ to a morphism that is cartesian with respect to $U'\colon\cat{X}\to\cat{E}$.\footnote{When $U$ is fibrant, \unsure{we will refrain from assuming that $\Alg{\TT}\simeq\Equ{\TT}$} (for example, when $\TT$ is the identity triple).}
  \end{enumerate}
\end{itenv}

\begin{proof}
  Let $\theta$ be an $\TT$-equivalence, and $f_1\colon e_1\to\set{\theta}$ be a morphism in $\cat{E}$.
  If $f\colon f_1^*\theta\to\theta$ is the cartesian morphism such that $\set{f}=f_1$, we will show that $\theta_1=f_1^*\theta$ is a $\TT$-equivalence, i.e. that $m_{\theta_1}$ is cartesian.
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  Let $g\colon\theta_2\to\hat{\theta}_1$ be a morphism in $\Ord{\TT}$, and $h_1\colon\set{\theta_2}\to e_1$ be such that $\set{m_{\theta_1}}\cdot h_1=\set{g}$;
  we will show that there exists exactly one morphism $h\colon\theta_2\to\theta_1$ in $\Ord{\TT}$ such that
  \[
    m_{\theta_1}\cdot h = g
    \textand
    \set{h} = h_1.
  \]
  So let $h\colon\theta_2\to\theta_1$ be such that
  \[
    \set{h} = h_1
    \textand
    m_\theta\cdot f\cdot h = \hat{f}\cdot g
  \]
  (where $\hat{f}$ is the image of $f$ under the adjoint functor of \unsure{Proposition~I.5.10??});
  $h$ exists, since $m_\theta$ and $f$ are cartesian, as is their composition.
  The equality $m_{\theta_1}\cdot h=g$ is a consequence of the faithfulness of the functor $\Ord{\TT}\to\cat{E}$, as is the uniqueness of $h$.
  This proves the first part.

  Let $X\colon\Alg{\TT}\to\cat{X}$ and $U'\colon\cat{X}\to\cat{E}$ be functors such that $U=U'\cdot X$ is the forgetful functor of $\TT$-algebras and $U'$ is fibrant.
  For all $\theta\in\set{\Equ{\TT}}$, let $\hat{X}(\theta)$ be the source (which we can also write as $\set{m_\theta}^*X(\hat{\theta})$) of a cartesian morphism $m$ in $\cat{X}$ with target $X(\hat{\theta})$, such that we have $U'(m)=\set{m_\theta}$.
  It is clear that the family $\{\hat{X}(\theta)\mid\theta\in\set{\Equ{\TT}}\}$ can be extended in a unique way to a functor $\hat{X}\colon\Equ{\TT}\to\cat{X}$ that satisfies the required conditions.
  The equivalence between this functor and every other functor that satisfies the same conditions follows from the fact that two cartesian arrows with the same target and same underlying morphism are related by an invertible.
\end{proof}

As for inductive limits, we content ourselves with the following result, whose elementary proof is left as an exercise.

\begin{itenv}{Proposition~I.3.12}
  If $\cat{E}$ admits inductive $\cat{A}$-limits (further to the hypothesis that $\cat{E}$ admits finite fibre products), if these limits commute with fibre products, and if $T$ commutes with these limits, then the categories appearing in ($\ast$) admit inductive $\cat{A}$-limits, and the functors therein commute with these inductive limits.
\end{itenv}




\section{Pseudo-algebras and monads}
\label{sec:II}

\subsection{Pseudo-categories}
\label{sec:II.1}
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This structure slightly generalises that of a bicategory, defined by Bénabou in \cite{Be};
indeed, in bicategories, the families $l$, $r$, and $s$ considered below reduce to the families of natural equivalences, which will not always be the case in our examples.
(In \cref{sec:III} we will see more general structures.)

A \emph{pseudo-category} is a septuple
\[
  \cat{D}
  = (\set{\cat{D}},\Hom_\cat{D},\iota,\kappa,l,r,s)
\]
such that conditions~(1) to (8) below are satisfied:
\begin{enumerate}
  \item[(1)]
    $\set{\cat{D}}$ is a set; its elements are called \emph{objects of $\cat{D}$}.

  \item[(2)]
    $\Hom_\cat{D}$ is a family of categories indexed by $\set{\cat{D}}^2$.
    Saying that $f\colon e\to e'$ is a \emph{morphism in $\cat{D}$} means that
    \[
      e,e'\in\set{\cat{D}}
      \textand
      f\in\set{\Hom_\cat{D}(e',e)}.
    \]
    Saying that $\alpha\colon f\to g\colon e\to e'$, or simply that $\alpha\colon f\to g$, is a \emph{2-morphism in $\cat{D}$} means that $f\colon e\to e'$ and $g\colon e\to e'$ are morphisms in $\cat{D}$ and $\alpha\colon f\to g$ is a morphism in $\Hom_\cat{D}(e',e)$.

  \item[(3)]
    $\iota$ is a family of functors indexed by $\set{\cat{D}}$, of the form $\iota(e)\colon\mathbf{1}\to\Hom_\cat{D}(e',e)$ for each $e\in\set{\cat{D}}$, where $\mathbf{1}$ is the category consisting of a single object $0$ and the single morphism $\id_0$.
    We denote by $\id(e)$, or $\id_e$, or simply $e$, the morphism $\iota(e)(\id_0)\colon e\to e'$.

  \item[(4)]
    $\kappa$ is a family of functors indexed by $\set{\cat{D}}^3$, of the form
    \[
      \kappa(e'',e',e)\colon
      \Hom_\cat{D}(e'',e')\times\Hom_\cat{D}(e',e)
      \to \Hom_\cat{D}(e'',e)
    \]
    for each $(e'',e',e)\in\set{\cat{D}}^3$.
    The image of a pair of morphisms or of 2-morphisms under this functor is called a composition and is denoted by the same symbol, which will generally be the symbol $\circ$ in this paper.
    This composition is called the \emph{first law of $\cat{D}$}, to distinguish it from the composition laws in the $\Hom_\cat{D}(e',e)$.
    These latter laws will also be denoted by a unique symbol, called the symbol of the \emph{second law of $\cat{D}$}.

  \item[(5)]
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    $l$ and $r$ are two families of natural transformations, each indexed by $\set{\cat{D}}^2$, of the form
    \[
      \begin{aligned}
        l(e',e)\colon \pr_2
      & \to \kappa(e',e',e)\cdot\big(\iota(e')\times\id(\Hom_\cat{D}(e',e))\big)
      \\r(e',e)\colon \pr_1
      & \to \kappa(e',e,e)\cdot\big(\id(\Hom_\cat{D}(e',e))\times\iota(e)\big)
      \end{aligned}
    \]
    where
    \[
      \begin{aligned}
        \pr_2\colon \mathbf{1}\times\Hom_\cat{D}(e',e)
      & \to \Hom_\cat{D}(e',e)
      \\\pr_1\colon \Hom_\cat{D}(e',e)\times\mathbf{1}
      & \to \Hom_\cat{D}(e',e)
      \end{aligned}
    \]
    denote the canonical projections of the products.
    In other words, for each morphism $f\colon e\to e'$ in $\cat{D}$, $r$ and $l$ give ``natural'' 2-morphisms, denoted in shorthand by
    \[
      l(f)\colon f\to\id_{e'}\circ f
      \textand
      r(f)\colon f\to f\circ\id_{e'}
    \]
    where $\circ$ is the first law of $\cat{D}$.

  \item[(6)]
    $s$ is a family of natural transformations, indexed by $\set{\cat{D}}^4$, of the form
    \[
      s(e_4,e_3,e_2,e_1)\colon
      \kappa_{421}\cdot(\kappa_{432}\times\cat{D}_{21})
      \to \kappa_{431}\cdot(\cat{D}_{43}\times\kappa_{321})
    \]
    for each $(e_4,e_3,e_2,e_1)\in\set{\cat{D}}^4$, where we set
    \[
      \kappa_{ijk} = \kappa(e_i,e_j,e_k)
      \textand
      \cat{D}_{ij} = \Hom_\cat{D}(e_i,e_j)
    \]
    for $1\leqslant i,j,k\leqslant 4$.
    Both these functors have source category $\cat{D}_{43}\times\cat{D}_{32}\times\cat{D}_{21}$ and target category $\cat{D}_{41}$.
    In other words, if $f\colon e_1\to e_2$, $g\colon e_2\to e_3$, and $h\colon e_3\to e_4$ are morphisms in $\cat{D}$, then $s$ gives a ``natural'' 2-morphism, denoted in shorthand by
    \[
      s(h,g,f)\colon (h\circ g)\circ f
      \to h\circ(g\circ f).
    \]
    We also say that $s$ \emph{shifts parentheses to the right}.

  \item[(7)]
    Let $\varepsilon\colon\cat{D}_{32}\times\cat{D}_{21}\to\cat{D}_{32}\times\cat{D}_{22}\times\cat{D}_{21}$ be the functor given by the composition of the trivial functor $\cat{D}_{32}\times\cat{D}_{21}\to\cat{D}_{32}\times\mathbf{1}\times\cat{D}_{21}$ and the functor $\cat{D}_{32}\times\iota_2\times\cat{D}_{21}$, using the above notation, as well as setting
    \[
      \begin{aligned}
        \iota_i
      & = \iota(e_i)
      \\s_{ijkl}
      & = s(e_i,e_j,e_k,e_l)
      \\l_{ij}
      & = l(e_i,e_j)
      \\r_{ij}
      & = r(e_i,e_j)
      \end{aligned}
    \]
    where $e_i$, $e_j$, $e_k$, and $e_l$ are objects of $\cat{D}$.

    For each $(e_1,e_2,e_3)\in\set{\cat{D}}^3$, the following diagram of natural transformations must commute:
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    \[
      \begin{tikzcd}
        \kappa_{321}\cdot(\kappa_{332}\times\cat{D}_{21})\cdot\varepsilon
          \ar[rr,"s_{3221}\cdot\varepsilon"]
      &&\kappa_{321}\cdot(\cat{D}_{32}\times\kappa_{221})\cdot\varepsilon
      \\&\kappa_{321}
          \ar[ul,"\kappa_{321}\cdot(r_{32}\times\cat{D}_{21})"]
          \ar[ur,swap,"\kappa_{321}\cdot(\cat{D}_{32}\times l_{21})"]
      \end{tikzcd}
    \]
    In other words, applying this diagram to a pair of morphisms $f\colon e_1\to e_2$ and $g\colon e_2\to e_3$, we should obtain a commutative diagram in the category $\Hom_\cat{D}(e_3,e_1)$:
    \[
      \begin{tikzcd}
        (g\circ\id_e)\circ f
          \ar[rr,"{s(g,\id_e,f)}"]
      &&g\circ(\id_e\circ f)
      \\
      & g\circ f
          \ar[ul,"{r(g)\circ f}"]
          \ar[ur,swap,"{g\circ l(f)}"]
      \end{tikzcd}
    \]
    (where we set $e=e_2$).

  \item[(8)]
    For all $(e_1,e_2,e_3,e_4,e_5)\in\set{\cat{D}}^5$, we have a commutative diagram
    \[
      \begin{tikzcd}
      & \bullet
          \ar[dl,swap,"\kappa_{521}\cdot(s_{5432}\times\cat{D}_{21})"]
          \ar[ddr,"s_{5321}\cdot(\kappa_{543}\times\cat{D}_{32}\times\cat{D}_{21})"]
      \\\bullet
          \ar[dd,swap,"s_{5421}\cdot(\cat{D}_{54}\times\kappa_{432}\times\cat{D}_{21})"]
      \\
      &&\bullet
          \ar[ddl,"s_{5431}\cdot(\cat{D}_{54}\times\cat{D}_{43}\times\kappa_{321})"]
      \\\bullet
          \ar[dr,swap,"\kappa_{541}\cdot(\cat{D}_{54}\times s_{4321})"]
      \\
      & \bullet
      \end{tikzcd}
    \]
    (where the notation of the objects is left to the reader) so that ``applying'' this diagram to morphisms in $\cat{D}$
    \[
      % e_1
      % \xrightarrow{f} e_2
      % \xrightarrow{g} e_3
      % \xrightarrow{h} e_4
      % \xrightarrow{k} e_5
      \begin{aligned}
        f\colon e_1
      & \to e_2
      \\g\colon e_2
      & \to e_3
      \\h\colon e_3
      & \to e_4
      \\k\colon e_4
      & \to e_5
      \end{aligned}
    \]
     we obtain a commutative diagram in $\Hom_\cat{D}(e_5,e_1)$:
     \[
       \begin{tikzcd}[row sep=huge]
          (k\circ(h\circ g))\circ f
            \ar[dd,swap,"{s(k,h\circ g,f)}"]
        & ((k\circ h)\circ g)\circ f
            \ar[l,swap,"{s(k,h,g)\circ f}"]
            \ar[d,"{s(k\circ h,g,f)}"]
        \\
        & (k\circ h)\circ(g\circ f)
            \ar[d,"{s(k,h,g\circ f)}"]
        \\k\circ((h\circ g)\circ f)
            \ar[r,swap,"{k\circ s(h,g,f)}"]
        & k\circ(h\circ(g\circ f))
       \end{tikzcd}
     \]
\end{enumerate}

\begin{rmenv}{Remark}
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  Axioms~(7) and (8) are called the ``coherence axioms''.
  If $r$, $l$, and $s$ are equivalences (resp. identities) then we recover the notion of bicategory from \cite{Be} (resp. of 2-category).
  In \cref{sec:III}, multicategories will give, as particular cases, both pseudo-categories and the double categories of Ehresmann.
\end{rmenv}

We say that $F\colon\cat{D}\to\cat{D}'$ is a \emph{pseudo-functor} if $\cat{D}$ and $\cat{D}'$ are pseudo-categories and $F$ is a quadruple $(\set{F},F_1,u,c)$ such that:
\begin{enumerate}
  \item[(1')]
    $\set{F}\colon\set{\cat{D}}\to\set{\cat{D}'}$ is a function.

  \item[(2')]
    $F_1$ is a family of functors
    \[
      F_1(e',e)\colon
      \Hom_\cat{D}(e',e)
      \to \Hom_{\cat{D}'}(F(e'),F(e))
    \]
    for each $(e',e)\in\set{\cat{D}}^2$.
    If $e\in\set{\cat{D}}$, we denote by $F(e)$ its image under $\set{F}$ whenever there is no risk of confusion.
    Similarly, if $f$ is a morphism in $\cat{D}$ and $\alpha$ a 2-morphism in $\cat{D}$, we denote by $F(f)$ and $F(\alpha)$ their images under $F_1$ (respectively).

  \item[(3')]
    $u$ is a family of natural transformations indexed by $\set{\cat{D}}$, between functors whose source is $\mathbf{1}$;
    in other words, $u$ can be considered as a family of morphisms in $\cat{D}$ of the form
    \[
      u(e)\colon
      \id_{F(e)}
      \to F(\id_e)
    \]
    for each $e\in\set{\cat{D}}$.

  \item[(4')]
    $c$ is a family of natural transformations indexed by $\set{\cat{D}}^3$, of the form
    \[
        c(e'',e',e)\colon
        \kappa\big(F(e''),F(e'),F(e)\big) \cdot \big(F_1(e'',e')\times F_1(e',e)\big)
        \to F_1(e'',e)\cdot\kappa(e'',e',e).
    \]
    In other words, for each pair of morphism $f\colon e\to e'$ and $g\colon e'\to e''$, we give a ``natural'' 2-morphism, denoted in shorthand by
    \[
      c(g,f)\colon F(g)\circ F(f)
      \to F(g\circ f).
    \]

  \item[(5')]
    For each $f\colon e\to e'$ we have two commutative diagrams:
    \[
      \begin{tikzcd}[sep=huge]
        F(f)
          \ar[r,"{F(r(f))}"]
          \ar[d,swap,"{r(F(f))}"]
      & F(f\circ\id_e)
      \\F(f)\circ\id_{F(e)}
          \ar[r,swap,"{F(f)\circ u(e)}"]
      & F(f)\circ F(\id_e)
          \ar[u,swap,"{c(f,\id_e)}"]
      \end{tikzcd}
      \qquad
      \begin{tikzcd}[sep=huge]
        F(\id_{e'}\circ f)
      & F(f)
          \ar[l,swap,"{F(l(f))}"]
          \ar[d,"{l(F(f))}"]
      \\F(\id_{e'})\circ F(f)
          \ar[u,"{c(\id_{e'},f)}"]
      & \id_{F(e')}\circ F(f)
          \ar[l,"{u(e')\circ F(f)}"]
      \end{tikzcd}
    \]

  \item[(6')]
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    For any triple $f\colon e\to e'$, $g\colon e'\to e''$, and $h\colon e''\to e'''$ in $\cat{D}$, we have a commutative diagram
    \[
      \begin{tikzcd}[row sep=huge,column sep=7em]
        F(h)\circ(F(g)\circ F(f))
          \ar[d,swap,"{F(h)\circ c(g,f)}"]
      & (F(h)\circ F(g))\circ F(f)
          \ar[l,swap,"{s(F(h),F(g),F(f))}"]
          \ar[d,"{c(h,g)\circ F(f)}"]
      \\F(h)\circ F(g\circ f)
          \ar[d,swap,"{c(h,g\circ f)}"]
      & F(h\circ g)\circ F(f)
          \ar[d,"{c(h\circ g,f)}"]
      \\F(h\circ(g\circ f))
      & F((h\circ g)\circ f)
          \ar[l,"{F(s(h,g,f))}"]
      \end{tikzcd}
    \]
\end{enumerate}

All of these definitions are based on those of bicategories of Bénabou \cite{Be} (we note that we have, however, reversed the direction of the arrows $r$ and $l$).
We define the composition of pseudo-functors in a manner analogous to that of bifunctors \cite{Be}.
We could define the notions of natural pseudo-transformation and even of morphisms between these.
This would allow us to define the notation of ``pseudo-triple'' on a pseudo-category, which we will not do.
We simply note that \unsure{Proposition~3??} later on would give $\TT$-categories a particularly agreeable \unsure{meaning}.

\begin{rmenv}{Remarks}
  ---
  \begin{enumerate}
    \item[(1)]
      These definitions of pseudo-category and pseudo-functor should be taken mainly as provisionary.
      Indeed, we have simply imitated the definition of bicategories of Bénabou \cite{Be}, which itself was inspired by the definition of monoidal categories of Mac~Lane;
      but nothing tells us that there are no missing axioms that we would need in order to obtain the ``best'' possible structure, nor that the chosen direction for the coherence morphisms --- suggested by the example of $\TT$-spans that follows --- is the ``good'' one.
      We hope to soon carry out a more serious study of this structure.

    \item[(2)]
      In practical examples, not only are the two morphisms $(f\circ g)\circ h$ and $f\circ(g\circ h)$ (where $f$, $g$, and $h$ are ``consecutive'' morphisms in $\cat{D}$) not equal, but they are related to a third morphism, denoted $f\circ g\circ h$, and, more generally, we have ``compositions'' of length $n>2$ that are different to the compositions obtained by the grouping of the factors.
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      This is the case, for example, when we consider the category $\Cat{Set}$ of sets associated to a universe, endowed with the cartesian product as a first law.
      We wait until the notion of multicategory defined later on (\cref{sec:III.3}) allows us to unify these differing notions.
  \end{enumerate}
\end{rmenv}



\subsection{The pseudo-category of $\TT$-spans}
\label{sec:II.2}

Let $\cat{E}$ be a category endowed with a triple $\TT$, admitting finite fibre products and endowed with a canonical choice of these fibre products.
We will associate to this data a pseudo-category $\Sp{\TT}$ constructed in the following way:

\begin{enumerate}
  \item[(1)]
    $\set{\Sp{\TT}}=\set{\cat{E}}$

  \item[(2)]
    For every $e,e\in\set{\cat{E}}$, let $\Hom_{\Sp{\TT}}(e',e)$ be the category whose objects are the $\TT$-spans $\theta\colon e\to e'$, i.e. the pairs $(b,a)$, where
    \[
      b\colon\pi\to Te'
      \textand
      a\colon \pi\to e
    \]
    are morphisms in $\cat{E}$ with the same source.
    If $\theta'\colon e\to e'$ is another $\TT$-span, where $\theta'=(b',a')$ with $b'\colon\pi'\to Te'$ and $a'\colon\pi'\to e$, then a morphism $m\colon\theta\to\theta'$ in $\Hom_{\Sp{\TT}}(e',e)$ (and thus a 2-morphism in $\Sp{\TT}$) is defined by a morphism $m\colon\pi\to\pi'$ in $\cat{E}$ satisfying the following conditions:
    \[
      b'\cdot m = b
      \textand
      a'\cdot m = a.
    \]
    \[
      \begin{tikzcd}
      & \pi
          \ar[dl,swap,"b"]
          \ar[dr,"a"]
          \ar[dd,"m"]
      \\Te'
      &&e
      \\&\pi'
          \ar[ul,"b'"]
          \ar[ur,swap,"a'"]
      \end{tikzcd}
    \]
    The evident composition law on $\Hom_{\Sp{\TT}}(e',e)$ is denoted by $\cdot$ just as for $\cat{E}$.

  \item[(3)]
    For each $e\in\set{\cat{E}}$, we define a $\TT$-span $(Ie,\id_e)\colon e\to Te$, which we also denote by $\id_e$ if the context clearly specifies that it is a $\TT$-span.

  \item[(4)]
    If $\theta\colon e\to e'$ and $\theta'\colon e'\to e''$ are $\TT$-spans, we define the first composition law of $\Sp{\TT}$ by setting
    \[
      \theta'\circ\theta
      = (Ke''\cdot Tb'\cdot v_1, a\cdot v_2)
    \]
    where $(v_1,v_2)$ is a canonical fibre product of $(Ta',b)$.
    The composition of 2-morphisms is then obtained thanks to the property of fibre products.
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    \todo{diagram}
\end{enumerate}

\begin{itenv}{Proposition~II.2.13}
  If $\theta\colon e\to e'$, $\theta'\colon e'\to e''$, and $\theta''\colon e''\to e'''$ are $\TT$-spans, then we can construct 2-morphisms in $\Sp{\TT}$
  \[
    \begin{gathered}
      \id_{e'}\circ\theta
      \xleftarrow{l(\theta)} \theta
      \xrightarrow{r\theta} \theta\circ\id_e
    \\\theta''\circ(\theta'\circ\theta)
      \xrightarrow{s(\theta'',\theta',\theta)} (\theta''\circ\theta')\circ\theta
    \end{gathered}
  \]
   (where $r(\theta)$ is furthermore an isomorphism), which will finish the construction of $\Sp{\TT}$ as a pseudo-category.
\end{itenv}

\begin{proof}
  Set $\theta=(b,a)$;
  form the canonical fibre products $(\overline{v}'_1,\overline{v}'_2)$ of $(\id_{Te'},b)$ and $(\overline{v}_1,\overline{v}_2)$ of $(Ta,Ie)$.
  Since $\id_{Te'}$ is an isomorphism, so too is $\overline{v}'_2$;
  let ${\overline{v}'_2}^{-1}$ be its inverse.
  The relations
  \[
    (Ke'\cdot TIe'\cdot\overline{v}'_1)\cdot{\overline{v}'_2}^{-1}
    = \overline{v}'_1\cdot{\overline{v}'_2}^{-1}
    = b
  \]
  (since $b\cdot\overline{v}'_2=\overline{v}'_1$) and
  \[
    (a\cdot\overline{v}'_2)\cdot{\overline{v}'_2}^{-1}
    = a
  \]
  allow us to set
  \[
    l(\theta)
    = {\overline{v}'_2}^{-1}
    \colon\theta
    \to \id_{e'}\circ\theta.
  \]
  The relation $Ta\cdot I\pi=Ie\cdot a$ gives a crochet $c\colon\pi\to\pi_2$ such that
  \[
    \overline{v}_1\cdot c = I\pi
    \textand
    \overline{v}_2\cdot c = a.
  \]
  The relations
  \[
    \begin{aligned}
      (Ke'\cdot Tb\cdot\overline{v}_1)\cdot c
      &= b
    \\(\id_e\cdot\overline{v}_2)\cdot c
      &= a
    \end{aligned}
  \]
  allow us to set
  \[
    r(\theta)
    = c
    \colon\theta
    \to\theta\circ\id_e.
  \]

  Set $\theta'=(b',a')$ and $\theta''=(b'',a'')$;
  the construction of the composites $(\theta''\circ\theta')\circ\theta$ and $\theta''\circ(\theta'\circ\theta)$ leads to forming fibre products that we can follow, for notation, in the diagrams below.
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  Firstly, $(\theta''\circ\theta')\circ\theta\colon e\to e'''$ is defined by the pair
  \[
    \big(
      Ke'''\cdot T(Ke'''\cdot Tb''\cdot v'_1)\cdot w_1,
      a\cdot v_2\cdot w_2
    \big).
  \]

  \todo{diagram}

  (Note that, if $(v_1,v_2)$ is the canonical fibre product of $(Ta',b)$, then $(w_1,w_2)$ is actually chosen so that $(w_1,v_2\cdot w_2)$ be the canonical fibre product of $(Tv'_2\cdot Ta',b)$, which is evidently possible.)

  \todo{diagram}
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  Secondly, $\theta''\circ(\theta'\circ\theta)\colon e\to e'''$ is defined by the pair
  \[
    (Ke'''\cdot Tb''\cdot W'_1,
    a\cdot v_2\cdot w'_2).
  \]
  By comparing the relations
  \[
    (Ke''\cdot Tb'\cdot v_1)\cdot w_2
    = Ke''\cdot TTa''\cdot Tv'_1\cdot w_1
    = Ta''\cdot(K\pi''\cdot Tv'_1\cdot w_1)
  \]
  with the fibre product $(w'_1,w'_2)$ of $(Ke''\cdot Tb'\cdot v_1, Ta'')$, we obtain a crochet $s=s(\theta'',\theta',\theta)\colon\hat{\pi}\to\hat{\pi}'$ characterised by the relations
  \[
    \begin{aligned}
      w'_2\cdot s
      &= w_2
    \\w'_1\cdot s
      &= K\pi''\cdot Tv'_1\cdot w_1
    \end{aligned}
  \]
  and so $s$ is the desired associativity morphism, since
  \[
    \begin{aligned}
      Ke'''\cdot Tb''\cdot w'_1\cdot s
      &= Ke'''\cdot Tb''\cdot K\pi''\cdot Tv'_1\cdot w_1
    \\&=Ke'''\cdot KTe'''\cdot TTb''\cdot Tv'_1\cdot w_1
    \\&= Ke'''\cdot TKe'''\cdot TTb''\cdot Tv'_1\cdot w_1
    \end{aligned}
  \]
  and
  \[
    a\cdot v_w\cdot w'_2\cdot s
    = a\cdot v_2\cdot w_2
  \]
  which shows that $s\colon(\theta''\circ\theta')\circ\theta\to\theta''\circ(\theta'\circ\theta)$ defines a morphism in $\Sp{\TT}$.

  We now show the coherence axiom~(8).
  Let
  \[
    \theta_i
    = (b_i,a_i)
    \colon e_i
    \to e_{i+1}
  \]
  (for $1\leqslant i\leqslant 4$) be a $\TT$-span.
  We set
  \[
    \begin{aligned}
      p
      &= s(\theta_4,\theta_3,\theta_2)\circ\theta_1
    \\p'
      &= s(\theta_4,\theta_3\circ\theta_2,\theta_1)
    \\p''
      &= \theta_4\circ s(\theta_3,\theta_2,\theta_1)
    \\q
      &= s(\theta_4\circ\theta_3,\theta_2,\theta_1)
    \\q'
      &= s(\theta_4,\theta_3,\theta_2\circ\theta_1).
    \end{aligned}
  \]
  We need to show the relation $q'\cdot q=p''\cdot p'\cdot p$.
  To simplify notation, we will use the same notation for a morphism between $\TT$-spans (i.e. a 2-morphism in $\Sp{\TT}$) and the underlying morphism in $\cat{E}$ that defines it, as long as the context ensures that no confusion may arise.
  Finally, we note that the fibre products are not always chosen so as to be canonical, but instead so as to make the other fibre products canonical.

  \medskip

  \emph{Construction of $((\theta_4\circ\theta_3)\circ\theta_2)\circ\theta_1$.}
  Let $(u_i,u'_i)$ be the canonical fibre product of $(Ta_{i+1},b_i)$ for $1\leqslant i\leqslant3$, so that $\theta_{i+1}\circ\theta_i\colon e_i\to e_{i+2}$ is defined by $(Ke_{i+1}\cdot Tb_{i+1}\cdot u_i, a_i\cdot u'_i)$ (for $1\leqslant i\leqslant 3$).
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  Let $(v_i,v'_i)$ be a fibre product of $(Tu'_{i+1},u_i)$ for $1\leqslant i\leqslant 2$, so that $(v_i,u'_i\cdot v'_i)$ is the fibre product of $(Ta_{i+1}\cdot Tu_{i+1},b_i)$ and $(\theta_{i+2}\circ\theta_{i+1})\circ\theta_i$ is defined by $(Ke_{i+3}\cdot T(Ke_{i+3}\cdot Tb_{i+2}\cdot u_{i+1})\cdot v_i,a_i\cdot u'_i\cdot v'_i)$ for $1\leqslant i\leqslant 2$.
  Let $(w_1,w'_1)$ be the fibre product of $(Tv'_2,v_1)$, and $\pi_i$ and $\pi'_i$ the source of $a_i$ and $u_i$ (respectively).

  \medskip

  \emph{Construction of $\theta_4\circ(\theta_3\circ(\theta_2\circ\theta_1))$.}
  Let $(m_1,m'_1)$ be the canonical fibre product of $(Ta_3,Ke_3\cdot Tb_2\cdot u_1)$, so that $\theta_3\circ(\theta_2\circ\theta_1)$ is defined by $(Ke_4\cdot Tb_3\cdot m_1,a_1\cdot u'_1\cdot m'_1)$.
  Let $(o,o')$ be the canonical fibre product of $(Ta_4,Ke_4\cdot Tb_3\cdot m_1)$, so that $\theta_4\circ(\theta_3\circ(\theta_2\circ\theta_1))$ is defined by $(Ke_5\cdot Tb_4\cdot o,a_1\cdot u'_1\cdot m'_1\cdot o')$.

  \medskip

  \emph{Construction of $(\theta_4\circ\theta_3)\circ(\theta_2\circ\theta_1)$.}
  Let $(r,r')$ be a fibre product of $(Tu'_3,m_1)$, so that $(\theta_4\circ\theta_3)\circ(\theta_2\circ\theta_1)$ is defined by
  \[
    (Ke_5\cdot T(Ke_5\cdot Tb_4\cdot u_3)\cdot r, a_1\cdot u'_1\cdot m'_1\cdot r').
  \]

  \medskip

  \emph{Construction of $q$.}
  The relation
  \[
    T(a_3\cdot u'_3)\cdot K\pi'_3\cdot Tv_2\cdot w_1
    = (Ke_3\cdot Tb_2\cdot u_1)\cdot v'_1\cdot w'_1
  \]
  combined with the fibre product $(r,m'_1\cdot r')$ of $(T(a_3\cdot u'_3),Ke_3\cdot Tb_2\cdot u_1)$ gives a \unsure{crochet} $q$ (a morphism in $\cat{E}$) characterised by
  \[
    \begin{aligned}
      r\cdot q
      &= K\pi'_3\cdot Tv_2\cdot w_1
    \\m'_1\cdot r'\cdot q
      &= v'_1\cdot w'_1.
    \end{aligned}
    \tag{1}
  \]
  Then
  \[
    q\colon((\theta_4\circ\theta_3)\circ\theta_2)\theta_1
    \to (\theta_4\circ\theta_3)\circ(\theta_2\circ\theta_1)
  \]
  is a morphism in $\Sp{\TT}$.
  Indeed, by (1),
  \[
    \begin{aligned}
      Ke_5\cdot T(Ke_5\cdot Tb_4\cdot u_3)\cdot r\cdot q
      &= Ke_5\cdot TKe_5\cdot TTb_4\cdot Tu_3\cdot K\pi'_3\cdot Tv_2\cdot w_1
    \\&= Ke_5\cdot TKe_5\cdot KTTe_5\cdot TTTb_4\cdot TTu_3\cdot Tv_2\cdot w_1
    \\&= Ke_5\cdot T(Ke_5\cdot KTe_5\cdot TTb_4\cdot Tu_3\cdot v_2)\cdot w_1
    \\&= Ke_5\cdot T(Ke_5\cdot T(Ke_5\cdot Tb_4\cdot u_3)\cdot v_2)\cdot w_1
    \end{aligned}
  \]
  and
  \[
    a_1\cdot u'_1\cdot m'_1\cdot r'\cdot q
    = a_1\cdot u'_1\cdot v'_1\cdot w'_1.
  \]

  \medskip

  \emph{Construction of $q'$.}
  The relations
  \[
    \begin{aligned}
      Ta_4\cdot(K\pi_4\cdot Tu_3\cdot r)
      &= Ke_4\cdot Tb_3\cdot Tu'_3\cdot r
    \\&= (Ke_4\cdot Tb_3\cdot m_1)\cdot r'
    \end{aligned}
  \]
  combined with the fibre product $(o,o')$ of $(Ta_4,Ke_4\cdot Tb_3\cdot m_1)$ give a \unsure{crochet} $q'$ (a morphism in $\cat{E}$) characterised by
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  \[
    \begin{aligned}
      o\cdot q'
      &= K\pi_4\cdot Tu_3\cdot r
    \\o'\cdot q'
      &= r'.
    \end{aligned}
    \tag{2}
  \]
  Then
  \[
    q'\colon(\theta_4\circ\theta_3)\circ(\theta_2\circ\theta_1)
    \to \theta_4\circ(\theta_3\circ(\theta_2\circ\theta_1))
  \]
  is a morphism in $\Sp{\TT}$.
  Indeed, by (2),
  \[
    \begin{aligned}
      (Ke_5\cdot Tb_4\cdot o)\cdot q'
      &= Ke_5\cdot Tb_4\cdot K\pi_4\cdot Tu_3\cdot r
    \\&= Ke_5\cdot KTe_5\cdot TTb_4\cdot Tu_3\cdot r
    \\&= Ke_5\cdot T(Ke_5\cdot Tb_4\cdot u_3)\cdot r
    \end{aligned}
  \]
  and
  \[
    a_1\cdot u'_1\cdot m'_1\cdot o'\cdot q'
    = a_1\cdot u'_1\cdot m'_1\cdot r'.
  \]

  \medskip

  \emph{Construction of $(\theta_4\circ(\theta_3\circ\theta_2))\circ\theta_1$.}
  Let $(m_2,m'_2)$ be the canonical fibre product of $(Ta_4,Ke_4\cdot Tb_3\cdot u_2)$, so that $\theta_4\circ(\theta_3\circ\theta_2)$ is defined by $(Ke_5\cdot Tb_4\cdot m_2,a_2\cdot u'_2\cdot m'_2)$, and let $(t,t')$ be a fibre product of $(Tm'_2,v_1)$, so that $(\theta_4\circ(\theta_3\circ\theta_2))\circ\theta_1$ is defined by
  \[
    (Ke_5\cdot T(Ke_5\cdot Tb_4\cdot m_2)\cdot t, a_1\cdot u'_1\cdot v'_1\cdot t')
  \]
  (in other words, $(t,u'_1\cdot v'_1\cdot t')$ is the canonical fibre product of $(Ta_2\cdot Tu'_2\cdot Tm'_2,b_1)$).

  \medskip

  \emph{Construction of $p$.}
  The relations
  \[
    \begin{aligned}
      Ta_4\cdot (K\pi_4\cdot Tu_3\cdot v_2)
      &= Ke_4\cdot Tb_3\cdot Tu'_3\cdot v_2
    \\&= (Ke_4\cdot Tb_3\cdot u_2)\cdot v'_2
    \end{aligned}
  \]
  combined with the fibre product $(m_2,m'_2)$ of $(Ta_4,Ke_4\cdot Tb_3\cdot u_2)$ give a crochet $d_2$ characterised by
  \[
    \begin{aligned}
      m_2\cdot d_2
      &= K\pi_4\cdot Tu_3\cdot v_2
    \\m'_2\cdot d_2
      v'_2
    \end{aligned}
    \tag{3}
  \]
  (this is in fact the morphism in $\cat{E}$ that defines $s(\theta_4,\theta_3,\theta_2)$).
  Now the relations
  \[
    \begin{aligned}
      Tm'_2\cdot Td_2\cdot w_1
      &= T(m'_2\cdot d_2)\cdot w_1
    \\&= Tv'_2\cdot w_1
    \\&= v_1\cdot w'_1
    \end{aligned}
  \]
  combined with the fibre product $(t,t')$ give a crochet $p$ characterised by
  \[
    \begin{aligned}
      t\cdot p
      &= Td_2\cdot w_1
    \\t'\cdot p
      &= w'_1.
    \end{aligned}
    \tag{4}
  \]
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  Then
  \[
    p\colon((\theta_4\circ\theta_3)\circ\theta_2)\circ\theta_1
    \to (\theta_4\circ(\theta_3\circ\theta_2))\circ\theta_1
  \]
  is a morphism in $\Sp{\TT}$.
  Indeed, by (3),
  \[
    \begin{aligned}
      Ke_5\cdot T(Ke_5\cdot Tb_4\cdot m_2)\cdot t\cdot p
      &= Ke_5\cdot TKe_4\cdot TTb_4\cdot (Tm_2\cdot Td_2)\cdot w_1
    \\&\underset{(3)}{=} Ke_5\cdot TKe_5\cdot TTb_4\cdot T(K\pi_4\cdot Tu_3\cdot v_2)\cdot w_1
    \\&= Ke_5\cdot TKe_5\cdot TKTe_5\cdot TTTb_4\cdot TTu_3\cdot Tv_2\cdot w_1
    \\&= Ke_5\cdot T(Ke_5\cdot KTe_5\cdot TTb_4\cdot Tu_3\cdot v_2)\cdot w_1
    \\&= Ke_5\cdot T(Ke_5\cdot T(Ke_5\cdot Tb_4\cdot u_3)\cdot v_2)\cdot w_1
    \end{aligned}
  \]
  and, by (4),
  \[
    a_1\cdot u'_1\cdot v'_1\cdot t'\cdot p
    = a_1\cdot u'_1\cdot v'_1\cdot w'_1.
  \]

  \medskip

  \emph{Construction of $p'$.}
  The relations
  \[
    \begin{aligned}
      Ta_4\cdot (K\pi_4\cdot Tm_2\cdot t)
      &= Ke_4\cdot TTa_4\cdot Tm_2\cdot t
    \\&=Ke_4\cdot T(Ke_4\cdot Tb_3\cdot u_2)\cdot Tm'_2\cdot t
    \\&= (Ke_4\cdot T(Ke_4\cdot Tb_3\cdot u_2)\cdot v_1)\cdot t'
    \end{aligned}
  \]
  combined with the fibre product $(n,n')$ of $(Ta_4,Ke_4\cdot T(Ke_4\cdot Tb_3\cdot u_2)\cdot v_1)$ give a crochet $p$ characterised by
  \[
    \begin{aligned}
      n\cdot p'
      &= K\pi_4\cdot Tm_2\cdot t
    \\n'\cdot p'
      &= t'.
    \end{aligned}
    \tag{5}
  \]
  Then
  \[
    p'\colon(\theta_4\circ(\theta_3\circ\theta_2))\circ\theta_1
    \to \theta_4\circ((\theta_3\circ\theta_2)\circ\theta_1)
  \]
  is a morphism in $\Sp{\TT}$.
  Indeed, by (5),
  \[
    \begin{aligned}
      Ke_5\cdot Tb_4\cdot n\cdot p'
      &\underset{(5)}{=} Ke_5\cdot Tb_4\cdot K\pi_4\cdot Tm_2\cdot t
    \\&= Ke_5\cdot KTe_5\cdot TTb_4\cdot Tm_2\cdot t
    \\&= Ke_5\cdot T(Ke_5\cdot Tb_4\cdot m_2)\cdot t
    \end{aligned}
  \]
  and
  \[
    a_1\cdot u'_1\cdot v'_1\cdot n'\cdot p'
    = a_1\cdot u'_1\cdot v'_1\cdot t'.
  \]

  \medskip

  \emph{Construction of $p''$.}
  The relation
  \[
    Ta_3\cdot K\pi_3\cdot Tu_2\cdot v_1
    = Ke_3\cdot Tb_2\cdot u_1\cdot v'_1
  \]
  gives a crochet $d_1$ characterised by
  \[
    \begin{aligned}
      m_1\cdot d_1
      &= K\pi_3\cdot Tu_2\cdot v_1
    \\m'_1\cdot d_1
      &= v'_1
    \end{aligned}
    \tag{6}
  \]
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  (this is in fact the morphism in $\cat{E}$ that defines $s(\theta_3,\theta_2,\theta_1)$).

  Now the relations
  \[
    \begin{aligned}
      Ta_4\cdot n
      &= Ke_4\cdot KTe_4\cdot TTb_3\cdot Tu_2\cdot v_1\cdot n'
    \\&= Ke_4\cdot Tb_3\cdot K\pi_3\cdot Tu_2\cdot v_1\cdot n'
    \\&= (Ke_4\cdot Tb_3\cdot m_1)\cdot d_1\cdot n'
    \end{aligned}
  \]
  combined with the fibre product $(o,o')$ of $(Ta_4,Ke_4\cdot Tb_3\cdot m_1)$ give a crochet characterised by
  \[
    \begin{aligned}
      o\cdot p''
      &= n
    \\o'\cdot p''
      &= d_1\cdot n'.
    \end{aligned}
    \tag{7}
  \]
  Then
  \[
    p''\colon\theta_4\circ((\theta_3\circ\theta_2)\circ\theta_1)
    \to \theta_4\circ(\theta_3\circ(\theta_1\circ\theta_1))
  \]
  is a morphism in $\Sp{\TT}$, since
  \[
    Ke_5\cdot Tb_4\cdot o\cdot p''
    = Ke_5\cdot Tb_4\cdot n
  \]
  and, by (6),
  \[
    \begin{aligned}
      a_1\cdot u'_1\cdot m'_1\cdot o'\cdot p''
      &= a_1\cdot u'_1\cdot m'_1\cdot d_1\cdot n'
    \\&\underset{(6)}{=} a_1\cdot u'_1\cdot v'_1\cdot n'.
    \end{aligned}
  \]

  \medskip

  \emph{Construction of the ``deus ex machina'' $x$.}
  The relations
  \[
    \begin{aligned}
      Ta_4\cdot (K\pi_4\cdot KT\pi_4\cdot TTu_3\cdot Tv_2\cdot w_1)
      &= Ke_4\cdot KTe_4\cdot TTb_3\cdot Tu_2\cdot v_1\cdot w'_1
    \\&= (Ke_4\cdot T(Ke_4\cdot Tb_3\cdot u_2)\cdot v_1)\cdot w'_1
    \\&\underset{(6)}{=} (Ke_4\cdot Tb_3\cdot m_1)\cdot d_1\cdot w'_1
    \end{aligned}
  \]
  combined with the fibre product $(o,o')$ give a crochet $x$ such that
  \[
    \begin{aligned}
      o\cdot x
      &= K\pi_4\cdot KT\pi_4\cdot TTu_3\cdot Tv_2\cdot w_1
    \\o'\cdot x
      &= d_1\cdot w'_1.
    \end{aligned}
    \tag{8}
  \]
  It is the uniqueness property of this crochet that will allow us to complete the proot;
  indeed, it suffices to note that if in (8) we replace $x$ by $q'\cdot q$ or $p''\cdot p'\cdot p$ then these relations still hold true.
  Indeed,
  \[
    \begin{aligned}
      o\cdot q'\cdot q
      &\underset{(2)}{=} K\pi_4\cdot Tu_3\cdot r\cdot q
    \\&= K\pi_4\cdot Tu_3\cdot K\pi'_3\cdot Tv_2\cdot w_1
    \\&= K\pi_4\cdot KT\pi_4\cdot TTu_3\cdot Tv_2\cdot w_1
    \end{aligned}
  \]
  and
  \[
    o'\cdot q'\cdot q
    \underset{(2)}{=} r'\cdot q
    = d_1\cdot w'_1
  \]
  where the last equality is proven by using the universal property of the fibre product, since, by definition of the fibre product $(r,r')$, we have that
  \[
    \begin{aligned}
      m_1\cdot r'\cdot q
      &= Tu'_3\cdot r\cdot q
    \\&\underset{(1)}{=} Tu'_3\cdot K\pi'_3\cdot Tv_2\cdot w_1
    \\&= K\pi_3\cdot Tu_2\cdot v_1\cdot w'_1
    \\&\underset{(6)}{=} m_1\cdot d_1\cdot w'_1
    \end{aligned}
  \]
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  and
  \[
    m'\cdot r'\cdot q
    \underset{(1)}{=} v'\cdot w'_1
    \underset{(6)}{=} m'_1\cdot d_1\cdot w'_1.
  \]
  Now we replace $x$ by $p''\cdot p'\cdot p$ in (8), which gives
  \[
    \begin{aligned}
      o\cdot p''\cdot p'\cdot p
      &\underset{(7)}{=} n\cdot p'\cdot p
    \\&\underset{(5)}{=} K\pi_4\cdot Tm_2\cdot t\cdot p
    \\&\underset{(4)}{=} K\pi_4\cdot T(K\pi_4\cdot Tu_3\cdot v_2)\cdot w_1
    \\&= K\pi_4\cdot KT\pi_4\cdot TTu_3\cdot Tv_2\cdot w_1
    \end{aligned}
  \]
  and
  \[
    \begin{aligned}
      o'\cdot p''\cdot p'\cdot p
      &\underset{(7)}{=} d_1\cdot n'\cdot p'\cdot p
    \\&\underset{(5)}{=} d_1\cdot t'_1\cdot p
    \\&\underset{(4)}{=} d_1\cdot w'_1.
    \end{aligned}
  \]
  This finishes the proof of the coherence axiom~(8).
  The proof of the coherence axiom~(9) is based on the same method.
\end{proof}

\begin{rmenv}{Remark}
  We could have proven a more general result, and more quickly, by systematically using pseudo-triples.
  $\Sp{\TT}$ would then have appeared as the ``Kleisli'' pseudo-category of the pseudo-triple induced by $\TT$ on $\Sp{\cat{E}}$, where $\Sp{\cat{E}}=\Sp{(\id_\cat{E},\id_\cat{E},\id_\cat{E})}$.
  We canonically obtain a pseudo-functor from the Kleisli category $\Kl{\TT}$ of the triple $\TT$ to the pseudo-category $\Sp{\TT}$ by sending a morphism $f\colon e\to e'$ in $\Kl{\TT}$ (i.e. $f\colon e\to Te$ in $\cat{E}$) to the $\TT$-span
  \[
    (f,\id_e)\colon e\to e'.
  \]
\end{rmenv}

We say that a natural transformation $m\colon F\to F'$, where $F,F'\colon\cat{C}\to\cat{C}'$ are functors, is \emph{cartesian} if, for every morphism $f\colon e\to e'$ in $\cat{C}$, the pair $(F(f),m(e))$ is a fibre product of $(m(e'),F'(f))$.
We say that $\TT=(T,I,K)$ is a \emph{cartesian triple} if the following two conditions are satisfied:
\begin{enumerate}
  \item[(a)]
    $\Cat{E}$ admits finite fibre products, and $T$ commutes with them (which is the case as soon as $I$ or $K$ are cartesian).

  \item[(b)]
    $I$ and $K$ are cartesian natural transformations.
\end{enumerate}

We will see examples of cartesian triples in \cref{sec:III};
here is a useful characterisation:

\begin{itenv}{Proposition~II.2.14}
\label{proposition:II.2.14}
  For $\Sp{\TT}$ to be a bicategory (i.e. for $r$, $l$, and $s$ to define natural equivalences), it is necessary and sufficient that $\TT$ be cartesian.
\end{itenv}

\begin{proof}
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  We use the notation of \unsure{Proposition~1}.
  For the construction of $r(\theta)$, it is clear that condition~(c) implies that the crochet between two fibre products is invertible, and conversely if it is invertible then (c) is satisfied.
  We already know that $l(\theta)$ is always invertible
  For the construction of $s(\theta'',\theta',\theta)$, \unsure{Figure~1} clearly shows that if (a) and (b) are satisfied then $(K\pi''\cdot Tv_1\cdot w_1,w_2)$ is a fibre product of $(Ta'',Ke''\cdot Tb'\cdot v_1)$ and, since $s$ is the crochet arising from the canonical fibre product $(w_1,w_2)$, it is invertible.
  The converse can be proven by considering degenerate cases of this situation.
\end{proof}



\subsection{Two interpretations of $\TT$-categories}
\label{sec:II.3}

We will give two interpretations, somehow dual to one another, of $\TT$-categories.

A \emph{monad} (or \emph{monoid}) in a pseudo-category $\cat{D}$ is a pseudo-functor $\mu\colon\mathbf{1}\to\cat{D}$, where we denote by $\mathbf{1}$ the pseudo-category consisting of a single object $0$, a single morphism, and a single 2-morphism (this entirely determines the structure).
We denote by $\circ$ the first law in $\cat{D}$ and by $\cdot$ the second.
If $e=\mu(0)$ and $\theta=\mu(\id_0)$, then the data of $\mu$ is equivalent to that of two 2-morphisms in $\cat{D}$, namely
\[
  i\colon\id_e\to\theta
  \textand
  k\colon\theta\circ\theta\to\theta
\]
(which correspond to the families $u$ and $c$ in the definition of pseudo-functors) that make the following diagrams commute:
\[
  \begin{tikzcd}
    \theta
      \ar[r,"\id(\theta)"]
      \ar[d,swap,"r(\theta)"]
    & \theta
  \\\theta\circ\id_e
      \ar[r,swap,"\theta\circ i"]
    & \theta\circ\theta
      \ar[u,swap,"k"]
  \end{tikzcd}
  \qquad
  \begin{tikzcd}
    \theta
    & \theta
        \ar[l,swap,"\id(\theta)"]
        \ar[d,"l(\theta)"]
  \\\theta\circ\theta
        \ar[u,"k"]
    & \id_e\circ\theta
        \ar[l,"i\circ\theta"]
  \end{tikzcd}
  \qquad
  \begin{tikzcd}
    \theta\circ(\theta\circ\theta)
      \ar[d,swap,"\theta\circ k"]
    & (\theta\circ\theta)\circ\theta
      \ar[l,swap,"{s(\theta,\theta,\theta)}"]
      \ar[d,"k\circ\theta"]
  \\\theta\circ\theta
      \ar[d,swap,"k"]
    & \theta\circ\theta
      \ar[d,"k"]
  \\ \theta
    & \theta
      \ar[l,"\id(\theta)"]
  \end{tikzcd}
\]
(which correspond to axioms~(5') and (6') of \cref{sec:II.1}).
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Let $\cat{E}$ be a category endowed with a triple $\TT$, admitting finite fibre products and endowed with a canonical choice of these fibre products.

\begin{itenv}{Proposition~II.3.15}
\label{proposition:II.3.15}
  The data of a $\TT$-category is equivalent to that of a monad in the pseudo-category $\Sp{\TT}$ on the same object.
\end{itenv}

\begin{proof}
  If $\mu\colon\mathbf{1}\to\Sp{\TT}$ is a monad, then the $\TT$-span $\theta\colon e\to e$ is defined by a pair $(a,b)$ of morphisms in $\cat{E}$ of the form
  \[
    a\colon\pi\to Te
    \textand
    b\colon\pi\to e.
  \]
  We will construct the 2-morphism
  \[
    s(\theta,\theta,\theta)\colon
    (\theta\circ\theta)\circ\theta
    \to \theta\circ(\theta\circ\theta)
  \]
  in $\Sp{\TT}$.
  For this, let $(v_2,v_1)$ be the canonical fibre product of $(Tb,a)$, let $(w_2,w_1)$ be the fibre product of $(Tv_1,v_2)$ that makes the fibre product $(w_2,v_1\cdot w_1)$ of $(Tb\cdot Tv_1,a)$ canonical, and let $(w'_2,w'_1)$ be the canonical fibre product of $(Tb,Ke\cdot Ta\cdot v_2)$;
  then $s(\theta,\theta,\theta)$ is defined by the morphism $s$ in $\cat{E}$ characterised by
  \[
    \begin{aligned}
      w'_1\cdot s
      &= w_1
    \\w'_2\cdot s
      &= K\pi\cdot Tv_2\cdot w_2
    \end{aligned}
    \tag{1}
  \]
  which follows from combining the relation
  \[
    Tb\cdot K\pi\cdot Tv_2\cdot w_2
    = Ke\cdot Ta\cdot v_2\cdot w_1
  \]
  with the fibre product $(w'_2,w'_1)$.

  We now construct the 2-morphisms
  \[
    l(\theta)\colon\theta\to\id_e\circ\theta
    \textand
    r(\theta)\colon\theta\to\theta\circ\id_e
  \]
  in $\Sp{\TT}$, defined by the morphisms $l$ and $r$ of $\cat{E}$ characterised by the relations
  \[
    \begin{aligned}
      u'_2\cdot l
      &= a
    \\u'_1\cdot l
      &= \id_\pi
    \\u_2\cdot r
      &= I\pi
    \\u_1\cdot r
      &= b
    \end{aligned}
    \tag{2}
  \]
  where $(u_2,u_1)$ is the canonical fibre product of $(Tb,Ie)$, and $(u'_2,u'_1)$ that of $(\id_{Te},a)$.
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  In the rest of this proof, we denote by the same letter $x$ a 2-morphism $x\colon e\to e''$ in $\Sp{\TT}$ and the underlying morphism $x\colon e\to e'$ in $\cat{E}$; $i$ and $k$ have the same meaning as above (the families $u$ and $c$).
  We will show that $\theta^*=(b,a,i,k)$ is a (non-canonical; see the definition in \cref{sec:II.4}) $\TT$-category if and only if the data $(\theta,i,k)$ defines a monad $\mu$ in $\Sp{\TT}$.

  In $\cat{E}$, we have the following characterising relations for $i\circ\theta$, $\theta\circ i$, $k\circ\theta$, and $\theta\circ k$:
  \[
    \begin{aligned}
      v_2\cdot(i\circ\theta)
      &= Ti\cdot u'_2
    \\v_2\cdot(\theta\circ i)
      &= u_2
    \\v_2\cdot(k\circ\theta)
      &= Tk\cdot w_2
    \\v_2\cdot(\theta\circ k)
      &= w'_2
    \end{aligned}
    \qquad
    \begin{aligned}
      v_1\cdot(i\circ\theta)
      &= u'_1
    \\v_1\cdot(\theta\circ i)
      &= i\cdot u_1
    \\v_1\cdot(k\circ\theta)
      &= v_1\cdot w_1
    \\v_1\cdot(\theta\circ k)
      &= k\cdot w'_1.
    \end{aligned}
    \tag{3}
  \]
  Using (1), (2), and (3), we thus deduce the following relations in $\cat{E}$:
  \[
    \begin{aligned}
      v_2\cdot(i\circ\theta)\cdot l
      &= Ti\cdot a
    \\v_2\cdot(\theta\circ i)
      &= I\pi
    \\v_2\cdot(k\circ\theta)
      &= Tk\cdot w_2
    \\v_2\cdot(\theta\circ k)\cdot s
      &= K\pi\cdot Tv_2\cdot w_2
    \end{aligned}
    \qquad
    \begin{aligned}
      v_1\cdot(i\circ\theta)\cdot l
      &= \id_\pi
    \\v_1\cdot(\theta\circ i)\cdot r
      &= i\cdot b
    \\v_1\cdot(k\circ\theta)
      &= v_1\cdot w_1
    \\v_1\cdot(\theta\circ k)\cdot s
      &= k\cdot w_1.
    \end{aligned}
  \]
  If we combine these relations with the characterising relations~(2), (3), (4), (5), (6) from \cref{sec:I.1}, then we deduce the relations
  \[
    \begin{aligned}
      i_1
      &= (i\circ\theta)\cdot l
    \\k_1
      &= (\theta\circ k)\cdot s
    \end{aligned}
    \qquad
    \begin{aligned}
      i_2
      &= (\theta\circ i)\cdot r
    \\k_2
      &= k\circ\theta.
    \end{aligned}
  \]
  The ``identity'' and ``associativity'' conditions~(7) and (8) from \cref{sec:I.1} can then be written as
  \[
    \begin{gathered}
      k\cdot(i\circ\theta)\cdot l
      = \id_\pi
      = k\cdot(\theta\circ i)\cdot r
    \\k\cdot(\theta\circ k)\cdot s
      = k\cdot(k\circ\theta)
    \end{gathered}
  \]
  and express the commutativity of the diagrams defined, above, by $\mu$, which are extracts of the following diagram in $\Sp{\TT}$:
  \[
    \begin{tikzcd}
      &&\theta\circ\id_e
        \ar[dr,"\theta\circ i"]
      &&(\theta\circ\theta)\circ\theta
        \ar[dl,swap,"k\circ\theta"]
        \ar[dd,"{s(\theta,\theta,\theta)}"]
    \\\id_e
        \ar[r,"i"]
      & \theta
        \ar[ur,"r(\theta)"]
        \ar[dr,swap,"l(\theta)"]
      && \theta\circ\theta
        \ar[ll,swap,"k"]
    \\&&\id_e\circ\theta
        \ar[ur,swap,"i\circ\theta"]
      &&\theta\circ(\theta\circ\theta)
        \ar[ul,"\theta\circ k"]
    \end{tikzcd}
  \]
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  which finishes the proof.
\end{proof}

If $\cat{E}$ satisfies the same hypotheses, we denote by $\Sp{\cat{E}}$ the pseudo-category (which is really a bicategory) $\Sp{\id_\cat{E},\id_\cat{E},\id_\cat{E}}$;
its morphisms are simply called \emph{spans in $\cat{E}$}.
We denote by $\circ$ its first law, and by $\cdot$ its second, and we denote a morphism of spans and the underlying morphism in $\cat{E}$ by the same notation.
We will now interpret a $\TT$-category in $\Sp{\cat{E}}$ instead of $\Sp{\TT}$.
If we had defined the notion of a pseudo-triple on a pseudo-category (for example, we would see that $\TT$ induces a pseudo-triple on $\Sp{\cat{E}}$), then we could define the notion of pseudo-algebra in full generality.
We will content ourselves with the following definition: we say that $(\theta,\tilde{i},\tilde{k})$ is a $\TT$-pseudo-algebra on $e$ if $\theta\colon Te\to e$ is a span in $\cat{E}$ (and thus defined by morphisms $b\colon\pi\to e$ and $a\colon\pi\to Te$ in $\cat{E}$), if
\[
  \begin{aligned}
    \tilde{i}\colon \id_e
    &\to \theta\circ Ie
  \\\tilde{k}\colon \theta\circ T\theta
    &\to \theta Ke
  \end{aligned}
\]
are 2-morphisms in $\Sp{\cat{E}}$, where we set $T\theta=(Tb,Ta)$ and identify every morphism $x\colon e'\to e''$ with the span $(x,\id_{e'})\colon e'\to e''$, and finally if the following ``coherence axioms'' are satisfied:
\[
  (\tilde{k}\circ ITe)\cdot(\tilde{i}\circ\theta)
  = \id_\theta
  = (\tilde{k}\circ TIe)\cdot(\theta\circ T\tilde{i})
  \tag{1}
\]
\[
  (\tilde{k}\circ KTe)\cdot(\tilde{k}\circ TT\theta)
  = (\tilde{k}\circ TKe)\cdot(\theta\circ T\tilde{k}).
  \tag{2}
\]

\begin{itenv}{Proposition~II.3.16}
  The data of a $\TT$-category on $e$ is equivalent to the data of a $\TT$-pseudo-algebra on $e$.
\end{itenv}

\begin{proof}
  Let $\Theta\colon Te\to e$ be a span, with $\theta=(b,a)$;
  let $(u''_1,u''_2)$ be the canonical fibre product of $(a,Ie)$;
  then $\theta\circ Ie\colon e\to e$ is defined by the pair $(b\cdot u''_1,u''_2)$.
  A morphism $i\colon\id_e\to\theta\circ Ie$ in $\Sp{\cat{E}}$ is defined by a morphism $\tilde{i}\colon e\to\pi'$ in $\cat{E}$ (see \unsure{Figure}) such that
  \[
    \begin{aligned}
      b\cdot u''_1\cdot\tilde{i}
      &= \id_e
    \\u''_2\cdot\tilde{i}
      &= \id_e.
    \end{aligned}
  \]
  Set $i=u''_1\cdot\tilde{i}$;
  we have that
  \[
    \begin{aligned}
      b\cdot i
      &= \id_e
    \\a\cdot i
      &= Ie\cdot u''_2\cdot\tilde{i}
      = Ie
    \end{aligned}
  \]
  and so $(b,a,i)$ is a pointed $\TT$-graph on $e$.
  Conversely, this data determines a crochet $\tilde{i}\colon e\to\pi$ that defines the desired morphism $\tilde{i}$ of spans.

  \todo{figure}

  \oldpage{261}
  Let $(v_1,v_2)$ and $(v'_1,v'_2)$ be the canonical fibre products of $(a,Tb)$ and $(a,Ke)$ respectively;
  then $\theta\circ T\theta$ and $\theta\circ Ke\colon TTe\to e$ are defined by the pairs $(b\cdot v_1,Ta\cdot v_2)$ and $(b\cdot v'_1,v'_2)$ respectively.
  A morphism of spans $\tilde{k}\colon\theta\circ T\theta\to\theta\circ Ke$ is defined by a morphism $\tilde{k}\colon\pi_2\to\pi''$ in $\cat{E}$ such that
  \[
    \begin{aligned}
      b\cdot v'_1\cdot\tilde{k}
      &= b\cdot v_1
    \\v'_2\cdot\tilde{k}
      &= Ta\cdot v_2.
    \end{aligned}
  \]
  Set $k=v'_1\cdot\tilde{k}$;
  we have that $b\cdot k=b\cdot v_1$, and
  \[
    \begin{aligned}
      a\cdot k
      &= a\cdot v'_1\cdot\tilde{k}
    \\&= Ke\cdot v'_2\cdot\tilde{k}
    \\&= Ke\cdot Ta\cdot v_2
    \end{aligned}
  \]
  which expresses axiom~(4) of \cref{sec:I.1}.
  Conversely, if $k$ satisfies (4) then it determines a crochet $\tilde{k}$ that defines a morphism of spans $\tilde{k}\colon\theta\circ T\theta\to\theta\circ Ke$.
  Thus it remains only to show that $(b,a,i,k)$ is a $\TT$-category, i.e. that it satisfies axioms~(7) and (8) of \cref{sec:I.1}, if and only if the coherence axioms~(1) and (2) above are satisfied, which is a routine verification.
\end{proof}
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\begin{rmenv}{Remark}
  By applying the above to $\TT$-preorders, we reprove \hyperref[proposition:I.2.4]{Proposition~I.2.4}.
\end{rmenv}



\subsection{Pseudo-monoidal and fibration category of $\Gr{\TT}$}
\label{sec:II.4}

\todo{think about section title translation}

A \emph{pseudo-monoidal category} (or a \emph{pseudo-monoid}) is a pseudo-category $\overline{\cat{D}}$ with only one object, which we almost always denote by $1$.
If $\cat{D}$ is the category $\Hom_{\overline{\cat{D}}}(1,1)$, then its composition law, which coincides with the ``second law'' of $\overline{\cat{D}}$ is denoted by $\cdot$ and the ``first law'' of $\cat{D}$ \unsure{typo? $\overline{\cat{D}}$} is generally denoted by the symbol $\circ$.
We often write $\overline{\cat{D}}=(\cat{D},1,\circ)$, and the symbols $r$, $l$, and $s$ from axioms~(5) and (6) of \cref{sec:II.1} are always used in the same way;
this is why they are easily understood even when denoting $\overline{\cat{D}}$ as a triplet.
Similarly, a pseudo-functor $\overline{F}\colon\overline{\cat{D}}\to\overline{\cat{D}}'$ between pseudo-monoidal categories is determined by a functor $F\colon\cat{D}\to\cat{D}'$ between the underlying categories that ``commutes'' with the first laws, i.e. the morphisms $u$ and $c$ from axioms~(3') and (4') are always denoted in the same way: $u\colon1\to F1$ is a morphism in $\cat{D}'$, whereas $c\colon\bigcirc\cdot(F\times F)\to F\cdot\bigcirc$, where we denote by $\bigcirc\colon\cat{D}\times\cat{D}\to\cat{D}$ the ``first law'' functor:
\[
  \bigcirc(m',m)
  = m'\circ m
\]
for every pair of morphisms in $\cat{D}$, for any pseudo-monoidal category $\overline{\cat{D}}$.
All this data should satisfy ``the coherence axioms''~(7), (8), (5'), and (6') of \cref{sec:II.1}.

Let $\TT$ be a triple on a category $\cat{E}$ endowed with canonical fibre products.
For every $e\in\set{\cat{E}}$, we denote by $\Gr{\TT}/e$ the category $\Hom_{\Sp{\TT}}(e,e)$;
this is a subcategory of $\Gr{\TT}$, and underlies a pseudo-monoidal category $\overline{\Gr{\TT}/e}=(\Gr{\TT}/e,1,\circ)$ which is obtained by ``restriction'' of the structure of $\Sp{\TT}$: it is actually the dual (for just the $\circ$ law) of a sub-pseudo-category of $\Sp{\TT}$.

For every morphism $f\colon e\to e'$ in $\cat{E}$, we define a functor
\[
  \begin{aligned}
    f^*\colon \Gr{\TT}/e'
    &\to \Gr{\TT}/e
  \\m
    &\mapsto f^*m
  \end{aligned}
\]
(see \unsure{Proposition~I.5.6}).

\begin{itenv}{Proposition~II.4.16}
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  $f^*$ is the underlying functor of a pseudo-functor, denoted by $\overline{f^*}\colon\overline{\Gr{\TT}/e'}\to\overline{\Gr{\TT}/e}$, for which the morphisms $u$ and $c$ are further uniquely determined \emph{(but are not necessarily isomorphisms, even if $\TT$ is cartesian)}.
\end{itenv}

\begin{proof}
  If $\theta$ and $\theta'$ are $\TT$-graphs on $e$, then the construction of the morphism $f^*(\theta'\circ\theta)$ by projective limits (which reduces to official fibre products) implies the existence of a unique morphism
  \[
    c(\theta',\theta)\colon f^*\theta'\circ f^*\theta
    \to f^*(\theta'\circ\theta)
  \]
  in $\Gr{\TT}/e$ determined by a crochet $c(\theta',\theta)\colon\pi''\to\pi'$ in $\cat{E}$, if $\pi''$ and $\pi'$ are the objects of morphisms of $\TT$-graphs
  \[
    f^*\theta'\circ f^*\theta
    \textand
    f^*(\theta'\circ\theta)
  \]
  respectively.
  We determine a unique morphism $u\colon 1\to f^*1$ in an analogous way.
  We will show that these morphisms satisfy the coherence axioms~(5') and (6').
  In fact, we will limit ourselves to showing, for example, that the following diagram, for any $\TT$-graph $\theta=(b,a)$ over $e$, commutes:
  \[
    \begin{tikzcd}[sep=large]
      f^*(1\circ\theta)
    & f^*\theta
        \ar[l,swap,"{f^*l\theta}"]
        \ar[d,"{lf^*\theta}"]
    \\f^*1\circ f^*\theta
        \ar[u,"{c(1,\theta)}"]
    & 1\circ f^*\theta
        \ar[l,"{u\circ f^*\theta}"]
    \end{tikzcd}
  \]
  which reduces to showing that we have a commutative diagram with the underlying morphisms in $\cat{E}$, by using the projective limit property of $f^*(1\circ\theta)$.
  We denote by the same symbol a morphism in $\Gr{\TT}$ and the underlying morphism in $\cat{E}$ which it defines.

  Let $(b',a')=f^*\theta$ and $(\overline{b},\overline{a})=f^*(1\circ\theta)$;
  we have projective limits (where the canonical projections are represented by dashed arrows)
  \[
    \begin{tikzcd}
      Te
    & Te'
        \ar[l,swap,"Tf"]
    \\\pi
        \ar[u,"a"]
        \ar[d,swap,"b"]
    & \pi'
        \ar[u,swap,"a'"]
        \ar[d,"b'"]
        \ar[l,dashed,swap,"f'"]
    \\e
    & e'
        \ar[l,"f"]
    \end{tikzcd}
    \qquad
    \begin{tikzcd}
      Te
    & Te'
        \ar[l,swap,"Tf"]
    \\\pi_1
        \ar[u,"Ke\cdot Ta\cdot v_2"]
        \ar[d,swap,"v_1"]
    & \pi
        \ar[u,swap,"\overline{a}"]
        \ar[d,"\overline{b}"]
        \ar[l,dashed,swap,"\overline{f}"]
    \\e
    & e'
        \ar[l,"f"]
    \end{tikzcd}
  \]
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  and where $(v_1,v_2)$ is the fibre product of $(Ie,Tb)$ which is used to form the composite $1\circ\theta=(v_1,Ke\cdot Ta\cdot v_2)$.

  We are thus led to prove the following equalities:
  \begin{align}
    \overline{a}\cdot f^*l\theta
    &= \overline{a}\cdot c(1,\theta)\cdot (u\circ f^*\theta)\cdot lf^*\theta
    \tag{1}
  \\\overline{f}\cdot f^*l\theta
    &= \overline{f}\cdot c(1,\theta)\cdot (u\circ f^*\theta)\cdot lf^*\theta
    \tag{2}
  \\\overline{b}\cdot f^*l\theta
    &= \overline{b}\cdot c(1,\theta)\cdot (u\circ f^*\theta)\cdot lf^*\theta.
    \tag{3}
  \end{align}
  We set $f^*1=(b_\circ,a_\circ)$ and let $f_\circ$ be the third canonical projection that defines $f^*1$:
  \[
    \begin{tikzcd}
      Te
    & Te'
        \ar[l,swap,"Tf"]
    \\e
        \ar[u,"Ie"]
        \ar[d,swap,"\id_e"]
    & \pi_\circ
        \ar[u,swap,"a_\circ"]
        \ar[d,"b_\circ"]
        \ar[l,swap,"f_\circ"]
    \\e
    & e'
        \ar[l,"f"]
    \end{tikzcd}
  \]
  We first obtain a morphism $g$ in $\cat{E}$ such that, denoting by $(v_{1\circ},v_{2\circ})$ the fibre product of $(a_\circ,Tb')$, we have
  \[
    f^*1\circ f^*\theta
    = (b_\circ\cdot v_{1\circ}, Ke'\cdot Ta'\cdot v_{2\circ})
  \]
  and
  \[
    \begin{aligned}
      v_1\cdot g
      &= f_\circ\cdot v_{1\circ}
    \\v_2\cdot g
      &= Tf'\cdot v_{2\circ}.
    \end{aligned}
    \tag{4}
  \]
  The morphism $u$ in $\cat{E}$ is characterised by the relations
  \[
    \begin{aligned}
      b_\circ\cdot u
      &= \id_{e'}
    \\f_\circ\cdot u
      &= f
    \\a_\circ\cdot u
      &= Ie'
    \end{aligned}
    \tag{5}
  \]
  and so, if $(v'_1,v'_2)$ is the fibre product of $(Ie',Tb')$, we have
  \[
    1\circ f^*\theta
    = (v'_1, Ke'\cdot Ta'\cdot v'_2)
  \]
  and
  \[
    \begin{aligned}
      u\cdot v'_1
      &= v_{1\circ}\cdot(u\circ f^*\theta)
    \\v'_2
      &= v_{2\circ}\cdot(u\circ f^*\theta).
    \end{aligned}
    \tag{6}
  \]
  By the definition of the morphism $l\theta$, we have
  \[
    \begin{aligned}
      v_1\cdot l\theta
      &= b
    \\v_2\cdot l\theta
      &= I\pi
    \end{aligned}
  \]
  whence the relations
  \[
    \begin{aligned}
      \overline{a}\cdot f^*l\theta
      &= a'
    \\\overline{f}\cdot f^*l\theta
      &= l\theta\cdot f'
    \\\overline{b}\cdot f^*l\theta
      &= b'.
    \end{aligned}
    \tag{7}
  \]
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  Similarly, the morphism $lf^*\theta$ is characterised by
  \[
    \begin{aligned}
      v'_1\cdot lf^*\theta
      &= b'
    \\v'_2\cdot lf^*\theta
      &= I\pi'.
    \end{aligned}
    \tag{8}
  \]
  We also have that
  \[
    l\theta\cdot f'
    = g\cdot(u\circ f^*\theta)\cdot lf^*\theta
    \tag{9}
  \]
  (the ``naturality'' of $l$), since
  \[
    \begin{aligned}
      v_1\cdot g\cdot(u\circ f^*\theta)
      &\underset{(4)}{=} f_\circ\cdot v_{1\circ}\cdot(u\circ f^*\theta)
    \\&\underset{(6)}{=} f_\circ\cdot u\cdot v'_1
    \\&\underset{(5)}{=} f\cdot v'_1
    \end{aligned}
  \]
  and
  \[
    v_2\cdot g\cdot(u\circ f^*\theta)
    \underset{(4)}{=} Tf'\cdot v_{2\circ}\cdot(u\circ f^*\theta)
    \underset{(6)}{=} Tf'\cdot v'_2.
  \]
  Finally, by the definition of $c(1,\theta)$, we have that
  \[
    \begin{aligned}
      \overline{a}\cdot c(1,\theta)
      &= Ke'\cdot Ta'\cdot v_{2\circ}
    \\\overline{f}\cdot c(1,\theta)
      &= g
    \\\overline{b}\cdot c(1,\theta)
      &= b_\circ\cdot v_{1\circ}.
    \end{aligned}
    \tag{10}
  \]
  We have that
  \[
    \begin{aligned}
      \overline{a}\cdot f^*l\theta
      &\underset{(7)}{=} a'
    \\&= Ke'\cdot Ta'\cdot I\pi'
    \\&\underset{(8)}{=} Ke'\cdot Ta'\cdot v'_2\cdot lf^*\theta
    \\&\underset{(6)}{=} Ke'\cdot Ta'\cdot v_{2\circ}\cdot(u\circ f^*\theta)\cdot lf^*\theta
    \\&\underset{(10)}{=} \overline{a}\cdot c(1,\theta)\cdot(u\circ f^*\theta)\cdot lf^*\theta
    \end{aligned}
  \]
  which proves (1).
  We have that
  \[
    \begin{aligned}
      \overline{f}\cdot f^*l\theta
      &\underset{(7)}{=} l\theta\cdot f'
    \\&\underset{(9)}{=} g\cdot(u\circ f^*\theta)\cdot lf^*\theta
    \\&\underset{(10)}{=} f\cdot c(1,\theta)\cdot(u\circ f^*\theta)\cdot lf^*\theta
    \end{aligned}
  \]
  which proves (2).
  Finally,
  \[
    \begin{aligned}
      \overline{b}\cdot f^*l\theta
      &\underset{(7)}{=} b'
    \\&\underset{(8)}{=} v'_1\cdot lf^*\theta
    \\&\underset{(5)}{=} b_\circ\cdot u\cdot v'_1\cdot lf^*\theta
    \\&\underset{(6)}{=} b_\circ\cdot v_{1\circ}\cdot(u\circ f^*\theta)\cdot lf^*\theta
    \\&\underset{(10)}{=} \overline{b}\cdot c(1,\theta)\cdot(u\circ f^*\theta)\cdot lf^*\theta
    \end{aligned}
  \]
  which proves (3).
\end{proof}

Relative to a universe denoted by $\set{\Cat{Set}}$, we denote by $\Cat{Set}$, $\Cat{Cat}$, etc. the categories of sets, of categories, etc. (respectively).
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We denote by $\Cat{Cat}^\sharp$ the category whose objects are the pseudo-monoidal categories whose underlying category is in $\Cat{Cat}$ and whose morphisms are the pseudo-functors.
Relative to a universe denoted by $\set{\widehat{\Cat{Set}}}$, we denote by $\widehat{\Cat{Set}}$, $\widehat{\Cat{Cat}}$, $\widehat{\Cat{Cat}}^\sharp$, etc. the analogous categories.
If $\cat{E}$ is an element of $\set{\widehat{\Cat{Cat}}}$, then the previous Proposition shows us how, to a morphism $f\colon e\to e'$ in $\cat{E}$, we can associate a morphism
\[
  \overline{f^*}
  \colon \overline{\Gr{\TT}/e'}
  \to \overline{\Gr{\TT}/e}
\]
in $\widehat{\Cat{Cat}}^\sharp$.
We define a \emph{bifunctor} to be a pseudo-functor $(F,u,c)$ such that $u$ and $c$ are natural equivalences (and not a pseudo-functor between bicategories, as in \cite{Be}).

\begin{itenv}{Proposition~II.4.18}
  The correspondence that associates to each morphism $f$ in $\cat{E}$ the pseudo-functor $\overline{f^*}$ defines a bifunctor $\cat{E}^\op\to\widehat{\Cat{Cat}}^\sharp$.
\end{itenv}

\begin{proof}
  We leave this simple proof as an exercise;
  it uses the fact that $u$ and $c$ are crochets of projective limits.
\end{proof}




\section{Examples}
\label{sec:III}
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In the first two examples that follow (\cref{sec:III.2} and \cref{sec:III.3}), the triple $\TT$ possesses properties that simply its study.
These properties ensure not only that the functor $\Cat{Cat}(\TT)\to\Gr{\TT}$ is tripleable (\unsure{Proposition~II.1.19}), but also that they permit a simple construction of the adjoint (\unsure{scolium of Proposition~III.2.21}).



\subsection{Free $\TT$-categories (particular case)}
\label{sec:III.1}

Let $\TT$ be a triple on a category $\cat{E}$ admitting finite fibre products and endowed with a canonical choice of these fibre products.
Let $\cat{X}$ be one of the categories $\Alg{\TT}$, $\Ord{\TT}$, $\Cat{Cat}(\TT)$, or $\Gr{\TT}$, and $e\in\set{\cat{E}}$;
we denote by $\cat{X}/e$ the subcategory of $\cat{X}$ whose objects are the objects $\overline{e}$ of $\cat{X}$ such that $U\overline{e}=e$, where $U\colon\cat{X}\to\cat{E}$ is the usual forgetful functor (see the sequence~($\ast$) at the start of \cref{sec:I.3}), and whose morphisms are the morphisms $\overline{f}\colon\overline{e}\to\overline{e}'$ in $\cat{X}$ such that $U\overline{f}=\id_e$.
Note that $\Alg{\TT}/e$ is a discrete category and $\Ord{\TT}/e$ is a preorder.

We say that $\TT=(T,I,K)$ is a \emph{strongly cartesian} triple if it is cartesian (\cref{sec:II.2}) and further satisfies the following conditions:

\begin{enumerate}
  \item[(c)] $\cat{E}$ admits finite and countable sums, and $T$ commutes with these sums.
  \item[(d)] The sums in $\cat{E}$ are universal (\cref{sec:0.1}) and commute with fibre products.
\end{enumerate}

\begin{itenv}{Proposition~III.1.19}
\label{proposition:III.1.19}
  If $\TT$ is a strongly cartesian triple, then the forgetful functor $\Cat{\TT}\to\Gr{\TT}$ is tripleable.
\end{itenv}

\begin{proof}
  Let $U\colon\Cat{Cat}(\TT)\to\Gr{\TT}$ be the usual forgetful functor;
  we will define an adjoint functor $F\colon\Gr{\TT}\to\Cat{Cat}(\TT)$ by using \unsure{Proposition~A.1} in the appendix.
  For every $e\in\set{\cat{E}}$, by \cref{proposition:II.2.14} and the terminology of \cref{sec:II.4},
  \[
    \overline{\Gr{\TT}/e}
    = (\Gr{\TT}/e,1,\circ)
  \]
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  is a monoidal category, and, by \cref{proposition:II.3.15}, $\Cat{Cat}(\TT)/e$ is isomorphic to the category of monads $\Mon{\overline{\Gr{\TT}/e}}$ (see the Appendix) and its forgetful functor to $\Gr{\TT}/e$ agrees with a restriction of $U$.
  To show that the functor $\Cat{Cat}(\TT)/e\to\Gr{\TT}/e$ admits an adjoint, it thus suffices to show that $\overline{\Gr{\TT}/e}$ is countably distributive (\unsure{Proposition~A.1}).
  The existence of finite and countable sums follows from hypothesis~(c) and from the ``creativity'' of the functor $\Gr{\TT}/e\to\cat{E}$ that, to each $\TT$-graph $\theta$ over $e$, associates the object of the morphisms $\pi$ and $\theta$.
  We show that $\overline{\Gr{\TT}/e}$ is countably distributive by using conditions~(c) and (d), along with the fact that, if we have an equality of the form $C'\cdot C=C''$ in $\cat{E}$ and if $C'$ and $C''$ are cartesian natural transformations (\cref{sec:II.2}), then $C$ is also cartesian.
  The forgetful functor $U_e\colon\Cat{Cat}(\TT)/e\to\Gr{\TT}/e$ is thus tripleable;
  we denote its adjoint by $F_e\colon\Gr{\TT}/e\to\Cat{Cat}(\TT)/e$.
  We then define $\set{F}$ by the extension of the maps $\set{F_e}$, where $e$ runs over $\set{\cat{E}}$.

  If $\TT$ is strongly cartesian, then so too is the triple $\TT^\mathbf{2}$ (\cref{sec:I.1}), and the forgetful functor $\hat{U}\colon\Cat{Cat}(\TT^\mathbf{2})\to\Gr{\TT^\mathbf{2}}$ can be identified with the functor
  \[
    U^\mathbf{2}\colon \Cat{Cat}(\TT^\mathbf{2})
    \to \Gr{\TT^\mathbf{2}}.
  \]
  The way in which the adjoint of \unsure{Proposition~A.1} is constructed leads us to define $\set{F^\mathbf{2}}$ as the extension of the maps $\set{\hat{F}_f}$, where $f$ runs over $\set{\cat{E}^\mathbf{2}}$, and where we denote by $\hat{F}_f$ the adjoint of the forgetful functor
  \[
    \hat{U}_f\colon \Cat{Cat}(\TT^\mathbf{2})/f
    \to \Gr{\TT^\mathbf{2}}/f.
  \]
  These conditions thus allow us to construct a functor
  \[
    F\colon\Gr{\TT}
    \to \Cat{Cat}(\TT)
  \]
  and this functor is an adjoint of $U\colon\Cat{Cat}(\TT)\to\Gr{\TT}$;
  indeed, it suffices to note that the same proof allows us to construct the natural transformations $I'$ and $K'$ of the desired triple, which we denote by
  \[
    \TT'=(T',I',K')
  \]
  where $T'=UF$.

  It remains to show that the Eilenberg--Moore functor
  \[
    E\colon\Cat{Cat}(\TT)
    \to \Alg{\TT'}
  \]
  is an isomorphism.
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  The triple $\TT'_e$ induced by the adjoint pair $(F_e,U_e)$ can be obtained by restriction of the triple $\TT'$ to $\Gr{\TT}/e$, and, since the associated Eilenberg--Moore functor $E_e\colon\Cat{Cat}(\TT)/e\to\Alg{\TT'_e}$ is an isomorphism, we immediately deduce that $\set{E}$ is a bijection.
  By an analogous reasoning, we can show that $\set{E^\mathbf{2}}$ is a bijection, since there is a bijection between ${\TT'}^\mathbf{2}$-algebras and morphisms between $\TT'$-algebras.
  This proves that $E$ is an isomorphism.
\end{proof}

A morphism in $\cat{E}^\mathbf{2}$ is said to be \emph{cartesian} if it is cartesian in the sense of \cref{sec:II.2} (such a morphism being a natural transformation).
We say that an inductive cone in $\cat{E}^\mathbf{2}$ is cartesian if its canonical injections are all cartesian.

\begin{itenv}{Lemma}
  If sums in $\cat{E}$ are universal, then $\cat{E}$ satisfies the following property:
  \begin{enumerate}
    \item[(e)] the canonical injections of sums in $\cat{E}$ are monomorphisms.
  \end{enumerate}
  If $\cat{E}$ satisfies (d) (and thus (e)), then every finite or countable sum in $\cat{E}^\mathbf{2}$ is a cartesian cone (if $\cat{E}$ admits a final object, then this is true for every sum), and every crochet of a sum formed from a cartesian cone in $\cat{E}^\mathbf{2}$ is cartesian.
\end{itenv}

\begin{proof}
  The first part is an interesting exercise on the language of categories.
  We then show, using condition~(e), that, if a sum in $\cat{E}^\mathbf{2}$ is a monomorphism (resp. an epimorphism) in $\cat{E}$, then each of its terms is a monomorphism (resp. an epimorphism) in $\cat{E}$.
  We subsequently show that the ``codiagonal'' natural transformations are cartesian by using the universality of sums, and we finish the proof by using the last part of condition~(d).
\end{proof}

\begin{itenv}{Proposition~III.1.20}
  If $\TT$ is a strongly cartesian triple, then so too is the triple induced by the tripleable functor $\Cat{Cat}(\TT)\to\Gr{\TT}$.
\end{itenv}

\begin{proof}
  If $\TT'=(T',I',K')$ is the induced triple on $\Gr{\TT}$, then the proof of \unsure{Proposition~A.1} in the appendix shows that, for all $\theta\in\set{\Gr{\TT}}$, $T'\theta$ is a countable sum, $I'\theta$ is a canonical injection of this sum, and $K'\theta$ is a crochet of the sum $T'T'\theta$;
  we thus immediately deduce that $\TT'$ is cartesian.
  \oldpage{270}
  The rest of the proposition is proven by using the commutativity of projective limits with themselves (fibre products) and the commutativity of inductive limits with themselves (sums).
\end{proof}



\subsection{$\cat{E}$-categories}
\label{sec:III.2}

Suppose that $\cat{E}$ is a category endowed with finite fibre products.
Consider the identity triple $(\id_\cat{E},\id_\cat{E},\id_\cat{E})$ on $\cat{E}$, we denote it simply by $\cat{E}$ in this section.
The category $\Cat{Cat}(\cat{E})$ of $\cat{E}$-categories is precisely what is usually referred to by that name in the literature (or ``$\cat{E}$-structured category'' in \cite{Eh}).
The axioms given in \cref{sec:I.3} then become:

\[
  \left\{\begin{aligned}
    b\cdot i
    &= \id_e
  \\a\cdot i
    &= \id_e
  \end{aligned}\right.
  \tag{1}
\]
\[
  \left\{\begin{aligned}
    v_1\cdot i_1
    &= \id_\pi
  \\v_2\cdot i_1
    &= i\cdot a
  \end{aligned}\right.
  \tag{2}
\]
\[
  \left\{\begin{aligned}
    v_1\cdot i_2
    &= i\cdot b
  \\v_2\cdot i_2
    &= \id_\pi
  \end{aligned}\right.
  \tag{3}
\]
\[
  \left\{\begin{aligned}
    b\cdot k
    &= b\cdot v_1
  \\a\cdot k
    &= a\cdot v_2
  \end{aligned}\right.
  \tag{4}
\]
\[
  \left\{\begin{aligned}
    v_1\cdot k_1
    &= k\cdot w_1
  \\v_2\cdot k_1
    &= v_2\cdot w_2
  \end{aligned}\right.
  \tag{5}
\]
\[
  \left\{\begin{aligned}
    v_1\cdot k_2
    &= v_1\cdot w_1
  \\v_w\cdot k_2
    &= k\cdot w_2
  \end{aligned}\right.
  \tag{6}
\]
\[
  k\cdot i_1
  = \id_\pi
  = k\cdot i_2
  \tag{7}
\]
\[
  k\cdot k_1
  = k\cdot k_2
  \tag{8}
\]
where $(v_1,v_2)$ and $(w_1,w_2)$ are the fibre products of $(a,b)$ and $(v_2,v_1)$ respectively.
Analogous remarks can be made for $\Gr{\cat{E}}$, $\Ord{\cat{E}}$, \ldots.
The category $\Alg{\cat{E}}$ is isomorphic to $\cat{E}$, and the category $\Equ{\cat{E}}$ defined in \cref{sec:I.3} is precisely the category of equivalence $\cat{E}$-relations.

The identity triple $\cat{E}$ satisfies, evidently, conditions~(a) and (b) of \cref{sec:II.2}; it it thus cartesian.
For it to be strongly cartesian, it is necessary and sufficient that $\cat{E}$ satisfy conditions~(c), (d), and thus (e), of \cref{sec:II.1}.
In this case, the forgetful functor $\Cat{Cat}(\cat{E})\to\Gr{\cat{E}}$ is tripleable, and the triple $\NN$ thus induced is strongly cartesian (\unsure{Proposition~20}).

Let $\Cat{Set}$ be the category of sets associated to a universe (which is identical to $\set{\Cat{Set}}$).
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We denote, in principle, by $\Cat{Cat}$, $\Cat{Gr}$, \ldots, the categories of categories, of graphs, of \ldots (respectively), with these structures being defined in a ``local'' manner (\cref{sec:I.1}).
We then have known injective functors $\Cat{Cat}(\Cat{Set})\to\Cat{Cat}$, $\Gr{\Cat{Set}}\to\Cat{Gr}$, \ldots, which are equivalences of categories.
The disjunction convention made in axiom~(2) of \cref{sec:I.1} allows us to identify $\Cat{Cat}(\Cat{Set})$ with $\Cat{Cat}$, $\Gr{\Cat{Set}}$ with $\Cat{Gr}$, \ldots;
but, although this will be useful, context will make precise whether the notation $\Cat{Cat}$, $\Cat{Gr}$, \ldots refer to the ``local'' or ``global'' definitions.
Similarly, $\Cat{Ord}$ and $\Cat{Equ}$ denote the categories $\Ord{\Cat{Set}}$ and $\Equ{\Cat{Set}}$.
Relative to another universe $\set{\widehat{\Cat{Set}}}$, we use the notation $\widehat{\Cat{Cat}}$, $\widehat{\Cat{Gr}}$, $\widehat{\Cat{Ord}}$, $\widehat{\Cat{Equ}}$, \ldots etc.

We are going to give a description of a strongly cartesian triple, which we will denote by $\NN=(N,I,K)$, induced by the tripleable functor $\Cat{Cat}\to\Cat{Set}$;
we will do so in ``local'' terminology, and, furthermore, in an intrinsic way (i.e. not relative to a universe).

If $\cat{G}$ is a graph, then $N\cat{G}$ is the graph such that $\set{N\cat{G}}=\set{\cat{G}}$ and such that $F\colon e\to e'$ is a morphism in $N\cat{G}$ if it is a \emph{path in $\cat{G}$}, i.e. if there exists a sequence of objects $(e_n,\ldots,e_1,e_0)$ of $\cat{G}$, where $e_0=e$ and $e_n=e'$, and a sequence of morphism $(f_n,\ldots,f_1)$ in $\cat{G}$ such that
\[
  F = (f_n,\ldots,f_1)
  \textand f_i\colon e_{i-1}\to e_i.
\]
Such a sequence is also called a sequence of ``consecutive'' morphisms.
The integer $n$ is called the \emph{length} of the path, for simplicity, the path is denoted simply by $F$.
Note that, if $n=0$, then this definition implies that $e=e'$ ($=e_0$) and $F=\varnothing$ is the empty sequence: we denote by $\id_e$ this path $\varnothing\colon e\to e$ of length zero.
Next,
\[
  I\cat{G}\colon\cat{G}\to N\cat{G}
  \textand
  K\cat{G}\colon NN\cat{G}\to N\cat{G}
\]
are the morphisms of graphs such that
\[
  \set{I\cat{G}}
  = \set{K\cat{G}}
  = id_{\set{\cat{G}}}
\]
and defined on morphisms in the following way:
$I\cat{G}$ associates, to each morphism $f\colon e\to e'$, the path $(f)\colon e\to e'$ of length 1, denoted sometimes simply by $f\colon e\to e'$;
$K\cat{G}$ associates, to each path $\phi\colon e\to e'$ in $N\cat{G}$, the path $\phi\colon e\to e'$ in $\cat{G}$ given by ``erasing the parentheses'' of $\phi$ (or by ``juxtaposition'').
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In other words, if $\phi=(F_p,\ldots,F_1)$, where
\[
  F_i
  = (f_{i,n_i}, \ldots, f_{i,1})
\]
for $1\leqslant i\leqslant p$, then
\[
  F
  = (f_{p,n_p},\ldots,f_{p,1},f_{p-1,n_{p-1}},\ldots,f_{1,1}).
\]
The notation of this triple $\NN$ can be confused with that for the set of positive or zero integers;
if such a confusion risks arising, then we can always identify this set with $N1$.

We sometimes denote by the same symbol a $\TT$-category and its underlying $\TT$-graph;
similarly, we also denote by $N\cat{G}$ the free category structure on the graph $N\cat{G}$ defined by the free $\NN$-algebra $K\cat{G}$;
we call these the \emph{category} and \emph{graph of paths in $\cat{G}$} (respectively).
We call $\NN$ the \emph{path triple}.

\begin{itenv}{Proposition~III.2.21}
  Let $\TT=(T,I,K)$ be a cartesian triple on $\cat{E}$ and let $\theta=(b,a,i,k)$ be a $\TT$-category on $e\in\set{\cat{E}}$;
  then
  \[
    (Tb, Ke\cdot Ta, Ti, Tk)
  \]
  is an $\cat{E}$-category on $Te$.
\end{itenv}

\begin{proof}
  $(Tb,Ke\cdot Ta,Ti)$ is a pointed $\cat{E}$-graph, since
  \[
    Tb\cdot Ti = Te
    \textand
    Ke\cdot Ta\cdot Ti = Ke\cdot Ie = Te.
  \]
  Let $(v_1,v_2)$ and $(w_1,w_2)$ be the fibre products associated to $\theta$;
  since the cartesian morphisms of $\cat{E}^\mathbf{2}$ are stable under composition, $(Tv_1,K\pi\cdot Tv_2)$ and $(Pw_1,K\pi_2\cdot Tw_2)$ are the fibre products of
  \[
    (Ke\cdot Ta, Tb)
    \textand
    (K\pi\cdot Tv_2, Tv_1)
  \]
  respectively.
  If we replace $(b,a,i,k,i_1,i_2,k_1,k_2)$ by
  \[
    (Tb, Ke\cdot Ta, Ti, Tk, Ti_1, Ti_2, Tk_1, Tk_2)
  \]
  in equations~(1) to (8) above, then they remain true.
\end{proof}

This proposition allows us to very noticeably simplify, in practice, the description of the free $\TT$-category given by \cref{proposition:III.1.19}.
If $\theta=(b,a)$ is a $\TT$-graph on $e\in\set{\cat{E}}$, then we denote by $\bigcirc^n\theta=(b_n,a_n)$ the \emph{$\TT$-graph of paths of length $n\geqslant0$}, the $\TT$-graph obtained by using the ``first law'' of $\Sp{\TT}$ (\cref{sec:II.2});
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we denote by $\pi_n$ its morphism object.

\begin{itenv}{Scholium}
  If $\TT$ is a strongly cartesian triple, then the free $\TT$-category $\hat{\theta}=(\hat{b},\hat{a},\hat{i},\hat{k})$ generated by a $\TT$-graph $\theta=(b,a)$ on $e\in\set{\cat{E}}$ has the same object object $e$ as $\theta$.
  The morphism object $\hat{\pi}$ of $\hat{\theta}$ is the sum of the morphism objects $\pi_n$ for $n\in\mathbb{N}$ that we define by induction: $\pi_0=e$, $\pi_1=\pi$, and $\pi_n$ for $n\geqslant2$ is the source of the fibre product
  \[
    \begin{tikzcd}
      \pi'_{n-1}
        \ar[d,swap,"b'_{n-1}"]
    & \pi_n
        \ar[l]
        \ar[d]
    \\Te
    & \pi
        \ar[l,"a"]
    \end{tikzcd}
  \]
  where $\theta'=(b',a')$ is the $\cat{E}$-graph on $Te$ such that $b'=Tb$ and $a'=Ke\cdot Ta$, and where $\pi'_{n-1}$ is the morphism object of the $\cat{E}$-graph $\bigcirc^n\theta'=(b'_n,a'_n)$.
\end{itenv}

We
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