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Abstract
Definition of structured categories; the particular case of double categories,
which admit a category of quadruplets as a quotient category.

1 Double categories ∣∣∣ p. 1198
[Comm.] This note is developed in [63].

Definition. We define a double category to be a class C endowed with two composition
laws, denoted • and ⊥, satisfying the following conditions:

1. (C,•) is a category, denoted C•; the right and left units of f ∈ C will be denoted by
α•( f ) and β•( f ) respectively, and the class of units by C•

0;

2. (C,⊥) is a category, denoted C⊥; the units of f ∈ C⊥ will be denoted by α⊥( f ) and
β⊥( f ) respectively, and the class of units by C⊥

0 ;

3. The maps α• and β• (resp. α⊥ and β⊥) are functors from C⊥ to C⊥ (resp. from C• to
C•);

4. Axiom of permutability. If the composites k •h, g • f , k ⊥ g, and h ⊥ f are defined,
then

(k •h)⊥ (g • f )= (k ⊥ g)• (h ⊥ f ).
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Let C be a class endowed with two composition laws • and ⊥ satisfying axioms 1 and
2; consider the following axioms:

3'. C•
0 (resp. C⊥

0 ) is stable with respect to ⊥ (resp. to •);

4'. If the composites k •h, g • f , k ⊥ g, and h ⊥ f are defined, then both (k •h) ⊥ (g • f )
and (k ⊥ g)• (h ⊥ f ) are defined and are equal to one another.

5. For all f ∈C, we have

α•(α⊥( f ))=α⊥(α•( f )), β•(β⊥( f ))=β⊥(β•( f ));

α•(β⊥( f ))=β⊥(α•( f )), α⊥(β•( f ))=β•(α⊥( f )).

Proposition. For (C,•,⊥) to be a double category, it is necessary and sufficient that condi-
tions 1, 2, 3', 4', and 5 be satisfied. In this case, C⊥

0 (resp. C•
0) is a subcategory of C• (resp.

C⊥).

A double subcategory of a double category C is a subclass C′ of C that is a subcategory
of C• and of C⊥; then C′ is a double category for the composition laws induced by • and ⊥.

Definition. Let C be a double category; we define a left ideal1 (resp. right ideal) of C⊥
to be a subcategory I⊥ of C⊥ such that C • I⊥ = I⊥ (resp. I⊥ •C = I⊥), where C • I⊥ (resp.
I⊥ •C) is the class of composites f • g (resp. g• f ) for g ∈ I⊥ and f ∈C. We similarly define
an ideal of C•. ∣∣∣ p. 1199

Proposition. Let C be a double category; a left ideal I⊥ of C⊥ is a species of structures2

[47b, 55] over C• for the composition law ( f , g) 7→ f • g if and only if f • g is defined, where
f ∈ C and g ∈ I⊥. The corresponding category E (I⊥) of hypermorphisms [47b, 55] is a
double category for the composition laws

( f ′, g′)• ( f , g)= ( f ′ • f , g)

if and only if g′ = f • g; further

( f ′, g′)⊥ ( f , g)= ( f ′ ⊥ f , g′ ⊥ g)

if and only if f ′ ⊥ f and g′ ⊥ g are defined.

2 Double categories of squares
Let C1 and C2 be two categories with the same class of units. Let □(C2,C1) be the set of
quadruples (g2, g1, f1, f2), with f i, g i ∈Ci for i = 1,2, such that

α( f1)=α( f2), α(g1)=β( f2);

β( f1)=α(g2), β(g1)=β(g2).

We define two composition laws on □(C2,C1):
1[Comm. 1.6] This definition does not agree with the usual one ([73, 122]) in which a left ideal (or sieve) J of

C is a subclass of C such that J •C ⊂ J.
2[Comm. 2.1] For the definition of species of structures and hypermorphism categories (introduced in [47a]),

cf. [63, § I, 2–3]; also ([Comm. 25.2]) the set-valued functor associated to (C•,β,α−1(e)) is the partial Hom functor
Hom(e,−) : C→Set.
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• Longitudinal multiplication

(g′
2, g′

1, f ′1, f ′2) ⊟ (g2, g1, f1, f2)= (g′
2, g′

1 g1, f ′1 f1, f2)

if and only if f ′2 = g2;

• Lateral multiplication

(g′
2, g′

1, f ′1, f ′2)⊟ (g2, g1, f1, f2)= (g′
2 g2, g′

1, f1, f ′2 f2)

if and only if f ′1 = g1.

Proposition. □(C2,C1) is a double category for longitudinal and lateral multiplication.

Suppose that C =C1 =C2; recall [47b, 55] that a square in C is an element (g2, g1, f1, f2) ∈
□(C,C) such that g1 f2 = g2 f1.

Corollary. The class □C of squares in C is a double subcategory of □(C,C).

Theorem. Let C be a double category; then C• admits a subcategory3 of the longitudinal
category ⊟ (C•

0,C⊥
0 ) as a quotient category [47b, 55], where C•

0 (resp. C⊥
0 ) is endowed with

its structure as a subcategory of C⊥ (resp. of C•).

3 Functors into a double category
Let Γ be a category and C a double category; let F(C•,Γ) be the class of functors from Γ to
C•.

Proposition. F(C•,Γ) is a category for the composition law (Φ′,Φ) 7→Φ′ ⊥Φ, where (Φ′ ⊥
Φ)( f )=Φ′( f )⊥Φ( f ), if and only if Φ′( f )⊥Φ( f ) is defined for all f ∈C. ∣∣∣ p. 1200

Definition. Let C and C1 be two double categories; we define a double functor from C to
C1 to be a map Φ from C to C1 such that Φ is a functor from C• to C•

1 and a functor from
C⊥ to C⊥

1 . The class of double functors from C to C1 is denoted F(C1,C).

[Comm. 3.1¶] The following proposition is not correct: the class of double functors is
not closed under source and target maps.

Proposition. F(C1,C) is a subcategory of F(C•
1,C•) and of F(C⊥

1 ,C⊥); endowed with the
two induced composition laws, F(C1,C) is a double category.

Proposition. Let C and C′ be two categories; the longitudinal category N(C′,C) of natural
transformations [52] between functors from C to C′ can be identified with the category
F(⊟C′,C), by identifying the natural transformation (ϕ′,τ,φ) with the functor Φ such that

Φ( f )= (
ϕ′( f ), τ(β( f )), τ(α( f )), ϕ( f )

)
for all f ∈C.

Consequently, if (C•,C⊥) is a double category, then a functor Φ from a category Γ into
C• can be considered as a generalised natural transformation from α⊥Φ to β⊥Φ. We will
see another generalisation of natural transformations (the double category of quintets) in
a following publication.

3[Comm. 2.2] cf. [63, Theorem 6].
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4 Structured categories
Let M0 be a class of classes such that if it contains X then it also contains all the subsets
of X , and if it contains X and X ′ then it also contains the product X × X ′; let M be the
category of all functions from X to Y , where X ,Y ∈M0. Let (M, p,K,S) be a category of
homomorphisms [47b, 55], with S containing the groupoid of invertible elements of K; let
K0 be the class of units of K; we identify h ∈K with (βK(h), p(h),αK(h)).

Definition. We define a structured category in K to be a pair (C•, s), where C• is the
structure of a category on C ∈ M0, and s ∈ K0 with p(s) = C, satisfying the following
conditions:4

1. There exists s0 ∈K0 such that

p(s0)=C•
0

(s, iC•
0
, s0), (s0,α, s), (s0,β, s) ∈K

where iC•
0

is the canonical injection from C•
0 into C, and α and β are the source and

target maps (respectively) in C•.

2. There exists a product s× s in K such that p(s× s) = C×C; if K is the subclass of
C×C consisting of composible pairs, then there exists s′ ∈K0 such that

p(s′)= K
(s× s, iK , s′) ∈K.

3. writing x to denote the map (g, f ) 7→ g • f from K to C, the relation (s× s, iK , s′) ∈K
implies (s, x, s′) ∈K.

Example. A structured category in T̃, where T̃ is the category of topologies, is a topolog-
ical category [50]. ∣∣∣ p. 1201

Theorem. For (C•,C⊥) to be a double category, it is necessary and sufficient that (C•,C⊥)
be a structured category in the category F of functors from one category to another; in this
case, (C⊥,C•) is also a structured category in F (the structure on C• is C⊥).
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