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Introduction ∣∣∣ p. 97
What follows constitutes the notes from a seminar that took place in Princeton in the
autumn of 1957 on the works of Grothendieck; the new results that are included are due
to Grothendieck; our contribution is solely of an editorial nature.

The “Riemann–Roch theorem” of which we speak here holds true for (non-singular)
algebraic varieties over a field of arbitrary characteristic; in the classical case, where the
base field is C, this theorem encapsulates, as a particular example, the result proven a
few years ago by Hirzebruch [10].

The full statement and proof of the Riemann–Roch theorem can be found in sections 7
to 16, with the last section being devoted to an application. Sections 1 to 6 contain some
preliminaries on coherent algebraic sheaves [12]. The terminology that we follow is the
same as in [12], up to one difference: to conform with a custom which is becoming more
and more widespread, we use the word “morphism” instead of “regular map.”

1 Supplementary results concerning sheaves
(All the varieties considered below are algebraic varieties over an algebraically closed field
k of arbitrary characteristic. Unless otherwise mentioned, all the sheaves considered are
coherent algebraic sheaves.)

∣∣∣ p. 98
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1 Supplementary results concerning sheaves

Proposition 1. Let U be an open subset of a variety V , and let F be a coherent sheaf on V
and G a coherent subsheaf of F |U (the restriction of F to U). Then there exists a coherent
sheaf G ′ ⊂F such that G ′|U =G .

(In fact, the proof will show that there exists a largest such sheaf having this property.)

Proof. For every open subset W ⊂V , we define G ′
W as the set of sections of F over W that

belong to G over U ∩W . Everything reduces to showing that the sheaf G ′ associated to
this presheaf is coherent. Since this is a local question, we can suppose that V is an affine
variety. Let A be its coordinate ring. There exist elements f i ∈ A such that U = ⋃

Vf i ,
where Vf i = Ui denotes the set of points of V where f i ̸= 0. If, in the definition of G ′, we
replace the open subset U by the open subset Ui, then we obtain a sheaf G ′

i ⊂ F , and
it is clear that G ′ = ⋂

G ′
i . By known results on coherent sheaves [12], it suffices to show

that the G ′
i are coherent. We can thus restrict to considering the case where V is affine,

and where U = Vf , for some f ∈ A. In this case, the sheaf F is defined by an A-module
M, and the subsheaf G of F |U is defined by a submodule N of M f = M ⊗A A f . Let N ′
be the inverse image of N in M under the canonical map M → M f . The module N ′ then
corresponds to a coherent subsheaf of F , and we can immediately verify (by taking the
Vf ′ to be the W , for example) that this sheaf is exactly G ′, which finishes the proof.

Lemma 1. Let U be an open subset of an affine variety V , and let F be a (coherent) sheaf
on U . Then F is generated by its sections (over U).

Proof. Let x ∈U , and let f be a regular function on V , zero on V \U and non-zero at x. We
have Vf ⊂U ⊂V . Since Vf is affine, we know [12] that Fx is generated by its sections over
Vf , and it thus suffices to prove that these sections can be extended to U , after multiplying
by a suitable power of f . This follows from the following more general lemma:

Lemma 2. Let X be a variety, f a regular function on X , F a sheaf on X , and s a section
of F over U = X f . Then there exists an integer n > 0 such that f ns can be extended to a
section of F over X .

Proof. We can cover X by finitely many affine opens X i. By applying [12, Lemma 1,
p. 247], or by arguing directly (as in Proposition 1), we see that there exists an integer n
and sections si of F over the X i that extend f ns over X i ∩U . Since the si − s j are zero
on X i ∩ X j ∩U , there exists an integer m such that f m(si − s j) = 0 on X i ∩ X j ([12], or
arguing directly), and m can be chosen independent of the pair (i, j). The f msi then define
a section s′ of F over X that indeed extend f n+ms. ∣∣∣ p. 99

Proposition 2. If U is an open subset of a variety V , then every sheaf F over U can be
extended to V .

Proof. We show that, if U ̸= V , we can extend F to an open subset U ′ ⊃U , with U ′ ̸=U ;
from that fact that every (strictly) increasing chain of open subsets stabilises, this will
imply the proposition. Let x ∈ V \ U , and let W be an affine open that contains x; let
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2 Proper maps of quasi-projective varieties

U ′ =W ∪U . We are thus led to extending the sheaf F |W ∩U to W , or, in other words, we
can restrict to proving the proposition in the specific case where V is affine. In this case,
Lemma 1 shows that F is generated by its sections, i.e. it is of the form L /R, where L
is the direct sum of the sheaves OU . The sheaf L can be extended in the obvious way to
V , and, by Proposition 1, there exists a subsheaf R ′ of L on V whose restriction to U is
R. The sheaf L /R ′ is then the desired extension.

Remark. Proposition 1 and Proposition 2 correspond to the geometric fact that the closure
of any algebraic subvariety of U is an algebraic subvariety of V . These propositions do not
extend as is to the analytic case. The most we can hope for (by results of Rothstein) is
that they still hold true if we make certain restrictions on the dimensions of V \U and the
varieties appearing in the local primary decomposition of the sheaf F .

2 Proper maps of quasi-projective varieties
A variety X is said to be quasi-projective if it is isomorphic to a locally closed subvariety
of a projective space. It is said to be projective if it is isomorphic to a closed subvariety of
a projective space. From here on in, all the varieties considered are assumed to be quasi-
projective.

Lemma 3. Let P be a projective space, U an arbitrary variety, and G a closed subset of
P×U . Then the projection of G in U is closed.

This is a translation into geometric language of the well-known fact that a projective
space is a “complete” variety, in the sense of Weil. We briefly recall the principal of the
proof:

Proof. Since the question is local with respect to U , we can assume that U is affine, and
even that U is as affine open of the space kn. We can also assume that G is irreducible. So
we choose projective coordinates xi in P such that G meets the set P0 ×U of points where
x0 ̸= 0. If A denotes the coordinate ring of U , then the coordinate ring of the affine variety
P0 ×U is A[xi/x0] = B0; the set G defines (and is defined by) a prime ideal p of B0. If p′
denotes A∩p, then the prime ideal p′ corresponds to the closure of the projection G′ of G
in U . A point in this closure is thus a homomorphism f : A → k (where k denotes the base
field) that is zero on p′; this point is the image of a point in G that lies in P0×U if and only

∣∣∣ p. 100
if f can be extended to a homomorphism g : B0 → k that is zero on p. So let L be the field
of functions of G; the field L contains A/p′ as a subring. By the theorem of extension of
specialisations, there exists a valuation v of L, with values in k, that extends f . Let Φ be
the place associated to this valuation. If v(xi/x0)Ê 0 for all i, then the place Φ is finite over
the xi/x0, and thus induces, on B0/p⊂ L, a homomorphism g that extends f . If v(xi/x0)< 0
for some i, then we replace x0 by the xi that gives the smallest possible value of v(xi/x0),
and we are then back in the previous case.

If f : X → Y is a morphism, then we write G f to denote its graph. It is trivial that G f
is closed in X ×Y .
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2 Proper maps of quasi-projective varieties

Lemma 4. Let f : X →Y and g : Y → Z be morphisms, where X and Y are subvarieties of
projective spaces P and P′ (respectively). Suppose that G f is closed in P ×Y , and that Gg
is closed in P′×Z. Then Ggf is closed in P×Z.

Proof. We have G f ⊂P×Y =P×Gg ⊂P×P′×Z, and since each one is closed in the next,
we see that G f can be identified with a closed subset of P×P′×Z. Since Ggf is exactly
the projection of G f to the factor P×Z, the lemma follows from Lemma 3.

Lemma 5. Let f : X → Y be a morphism, and let X ⊂ P and X ⊂ P′ be embeddings of X
into projective spaces. If G f is closed in P×Y , then it is also closed in P′×Y .

Proof. We apply Lemma 4 to the morphisms X i−→ X
f−→ Y , where i denotes the identity

morphism. Everything then reduces to showing that the graph G i of i in P× X is closed,
which follows from the fact that it is given by the intersection of P× X with the diagonal
of P×P.

Lemma 5 justifies the following definition:

Definition. A map f : X →Y is said to be proper if it is a morphism and if its graph G f is
closed in P×Y , where P is a projective space containing X .

We can give a definition of proper maps that is analogous to the definition of complete
varieties:

Proposition 3. For a morphism f : X → Y to be proper, it is necessary and sufficient, for
every variety Z and every closed subset T of X ×Z, for the image of T in Y ×Z to be closed.

Proof. Let P be a projective space inside which X can be embedded; since G f is closed in
P×Y , the product G f × Z is closed in P×Y × Z, and so T can be embedded as a closed
subset into P×Y ×Z. Applying Lemma 3, we see that the projection of T to Y ×Z (which is

∣∣∣ p. 101
exactly ( f ×1)(T)) is closed. Conversely, suppose that this property holds true, and apply
it to Z = P, with the set T being the diagonal of X × X , embedded into X ×P. The image
of T in Y ×Z =Y ×P is then exactly G f , which is indeed closed.

Proposition 4.
—

i. The identity morphism i : X → X is proper.
ii. The composition of two proper maps is proper.

iii. The direct product of two proper maps is proper.
iv. The image of a closed subset by a proper map is a closed subset.
v. An injection Y → X is proper if and only if Y is closed in X .

vi. Every morphism from a projective variety is proper.
vii. A projection Y ×Z → Y is proper if and only if Z is projective (assuming the variety

Y to be non-empty).
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3 Image of a sheaf under a proper map

Proof. We indicate, as an example, how to prove (vii) (since the other claims are even
easier to prove). If Z is projective, then we apply the criteria of Proposition 3; so let Z′
be an arbitrary variety, and T a closed subset of Y × Z × Z′; we need to show that the
projection of T in Y ×Z′ is closed, which follows from Lemma 3. Conversely, if Y ×Z → Y
is proper, then the composition Z →Y ×Z →Y is proper. Since the image of this map is a
point, we immediately deduce that Z is projective (by returning to the definition).

([Trans.] The following corollary is labelled “Corollary 5” in the original, but this seems
to be a numbering error).

Corollary. For a morphism f : X → Y to be proper, it is necessary and sufficient for it to
factor as X → P×Y → Y , where X → P×Y is an injection into a closed subvariety, and
P×Y →Y is the projection onto the second factor (where P denotes some projective space).

Proof. By the definition of a proper map, this condition is necessary (if we take P to be a
projective space into which we can embed X ). It is sufficient by (ii), (v), and (vii).

Proposition 5. Suppose that the base field k is the field of complex numbers. For a
morphism f : X →Y to be proper (in the above sense), it is necessary and sufficient for it to
be proper (in the topological sense) when we endow X and Y with the “usual” topology.

Proof. Suppose that f is proper in the algebraic sense, and let K be a compact subset of Y
(for the usual topology). Suppose that X is embedded into some projective space P. Since
P is compact, we know that f −1(K)=G f ∩(P×K) is compact, which shows that f is proper
in the topological sense. Conversely, assume that this condition is satisfied, and aim to
prove that the condition of Proposition 3 is satisfied: the image of T in Y ×Z is closed for

∣∣∣ p. 102
the usual topology, and thus also for the Zariski topology [13, Proposition 7, p. 12].

Remark. The notion of a proper map can be extended to “abstract” (that is, non-quasi-
projective) varieties: it suffices to take the criteria of Proposition 3 as a definition [4].
Proposition 4 and Proposition 5 still hold true (if we replace “projective” with “complete”
in item (vii) of Proposition 4). The proofs are essentially the same: instead of using em-
beddings into projective spaces, we use the fact that every variety is the image of a quasi-
projective variety under a proper map (Chow’s lemma [4,14].

3 Image of a sheaf under a proper map
Let f : X → Y be a morphism, with Y a variety, and let F be a (coherent algebraic, as
always) sheaf on X . We define, by the classical procedure of Leray, sheaves Rq f (F ) on Y
by setting

Rq f (F )U =Hq( f −1(U),F ) for every open subset U of Y .

For q = 0, we have the sheaf associated to the presheaf given by the H0( f −1(U),F ); this is
the direct image of the sheaf F . We can show [8] that the Rq f are the derived functors of
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3 Image of a sheaf under a proper map

the functor F → R0 f (F ) (where F runs over the category of all sheaves on X , coherent
or not).

Examples.
—

1. If X →Y is an injection of a closed subvariety, then the sheaf R0 f (F ) is exactly the
sheaf F extended by 0 outside of X , and the sheaves Rq f (F ), for q Ê 1, are zero (let
U be an affine open; then f −1(U)=U ∩ X is affine, whence Rq f (F )= 0).

2. Let Y be a point. A sheaf on a point is simply a group (or a k-vector space, if we
are talking about algebraic sheaves). The Rq f (F ) are then simply the cohomol-
ogy groups Hq(X ,F ); we note that these are not necessarily vector spaces of finite
dimension (or, in other words, not necessarily coherent sheaves on Y ).

3. Suppose that f : X → Y defines a birational isomorphism between the varieties X
and Y (assumed to be projective and non-singular). Take F to be the sheaf OX of
local rings of X ; we immediately see that R0 f (OX )=OY . Is it true that Rq f (OX )= 0
for q Ê 1? We can at least verify this for “blow-ups,” and it would be interesting to
know the answer in the general case.

We note that Leray’s theory can be translated without any changes (see [8]); there is
a spectral sequence abutting H•(X ,F ), and with Ep,q

2 = Hp(Y ,Rq f (F )). If we apply, for
∣∣∣ p. 103

example, this spectral sequence to Example 3 above, then we see that Rq f (OX ) = 0 for
q Ê 1 implies that H•(X ,OX )=H•(Y ,OY ).

We have seen (Example 2) that the Rq f (F ) are not, in general, coherent sheaves on
Y . However:

Theorem 1. If f : X →Y is proper, then the Rq f (F ), for q > 0, are coherent sheaves on Y ,
for any coherent sheaf F on X .

Let P be a projective space into which we can embed X , and let G f be the graph of f
in P×Y . By definition of what it means to be a proper map, G f is closed in P×Y . Let
F ′ be the sheaf on P×Y obtained by extending F by 0 outside of G f = X (see Example
2); if π denotes the projection from P×Y to Y , then we immediately see that Rqπ(F ′) =
Rq f (F ). We can thus restrict to proving Theorem 1 for π : P×Y → Y . Furthermore, since
the question is local with respect to Y , we can assume that Y is an affine variety.

On P we have a “standard” bundle L of dimension 1, whose sections are the linear
forms (see [12, Chap. III, §2]); this fibre defines a fibre on X = P×Y that we denote also
by L. The sheaf associated to Ln on P×Y will be denoted OX (n). We then have:

Lemma 6. Every coherent algebraic sheaf F on X =P×Y , with Y affine, is isomorphic to
a quotient of some direct sum of sheaves of the form OX (n).

Proof. When Y consists of a single point, this is [12, Théorème 1, p. 247]. We are going
to reduce to this particular case: let Y ⊂ P′ be an embedding of Y into a projective space,
and let Y be the closure of Y . By Proposition 2, the sheaf F can be extended to a sheaf
F on P×Y . The embedding of Y into P′ defines, on Y (and thus also on P×Y ), a bundle
L′ of dimension 1. The product bundle LL′ corresponds to the well known embedding of
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3 Image of a sheaf under a proper map

P×P′ into a projective space P ′′ (the “Segre” embedding, given by the products xi yj of
the homogeneous coordinates of the two projective spaces). Then applying the result from
[12] cited above to F and P′′, we see that F is a quotient of a direct sum of sheaves of
the form OP×Y (LnL′n); by restricting to P×Y , and taking into account the fact that P′ is
trivial on Y , we indeed obtain the desired result.

[Of course, we could also give a direct proof, copied from the one in [12].]

Lemma 7. The Rqπ(OX (n)) are coherent sheaves on Y .

Proof. We explicitly calculate the sheaves Rqπ(OX (n)). If U is an affine open subset of Y ,
∣∣∣ p. 104

then
Rqπ(OX (n))U =Hq(P×U ,OX (n)).

If U= {Ui} is an affine cover of P, then the Ui×U form an affine cover U′ of P×U ; taking
into account the fact that OX (n) “comes from” P, we see that the complex C(U′,OX (n))
is isomorphic to the tensor product C(U′,OP(n))⊗k H0(U ,OU ). The universal coefficient
formula then shows that

Hq(P×U,OX (n))=Hq(P,OP(n))⊗k H0(U ,OU ).

This latter equality implies that Rqπ(OX (n)) is isomorphic to the sheaf OY⊗kV q, where
V q = Hq(P,OP (n)). Since V q is a vector space of finite dimension over k, it is indeed a
coherent sheaf on Y , which proves the lemma.

[The above proof applies more generally to any projection π : Y ×Z →Y with Z projec-
tive, whenever the sheaf F is of the form G ⊗H , with G coherent on Y and H coherent
on Z. We then find that Rqπ(F )=G ⊗Hq(Z,H ). We could consider, even more generally,
the case of a product map Y ×Z →Y ′×Z′ . . . ]

Proof. (of Theorem 1). We can now prove Theorem 1 for an arbitrary sheaf F on X =P×Y .
We argue by decreasing induction on the integer q. If q > dim X , then it is clear that
Rqπ(F )= 0. So suppose that the theorem is proven for q+1. By Lemma 6, there exists an
exact sequence 0 → R → L → F → 0, where L is isomorphic to a direct sum of sheaves
of the form OX (n). The exact sequence of cohomology (or the exact sequence of derived
functors) shows that we have an exact sequence

Rqπ(R)→Rqπ(L )→Rqπ(F )→Rq+1π(R)→Rq+1π(L ).

Given the induction hypothesis and Lemma 7, the sheaves Rqπ(L ), Rq+1π(R), and
Rq+1π(L ) are coherent. It follows that Rqπ(F ) admits a subsheaf of finite type, with the
quotient being coherent. An immediate argument then shows that Rqπ(F ) is of finite
type. This result, having been proven for any coherent sheaf, also holds for R. The image
of Rqπ(R) in Rqπ(L ) is then a coherent sheaf ([12]), and Rqπ(F ) is an extension of two
coherent sheaves, and is thus coherent (id.).

Remarks.
—
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4 The group K(X ) of classes of sheaves on a variety X

1. Theorem 1 holds true even if we don’t suppose that X is quasi-projective (we can
restrict to this case by using Chow’s lemma and the “devissage” of coherent sheaves,
see [7]).

2. Grauert and Remmert have proven the analytic analogue of Theorem 1 for the pro-
jection π : P×Y →Y . Needless to say that the proof is more difficult!

4 The group K(X ) of classes of sheaves on a variety X

Let X be an algebraic variety, and let F(X ) be the free abelian group generated by the set
C of (coherent algebraic, as always) sheaves on X . An element of F(X ) is thus a formal

∣∣∣ p. 105
linear combination

x =∑
niFi where ni ∈Z and Fi ∈C .

We agree, of course, to identify isomorphic sheaves [if not, then F(X ) would not even be a
“set!”].

Let
(E) 0→F ′ →F →F ′′ → 0

be an exact sequence of sheaves. To this exact sequence we associate the element Q(E) =
F −F ′−F ′′ of F(X ).

Definition. We define the group of classes of sheaves on X to be the quotient of F(X ) by
the subgroup generated by the Q(E), where E runs over all short exact sequences.

This group will be denoted by K(X ) in what follows. If F is a sheaf on X , then its
canonical image in K(X ) will be denoted γX (F ), or γ(F ), or simply F , depending on the
risk of confusion. The γ(F ) generate K(X ), and the map F → γ(F ) is “additive”; in other
words, if we have the exact sequence (E), then γ(F ) = γ(F ′)+γ(F ′′). Conversely, by the
very definition of K(X ), every additive map from the set of sheaves into an abelian group
G can be written in the form F 7→ π(γ(F )), where π : K(X ) →G is a uniquely determined
homomorphism.

We can apply the above to construction to many other situations, apart from that
of sheaves. We will need, in particular, to apply it to the case of vector bundles on X .
So let V be the set of vector bundles; we define F1(X ) to be the free group generated
by V , and K1(X ) to be the quotient of F1(X ) by the subgroup generated by the Q1(E) =
F −F ′ −F ′′, where (E) now denotes a short exact sequence of vector bundles. If X is
connected (which we will assume), then we know that we can identify vector bundles with
locally free sheaves on X ; we thus have V ⊂C , and the injection V →C defines a canonical
homomorphism ε : K1(X )→ K(X ).

Theorem 2. Suppose that X is an irreducible non-singular quasi-projective variety. Then
the homomorphism ε : K1(X )→ K(X ) defined above is a bijection.

We will need a certain number of auxiliary results on the relation between V and C :

Lemma 8. Let 0 → Z → L ′ → L → 0 be an exact sequence such that L ′,L ∈ V . Then
Z ∈ V . ∣∣∣ p. 106
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4 The group K(X ) of classes of sheaves on a variety X

Proof. If P ∈ X , then the local module LP is free over OP , and so a direct factor of L ′
P ,

which proves that ZP is a projective OP -module, and thus free, since OP is a local ring.
But a coherent algebraic sheaf such that all its stalks are free is itself locally free (see [12,
lines 10–11 from the bottom]).

Lemma 9. Let n = dim X , and let 0→Z →Lp → . . .→L0 →F → 0 be an exact sequence,
with Li ∈ V . If p Ê n−1, then Z ∈ V .

Proof. This is again a local question. So let P ∈ X ; the fact that the local ring OP is a
regular local ring of dimension n means that we can apply the syzygy theorem, and show
that ZP is OP -free, whence the desired result (noting that the hypothesis that X is non-
singular is used in an essential way).

Lemma 10. Every F ∈C is a quotient of some L ∈ V .

Proof. Let X ⊂P be a projective embedding of X , and let X be its closure in P. By Propo-
sition 2, F can be extended to a sheaf F ′ on X . By [12, Théorème 1, p. 247] (and see also
Lemma 6), the sheaf F ′ is the quotient of a direct sum of sheaves of the form OX (n), and
thus a locally free sheaf on X . By restriction to X , we obtain the desired result.

Corollary. For every F ∈C , there exists an exact sequence

0→Ln →Ln−1 → . . .→L0 →F → 0

with Li ∈ V .

Proof. This is a consequence of Lemma 9 and Lemma 10. We can state this corollary in
a different way by saying that there exists a “complex” L in V that is acyclic in degrees
Ê 1, and such that H0(L )=F .

Proof. (of Theorem 2). We now continue to the proof of Theorem 2. If F ∈ C , we take an
acyclic complex L in V such that H0(L )=F . We set

γ1(L )=∑
(−1)pγ1(Lp);

this is an element of K1(X ); we define γ(L ) ∈ K(X ) analogously. Suppose that the follow-
ing two lemmas have been proven:

Lemma 11. γ1(L ) depends only on F .

Lemma 12. γ1(L ) is an additive function of F .
Then, setting η(F ) = γ1(L ), we obtain a homomorphism η : K(X ) → K1(X ). By the

definition of L , we have that

η(γ1(L ))= γ(L )= γ(F ),

whence ε◦η= 1. The proof that η◦ε= 1 is even more trivial. So everything relies only on
∣∣∣ p. 107

proving Lemma 11 and Lemma 12.
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4 The group K(X ) of classes of sheaves on a variety X

Proof. (of Lemma 11). We first start by stating a corollary of Lemma 10:

Lemma 13. Let A ,B,C ∈ C , and let u : A →B and v : C →B, with u and v surjective.
Then there exist L ∈ V , and u′ : L → C and v′ : L → A , such that v ◦u′ = u ◦ v′, with u′
and v′ surjective:

L
v′−−−−−→ A

u′
y yu

C −−−−−→
vw

B

Proof. Let (A ,C ) be the subsheaf of A ×C given by the elements having the same image
in B. Since u and v are surjective, the canonical projections (A ,C )→A and (A ,C )→C
are surjective. By applying Lemma 10 to (A ,C ), we obtain the desired result.

Now let L and L ′ be two resolutions of F , which we intend to compare. We will show
that there exists a third resolution L ′′ of F , along with surjective homomorphisms L ′′ →
L and L ′′ →L ′ that induce the identity on H0; everything will then rely only on proving
that γ1(L ′′) = γ1(L ), for example. But, if we denote by L1 the kernel of L ′′ → L , then
L1 ∈ V , by Lemma 8, and the exact sequence of homology shows that Hq(L1) = 0 for all
q Ê 0. We thus immediately deduce that γ1(L1) = 0, and, since γ1(L ′′) = γ1(L )+γ1(L1),
this gives the desired result. Everything thus relies only on proving the existence of the
resolution L ′′, which we do dimension by dimension (where Lemma 9 tells us that the
procedure will eventually stop), using the following lemma:

Lemma 14. Let

0→Z →L →B → 0 and 0→Z ′ →L ′ →B′ → 0

be exact sequences (with L ,L ′ ∈ V ), and let B′′ →B and B′′ →B′ be surjective maps. We
can then extend B′′ to an exact sequence

0→Z ′′ →L ′′ →B′′ → 0 with L ′′ ∈ V

and find surjective homomorphisms

Z ′′ →Z , Z ′′ →Z ′, L ′′ →L , L ′′ →L ′

such that the following diagram commutes:

0 −−−−−→ Z −−−−−→ L −−−−−→ B −−−−−→ 0x x x
0 −−−−−→ Z ′′ −−−−−→ L ′′ −−−−−→ B′′ −−−−−→ 0y y y
0 −−−−−→ Z ′ −−−−−→ L ′ −−−−−→ B′ −−−−−→ 0 ∣∣∣ p. 108
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5 Operations on K(X )

Proof. By applying Lemma 13 to L →B and B′′ →B, we see that L1 →L and L1 →B′′
are surjective. By applying the same lemma to L1 →B′′ →B′ and L ′ →B′, we see that
L2 →L1 and L2 →L ′ are surjective, making the diagram commute.

Now let L3 →Z and L ′
3 →Z ′ be surjective, and set

L ′′ =L2 ⊕L3 ⊕L ′
3.

We define L ′′ → B′′ as being 0 on L3 and L ′
3, and equal to L2 → L1 → B on L2; we

define L ′′ →L as being equal to L2 →L1 →L on L2, to 0 on L ′
3, and to L2 →Z →L

on L3; we define L ′′ → L ′ analogously. We then define Z ′′ as the kernel of L ′′ → B′′,
and Z ′′ → Z and Z ′′ → Z ′ as restrictions of the maps from L ′′. The commutativity of
the diagram is then immediate; furthermore, Z ′′ evidently contains L3, which maps to
Z ; a fortiori, Z ′′ → Z is surjective, and so too is Z ′′ → Z ′, which finished the proof of
Lemma 13.

This finishes the proof of Lemma 11.

Proof. (of Lemma 12). Let 0 → F ′ → F → F ′′ → 0 be an exact sequence. We are going
to show that there exists resolutions L ′, L , and L ′′ of these sheaves, such that we
also have an exact sequence 0 → L ′ → L → L ′′ → 0. The additivity of γ1(L ) will then
be evident. To construct these resolutions, we proceed, again, dimension by dimension.
Everything relies on proving that, given an exact sequence as above, we can extend it to a
commutative diagram

0 −−−−−→ F ′ −−−−−→ F −−−−−→ F ′′ −−−−−→ 0x x x
0 −−−−−→ L ′ −−−−−→ L −−−−−→ L ′′ −−−−−→ 0

with L ′,L ,L ′′ ∈ V , and where the L →F are surjective.
For this, we first take some surjective L ′′ → F ′′, and apply Lemma 13 to F → F ′′

and L → F ′′. From this we obtain surjective L1 → F and L1 → L ′′ that make the
diagram commute. Next, we take some surjective L2 → F ′, and set L = L2 ⊕L1. We
define L → F and L → L ′′ in the evident way, and we take L ′ to be the kernel of
L →L ′′. Then L2 ⊂L ′, which shows that L ′ maps to F ′, and all the desired conditions
are satisfied.

This completes the proof of Theorem 2.

Remark. The hypothesis that X is quasi-projective was used only in Lemma 10, to prove
that every coherent sheaf on X is the quotient of some locally free sheaf. We do not know
if this lemma can be extended to “abstract” algebraic varieties.

5 Operations on K(X )

5.1 Ring structure on K(X )

Let F and G be (coherent) sheaves on X . The Torp(F ,G ) (p = 0,1, . . .) are coherent
sheaves on X (of course, the Tor are taken over the structure sheaf of X ). Since X is

∣∣∣ p. 109
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non-singular, Torp(F ,G ) = 0 when p > dim X , which means that the alternating sum
χ(F ,G ) = ∑

(−1)p Torp(F ,G ) is a well-defined element of K(X ). The exact sequence of
Tor shows that χ(F ,G ) is bilinear in F and G , and so extends to a bilinear map from
K(X )×K(X ) to K(X ), that we will denote by (x, x′) 7→ x · x′.

Proposition 6. The product defined above is commutative and associative.

Proof. Commutativity is trivial, since each Tor is commutative. The associativity follows
from the “associativity formula” of the Tor (see [3]): we define the “simultaneous Tor”
Tor(F ,G ,H ), and two spectral sequences abutting to Tor(F ,G ,H ), and with E2 pages
Tor(F ,Tor(G ,H )) and Tor(Tor(F ,G ),H ) (respectively); we use the fact that the Euler-
Poincaré characteristics are invariant in a spectral sequence.

We can give a simpler proof by using Theorem 2: note that, if F and G are locally free,
then

χ(F ,G )= γ(F ⊗G )

which means that associativity is evident when F , G , and H are locally free. Since K(X )
is generated by the γ(F ), with F locally free, this proves associativity.

[The above product thus corresponds to the tensor product of vector bundles.]

5.2 The exterior power operation
Let E be a vector bundle. The exterior powers

∧p E are vector bundles, and their class in
K(X )= K1(X ) will be denoted by λp(E). If we have an exact sequence

0→ E′ → E → E′′ → 0

then we define, by a well known procedure (Koszul’s thesis!) a filtration of
∧

(E) with
quotients

∧
(E′)⊗∧

(E′′). From this we obtain the following formula:

λp(E)= ∑
r+s=p

λr(E′) ·λs(E′′).

This formula can be understood as an additivity formula by introducing the formal
series (in t)

λt(E)=∑
λp(E)tp;

this is an element of K(X )[[t]], starting with 1. The above formula implies that
∣∣∣ p. 110

λt(E)=λt(E′)λt(E′′).

The map E 7→ λt(E) can thus be extended to a homomorphism x 7→ λt from K(X ) =
K1(X ) to the multiplicative group U of formal series

1+a1t+ . . .+antn + . . . with ai ∈ K(X ).

By definition, λp(x) is the coefficient of tp in λt(x).
In characteristic 0, Grothendieck has shown that, for every sheaf F , λp(F ) is equal

to the alternating sum of the “alternating Tor” of p copies of F . In characteristic ̸= 0, we
do not know any analogous formula.
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5.3 The operation f !

Let f : Y → X be a morphism. If E is a vector bundle over X , then the bundle f −1(E)
is a vector bundle over Y . This operation is additive, and thus extends to a homomor-
phism f ! : K(X ) → K(Y ). By arguing on the fibres, we immediately see that f ! is a ring
homomorphism, compatible with the operation λp, and such that ( f g)! = g! f !.

If F is a coherent sheaf on X , then we can directly define f !(F ) as the alternating
sum of the TorOX

p (OY ,F ); indeed, this expression is additive in F (by the exact sequence
of Tor), and reduces to OY ⊗F when F is locally free.

5.4 The operation f!

Again, let f : Y → X be a morphism, that we now assume to be proper. If F is coherent on
Y , then we have seen (Theorem 1, §3) that the Rq f (F ) (q = 0,1, . . .) are coherent sheaves
on X , and their alternating sum is a well-defined element of K(X ). Since this alternating
sum is additive in F (by the exact sequence of cohomology), we thus obtain an additive
homomorphism f! : K(Y )→ K(X ). In the particular case where Y is a closed subvariety of
X , and f is the canonical injection Y → X , this operation reduces to extending by 0 outside
of Y .

The map f! is not compatible with multiplication. We do, however, have the following
formula:

f!(y · f !(x))= f!(y) · x for x ∈ K(X ) and y ∈ K(Y ).

It suffices to prove this formula when y = γY (F ) and x = γX (L ), where F (resp. L )
is a coherent sheaf on Y (resp. a locally free sheaf on X ). In this case, we even have the
more precise formula

Rq f (F ⊗OY f −1(L ))=Rq f (F )⊗OX L (⋆)

where we set
f −1(L )=L ⊗OX OY . ∣∣∣ p. 111

To prove (⋆), we first note that

F ⊗OY f −1(L )=F ⊗OX L .

Returning to the definition of Rq f , we define a canonical homomorphism from the right-
hand side of (⋆) to the left-hand side; to show that it is an isomorphism we can argue
locally. We can thus restrict to the case where L = OX , and in this case our claim is
trivial.

If we have two proper maps Z
g−→ Y

f−→ X , and if F is a coherent sheaf on Z, then we
can construct a spectral sequence with second page

Ep,q
2 =Rp f (Rq g(F ))

that abuts to Rn( f g)(F ): this is a particular case of the spectral sequence of composition
of functors (see [8]). From this, we obtain the formula

( f g)!(F )= f!(g!(F ))

whence finally the fact that ( f g)! = f! g!.
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6 Chern classes

6 Chern classes
The fact that K1(X )= K(X ) allows us to extend the definition of Chern classes to arbitrary
coherent sheaves.

First consider the case where the base field is C; every vector bundle E over X defines
Chern classes ci(E) ∈H2i(X ,Z). If we have an exact sequence

0→ E′ → E → E′′ → 0

then we know that cp(E)=∑
r+s=p cr(E′) · cs(E′′).

As in §5.2, this can be understood as a multiplicative property of the Chern polynomial
ct(E)=∑

cp(E)tp, and allows us to define ct(x) for all x ∈ K(X ). The cp(x) are homogeneous
elements of degree 2p of H•(X ,Z).

In the case of an arbitrary base field, Grothendieck proceeded in the same way, but
replacing H•(X ) with the graded ring A(X ) of cycle classes on X , under linear equivalence
(‘{a} la Chow). We recall only that a cycle Z on X of codimension p [i.e. a degree-p element
of A(X )] is said to be linearly equivalent to zero if there exists a cycle H on X ×D (where
D denotes the projective line) such that Z = Ha −Hb for points a,b ∈ D; we denote by Ha
the projection to X of H · (X × {a}) if it is proper. Chow and Samuel1 have shown that this

∣∣∣ p. 112
equivalence relation possesses all sorts of reasonable properties, and Chow has shown
(unpublished) that we could also construct a theory of Chern classes for vector bundles2,
with these classes being elements of A(X ). Note that, even in the classical case, this
definition is somehow finer than the cohomological definition (since two cycles can indeed
be homologous without being linearly equivalent).

In what follows, we denote by A(X ) either this ring of cycle classes or H•(X ), and leave
it to the reader to choose between the two theories.

Note that, in all cases, if f : Y → X is a morphism (resp. a proper morphism), then we
can associate to it a homomorphism f ∗ : A(X )→ A(Y ) (resp. a homomorphism f∗ : A(Y )→
A(X )). The formula

f∗(y · f ∗(x))= f∗(y) · x
holds true.

All of the usual formal constructions explained in the work by Hirzebruch [10] can be
applied to the Chern classes cp(x) of an element x ∈ K(X ). We can, for example, define the
Todd class T(x) ∈ A(X )⊗Q of an element x: we write ct(x) formally in the form

∏
(1+ai t),

and let T(x)=∏
ai/(1− e−ai ). Then

T(x+ y)= T(x) ·T(y).

Similarly, we can define the “exponential” Chern class, denoted by ch(x) (which is also
an element of A(X )⊗Q), by

ch(x)= rank(x)+∑
(eai −1)

where rank(x) is the rank of x [it is the unique homomorphism from K(X ) to Z that sends
a vector bundle to its dimension]. Then

ch(x+ y)= ch(x)+ch(y)

ch(xy)= ch(x) ·ch(y)

1See Chow [6] and Samuel [11]. See also the Séminaire Chevalley [5].
2See the paper by Grothendieck which follows this present work [9].
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7 Statement of the Riemann–Roch theorem; First simplifications

by the analogous properties of vector bundles. With this, we can calculate ch(x) in terms
of ct(x) and rank(x) by “universal” formulas. If f : Y → X is a morphism, then

cp( f !(x))= f ∗(cp(x))ch( f !(x)) = f ∗(ch(x))

for x ∈ K(X ).
These formulas are well known when x = γ(E), with E a vector bundle on X , and the

general case follows from linearity, by applying Theorem 2.

7 Statement of the Riemann–Roch theorem; First sim-
plifications

Let f : Y → X be a proper morphism, with X and Y irreducible non-singular quasi-
projective varieties. We denote by T(X ) the Todd class of the tangent bundle of X ; it

∣∣∣ p. 113
is an element of A(X )⊗Q. Now let y ∈ K(Y ). Then:

Theorem (Riemann–Roch). —

f∗(ch(y) ·T(Y ))= ch( f!(y)) ·T(X ).

[The two sides of the equality are thought of as elements of A(X )⊗Q; with this in
mind, we can say that R–R is a formula “modulo torsion”; Grothendieck has more precise
formulas, without torsion — i.e. that hold in A(X ) — but he does not yet know how to
prove them except in characteristic zero.]

We now show how the Riemann–Roch theorem, in Grothendieck’s form, implies the
Riemann–Roch formula of Hirzebruch [10]:

We apply R–R to a projective Y , with X consisting of a single point, and y the class of
a coherent sheaf F on Y . Since A(X ) is simply Z in dimension 0, and is zero in higher
dimensions, f∗(u), for u ∈ A(Y ), is simply the terms xn(u) of degree n = dimY in u. Also,
T(X )= 1, and f!(y) is the alternating sum of the sheaves Rq f (F ); a sheaf on a point is sim-
ply a vector space of finite dimension; in particular, Rq f (F ) is the vector space Hq(Y ,F ).
On X , the map G 7→ ch(G ) consists simply of taking the rank of a sheaf; the right-hand
side of R–R thus becomes

∑
(−1)p dimHp(Y ,F ) = χ(Y ,F ), and R–R then reduces to the

form given by Hirzebruch:
xn(ch(F ) ·T(Y ))= χ(Y ,F ).

We note that this formula is proven for any coherent sheaf, and not simply for vec-
tor bundles; this generality is somewhat illusory, by the linear character of R–R and by
Theorem 2.

The proof of R–R proceeds by reduction to particular cases of a projection and an in-
jection. For this, we use the following lemma:

Lemma 15.
Let Z

g−→Y
f−→ X be proper morphisms. Let z ∈ K(Z) and let y= g!(z). Then:

a. If R–R is true for {g, z} and { f , y}, then it is also true for { f g, z}.
b. If R–R is true of { f g, z} and { f , y}, and if f∗ is injective, then R–R is also true for {g, z}.
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Proof. First we prove (a). By R–R for g, we have

g∗(ch(z) ·T(Z))= ch(y) ·T(Y ).

Applying f∗ to both sides, and taking into account the fact that ( f g)∗ = f∗g∗, we see that
∣∣∣ p. 114

( f g)∗(ch(z) ·T(Z))= f∗(ch(y) ·T(Y )).

Applying R–R for { f , y}, we see that the right-hand side of the above is equal to
ch(( f g)!(z) ·T(X )), which indeed proves R–R for { f g, z}.

Now we prove (b). Let
u = g∗(ch(z) ·T(Z))

v = ch(y) ·T(Y ).

We wish to show that u = v. Given the hypothesis on f∗, it suffices to prove that f∗(u) =
f∗(v). But R–R for { f g, z} proves that

f∗(u)= ch(x) ·T(X ) where x = ( f g)!(z)= f!(y).

Similarly, R–R for { f , y} proves that

f∗(v)= ch(x) ·T(X ).

Now let Y and Y ′ be varieties, and consider their product Y ×Y ′. The projections Y ×
Y ′ →Y and Y ×Y ′ →Y ′ define homomorphisms K(Y )→ K(Y ×Y ′) and K(Y ′)→ K(Y ×Y ′),
whence a homomorphism K(Y )⊗K(Y ′) → K(Y ×Y ′). By an abuse of language, we also
denote by y⊗ y′ the image in K(Y ×Y ′) of the tensor product of two elements y ∈ K(Y ) and
y′ ∈ K(Y ′).

Lemma 16. Let f : Y → X and f ′ : Y ′ → X ′ be proper morphisms, and let y ∈ K(Y ) and
y′ ∈ K(Y ′). If R–R is true for { f , y} and { f ′, y′}, then it is true for { f × f ′, y⊗ y′}.

(We denote by f × f ′ : Y ×Y ′ → X × X ′ the product of f and f ′.)

Proof. The proof consists of a calculation analogous to that for Lemma 15; we have to use
the following formulas:

i. ( f × f ′)!(y⊗ y′)= f!(y)⊗ f ′! (y′);
ii. ( f × f ′)∗(x⊗ x′)= f∗(x)⊗ f ′∗(x′), where x ∈ A(Y ) and x ∈ A(Y ′);

iii. ch(y⊗ y′)= ch(y)⊗ch(y′).

Formula (i) can be proven by taking y = γ(F ) and y′ = γ(F ′), and applying the Kün-
neth formula to calculate ( f × f ′)!(y⊗ y′); the validity of the Künneth formula for coherent
sheaves follows from the calculation of the cohomology by covers and from the Eilenberg-
Zilber theorem (see the book by Godement on sheaves).

Formula (ii) is immediate, whether we consider the point of view of classes of cycles
(for linear equivalence), or the cohomological point of view (in the classical case).

∣∣∣ p. 115
Formula (iii) is a consequence of the multiplicative property of ch.
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[In fact, we will only use the above lemma in the case where one of the varieties X ′
and Y ′ consists of a single point.]

Lemma 15, along with the Corollary of Proposition 4, shows that it suffices to prove
R–R in the two following cases:

a. Y = X ×P, with P a projective space, and f : X ×P→ X the projection onto the first
factor.

b. an injection f : Y → X of a closed subvariety Y of X .

By Lemma 16, (a) follows from:

a’. The homomorphism K(X )⊗K(P)→ K(X ×P) is surjective;
a’ ’. R–R is true for the map from P to a point (or, in other words, the R–R-Hirzebruch

formula is true for P).

The next two sections are dedicated to the proof of (a’) and (a’ ’). The case of an injection
(which is more difficult) will be covered later on.

8 Exactness and homotopy properties of K(X )

Proposition 7. Let X be an algebraic variety (singular or not), and X ′ a closed subvariety
of X , and set U = X \ X ′. Then we have an exact sequence

K(X ′)→ K(X )→ K(U)→ 0.

[The homomorphism K(X ′) → K(X ) is that given by extending a sheaf on X ′ by zero
outside of X ′; in the case where X and X ′ are non-singular, and denoting the canonical
injection X ′ → X by i, this homomorphism is i!. As for K(X )→ K(U), this is the restriction
homomorphism; in the case where X is non-singular, and denoting the canonical injection
U → X by j, this homomorphism is j!.]

Proof. Let A = K(X )/ImK(X ′). We will define a homomorphism from K(U) to A. For this,
let F be a coherent sheaf on U ; by Proposition 2, we can extend F to a sheaf G on X . We
will show that the image of γX (G ) in A does not depend on G , but only on F . So let G
and G ′ be extensions of F . Embed F diagonally into F ×F = (G ×G ′)|U ; by Proposition
1, there exists a subsheaf G ′′ of G ×G ′ such that its restriction to U is F , and everything
then relies on proving that

γX (G ′′)≡ γX (G ′) mod ImK(X ′)

and similarly for G ′. But, since G ′′ ⊂G ×G ′, we have a homomorphism f : G ′′ →G that is
bijective over U . Let N and Q be the kernel and cokernel (respectively) of f ; then

γX (G ′′)−γX (G )≡ γX (N )−γX (Q).

But N and Q are supported outside of X ′; if I denotes the sheaf of ideals of X ′ in
∣∣∣ p. 116

OX , then there exists an integer n > 0 such that I nN = 0, and similarly for Q (this
is a local statement that is essentially equivalent to the “Nullstellensatz,” see [14]); we
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thus conclude that N and Q admit composition series whose successive quotients are
annihilated by I , i.e. are coherent on X ′, and so

γX (Q)≡ γX (N )≡ 0 mod ImK(X ′).

The independence of γX (G ) mod ImK(X ) is thus proven, and so we obtain a well-defined
element η(F ) ∈ A. If 0 → F ′ → F → F ′′ → 0 is an exact sequence on U , then we can
extend F and G to X , and F ′ to a subsheaf G ′ of G (see Proposition 1). The sheaf
G ′′ = G /G ′ extends F ′′, which proves that η(F ) = η(F ′)+η(F ′′). The operation η, being
additive, defines η : K(U) → A. If we denote by ε the canonical homomorphism from A to
K(U), we immediately see that η◦ε= 1 and ε◦η= 1, which finishes the proof.

Now let X and Y be varieties. Denote by p : X ×Y → X the canonical projection. If
X and Y are non-singular, then the homomorphism p! : K(X ) → K(X ×Y ) is defined (see
§5.3, as well as §7). In fact, this homomorphism can be defined in the general case. This
comes from the fact that OX×Y is OX -flat (i.e. an annihilator of Tor), since it is a ring of
fractions of the usual tensor product OX ⊗k OY . We can thus set p!(F )=F ⊗OX OX×Y for
any coherent sheaf F on X , and p!(F ) is additive, and so defines some K(X )→ K(X ×Y ).
Thus:

Proposition 8. If Y is an affine line, then the homomorphism p! : K(X ) → K(X ×Y ) is
bijective.

Proof. Let a be the origin in Y , and identify X with X × {a} ⊂ X ×Y . We have an exact
sequence:

0→OX×Y
t−→OX×Y →OX → 0

where t denotes the projection X ×Y → Y , considered as a function to X ×Y . This exact
sequence shows that TorOX×Y

p (OX ,F ) = 0 for p Ê 2, if F is a coherent sheaf on X ×Y . We
can thus define πa : K(X ×Y )→ K(X ) by setting

πa(F )=Tor0(OX ,F )−Tor1(OX ,F );

we see, furthermore, that πa ◦ p1 = 1, which already shows that p1 is injective. From now
on, we will consider K(X ) as embedded into K(X ×Y ).

To prove that K(X ) = K(X ×Y ), we argue by induction on n = dim X , and we use the
following diagram (where X ′ is closed in X , and U = X \ X ′):

K(X ′) −−−−−→ K(X ) −−−−−→ K(U) −−−−−→ 0y y y
K(X ′×Y ) −−−−−→ K(X ×Y ) −−−−−→ K(U ×Y ) −−−−−→ 0 ∣∣∣ p. 117

By Proposition 7, the rows of this diagram are exact. We thus conclude that, if K(X ′)=
K(X ′×Y ) (which is the case, by the induction hypothesis, if dim X ′ < n), every element of
K(X ×Y ) whose restriction to U×Y is in K(U) is also an element of K(X ). In other words,
we can “neglect” the subvarieties of X of dimension < n. In particular, we can suppose X to
be affine, non-singular, and irreducible (since the complement of the set of singular points
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is a union of disjoint irreducible varieties). We will make use of the following dévissage
lemma:

Lemma 17. Let Z be an algebraic variety. Then the γZ(OT ) generate K(Z), where T runs
over the set of irreducible subvarieties of Z.

Proof. We argue by induction on dim Z; using Proposition 7, we can assume that Z is
irreducible. Let F be a sheaf on Z; if F is a torsion sheaf, then it is concentrated on a
subvariety, and the induction hypothesis shows that it is contained in the subgroup K ′(Z)
of K(Z) generated by the γZ(OT ). In the case where F is torsion-free, we embed it into
F ⊗OZ K , where K is the field of rational functions on Z; we then have that F ⊗K = Kn,
and from this we conclude that F is isomorphic to (OZ)n modulo a torsion sheaf; whence
the result. (For more details, see [14], or [7].)

By applying Lemma 17 to the case that interests us, we see that it suffices to show
that γ(OT ) ∈ K(X ) for every irreducible subvariety T of X ×Y . If projX (T) ̸= X , then it
is evident, by the induction hypothesis; if T = X ×Y , then it is even more evident. Thus
the only remaining case is when dimT = n, and projX (T) is dense in X . If A denotes the
coordinate ring of X , then T corresponds to a minimal prime ideal p in the coordinate ring
A[t] of X ×Y ; the fact that the projection from T to X is dense implies that A∩p= 0. Let
S be the set of invertible elements of A, and let K = AS te bhe field of fractions of A. We
have that A[t]S = K[t], and the fact that p∩S =∅ implies that p is of the form p′∩ A[t],
where p′ is a non-zero prime ideal of K[t]. There thus exists an irreducible polynomial
P(t), with coefficients in A if we want, such that p is the set of polynomials of A[t] that are
divisible by P(t) in K[t]. Then

A[t]⊃ p⊃ P(t) · A[t]= q.

The sheaf OT corresponds to the module A[t]/p; let F be the sheaf that corresponds to
A[t]/q. Since pS = qS , there exists some a ∈ S such that a · (p/q) = 0, which shows that OT
is congruent to F modulo an element of K(X ′×Y ), with dim X ′ < dim X . Also, the exact
sequence

0→OX×Y
P(t)−−→OX×Y →F → 0

shows that γ(F )= 0 in K(X ×Y ), whence

γ(OT ) ∈ ImK(X ′×Y )= ImK(X ′)⊂ K(X )

which finishes the proof. ∣∣∣ p. 118

Remark.[Cartier] We can avoid the need for the dévissage lemma by applying, to an
arbitrary module M over A[t], the procedure applied above to the prime ideal p. We form
M⊗A K = MS , which is a K[t]-module. The structure of modules over principal rings shows
that the group of classes of K[t]-modules is infinite cyclic, generated by the module A[t].
Since passing to MS consists of “neglecting” everything that is concentrated on X ′×Y , the
result follows.
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9 Proof of the Riemann–Roch theorem for f : X ×P→ X

Corollary. If Y is an affine space kn, then

K(X )= K(X ×Y ).

Proof. This is immediate, by induction on dimY .

9 Proof of the Riemann–Roch theorem for f : X ×P→ X

We will first prove claim (a’) from the end of §7:

Proposition 9. For every variety X , and every projective space P, the homomorphism
K(X )⊗K(P)→ K(X ×P) is surjective.

Proof. We argue by induction on dimP. For dimP= 0, the proposition is trivial. So let P′
be a hyperplane in P, and let U =P\P′. We then have a diagram of exact sequences

K(X )⊗K(P′) −−−−−→ K(X )⊗K(P) −−−−−→ K(X )⊗K(U) −−−−−→ 0yε1

yε2

yε3

K(X ×P′) −−−−−→ K(X ×P) −−−−−→ K(X ×U) −−−−−→ 0

This diagram commutes: this is trivial for the second and third squares, and, for the
first square, it suffices to verify locally, on affine opens, for example. Given the induction
hypothesis, ε1 is surjective. But U is an affine space; the Corollary of Proposition 8 then
shows that K(U) =Z, and that K(X ×U) = K(X ), whence the fact that ε3 is bijective. The
five lemma then shows that ε2 is surjective.

Remark. The above proof shows that

K(X )⊗K(Y )→ K(X ×Y )

is surjective whenever Y admits an algebraic cellular decomposition, where the cells are
affine spaces. This is notably the case if Y is a Grassmannian.

We now proceed to the proof of claim (a’ ’):

Proposition 10. Let F be a coherent sheaf on a projective space P of dimension r. Then
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the R–R-Hirzebruch formula

xr(ch(F ) ·T(P))= χ(P,F )

holds true.

Proof. Let H be a hyperplane, and x its class in A1(P). We know that the Chern polyno-
mial of P is (1+ tx)r+1; thus

T(P)= xr+1/(1− e−x)r+1.

We also know that F corresponds to a graded module M over k[X0, . . . , Xr]. By the
Hilbert syzygy theorem, M admits a finite resolution by free graded modules; it follows
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10 General remarks on the injection of a subvariety

that F is equal [in K(X )] to a linear combination of sheaves O(n), defined in [12], and
it suffices to verify the R–R-Hirzebruch formula for F = O(n). This sheaf is exactly the
sheaf associated to the divisor nH; thus ch(F )= enx. Now, a direct calculation shows that
χ(P,F ) is equal to

(n+r
r

)
(see [12]), and we are thus led to prove the formula:

xr[enx · xr+1/(1− e−x)r+1]=
(
n+ r

r

)
. (⋆)

It is useful to write this formula in terms of residues:

Res[enx dx/(1− e−x)r+1]=
(
n+ r

r

)
. (⋆⋆)

By defining the new variable y= 1− e−x, we see that the left-hand side is equal to

Res(dy · y−r−1 · (1− y)−n−1)= zr((1− y)−n−1)

= (−1)r

(
−n−1

r

)
=

(
n+ r

r

)
.

Since we have proven (a’) and (a’ ’), we can state:
Corollary. R–R is true for the projection X ×P→ X .

Remark. The fact that K(P) is generated by the O(n) can also be seen, without using the
syzygy theorem, by the cellular decomposition of P. We again obtain the complete struc-
ture of K(P): if we denote by α the class in K(P) of the OH , then the elements 1,α,α2, . . . ,αr

form a basis of K(P), and αr+1 = 0. The O(n) are equal to (1−α)−n, as shown by the exact
sequence

0→O(−1)→O →OH → 0.

10 General remarks on the injection of a subvariety

10.1 Notation
Before continuing the proof of R–R, we first discuss the local resolution of the structure
sheaf of a subvariety, and study some of its consequences. Some of these will be more
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general than necessary for our purposes, but they are interesting in their own right, and
are no more difficult than the particular cases that we will need.

In what follows, Y is a (non-singular) subvariety of X , i the injection of Y into X , p
the codimension of Y in X , E the normal bundle of Y , and I (Y ) the sheaf of local ideals
of Y . We thus have the exact sequence

0→I (Y )→OX
r−→OY → 0 (1)

where r is the restriction.
Finally, write F∗ to mean the dual of a vector bundle F, and [Z] to mean the bundle

associated to a divisor Z. Recall that c([Z])= 1+Z.

22 of 38



10 General remarks on the injection of a subvariety

10.2 Local parameters; Normal bundle
Let a ∈ Y . Then there exists an affine open subset U ⊂ X containing a, and functions
f1, . . . , fp that are regular on U , and that form a system of local parameters, or a system
of “uniformising” parameters, for Y . This implies that Y ∩U is defined by the equations
f1 = . . .= fp = 0, that d f1, . . . ,d fp are linearly independent at every point in Y ∩U , that the
f i form a basis for the ideal I (Y )b of Y in Ob,X (b ∈ Y ∩U), and, finally, that this ideal is
“perfect,” i.e. that the annihilator of f i in Ob,X /( f1, . . . , f i−1) is zero (1É i É p; f0 = 0).

At every point b ∈ Y ∩U , the d f i form a basis for E∗
b. Also, I (Y )/I (Y )2 is a sheaf

concentrated on Y , and annihilated by I (Y ), and is thus a sheaf of OY -modules. It is
immediate that f 7→ d f is a homomorphism of OY -modules from I (Y )/I (Y )2 to the sheaf
OY (E∗) of germs of sections of E∗. By using the local parameters, we see that

the map D : I (Y )/I (Y )2 →OY (E∗) defined by f 7→ d f is an isomorphism of OY -modules.

10.3 Local resolution of OY over OX

Let V be a vector space over k of dimension p, and e1, . . . , ep be a basis of V , and define
Mi =OX ⊗k

∧i V . We endow the direct sum M of the Mi with a differential d defined by3

d( f ⊗ e i1 ∧ . . .∧ e ik )=∑
j

(−1)i f · f i j ⊗ e i1 ∧ . . .∧ ê i j ∧ . . .∧ e ik .

Then the sequence

0→Mp
d−→Mp−1 → . . .→M1

d−→OX
r−→OY → 0 (2)

is exact at every point of U, and M is thus, on U , a projective resolution of OY over OX .
The exactness of (2) at a point b ∈ U ∩Y is a well-known result (see, for example, [3,
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Proposition 4.3, p. 151], taking into account the fact that Ob,Y = Ob,X /( f1, . . . , fp)). For
b ∈ U \ (U ∩Y ), we have that Ob,Y = 0, and the exactness of (2) is then an elementary
exercise left to the reader.

Remark. If Y is a divisor, then (1) is exactly another way of writing the exact sequence of
sheaves (which is exact on any X )

0→OX ([Y ]−1)
f−→OX →OY → 0, (3)

where f is the multiplication by a local equation on Y . This exact sequence thus shows
that γ(Y )= 1− [Y ]−1.

Proposition 11. Let Y1, . . . ,Ym be non-singular subvarieties of X such that Yi intersects
transversally with

Yi−1 ∩ . . .∩Y1 (for i = 2, . . . ,m).

Then
γ(Y1 ∩ . . .∩Ym)=∏

i
γ(Yi).

3As usual, the notation ̂ indicates that the symbol below the hat should be omitted.
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10 General remarks on the injection of a subvariety

Proof. An evident induction on m shows that it suffices to consider the case of two subva-
rieties Y and Z that intersect transversally.

By definition, γ(Y ) ·γ(Z) is the alternating sum of the TorOX
i (OY ,OZ). It is clear that

these sheaves, and the sheaf OY∩Z , are equal (and zero) at any point not contained inside
Y ∩Z, which, in particular, proves our claim if Y ∩Z =∅.

Now let a ∈ Y ∩Z. Since Y and Z intersect transversally, we can find an affine open
subset U containing a, and functions f1, . . . , fp and g1, . . . , gq that are regular on U such
that the f i (resp. the g j; resp, the f i and the g j) form a system of uniformising parameters
for Y (resp. for Z; resp. for Y ∩Z). To calculate the Tori(OY ,OZ), we resolve OY by using
(2). We must thus determine the homology of the complex

0→Mn ⊗OX OZ → . . .→OX ⊗OX OZ

which can also be written as

0→OZ ⊗k
∧p V → . . .→OZ ⊗k V →OZ

endowed with the same differential as above, with the f i being considered as element of
OZ . Since Oa,Z = Oa,X /(g1, . . . , gq), the f i generate a perfect ideal inside; so this complex
is acyclic (see §10.3) and its 0-th homology group is Oa,Z( f1, . . . , fp), i.e. Oa,Y∩Z . Thus

Tor0 =OY∩Z and Tori = 0 (for i Ê 1),

which finishes the proof. ∣∣∣ p. 122

Corollary. Let Y be a non-singular hyperplane section of Z, and let k be the dimension of
X . Then (1− [Y ])k+1 = 0.

Proof. We take the non-singular hyperplane sections Y1, . . . ,Yk+1 whose intersection is
empty, and such that the Yi intersect transversally with Yi−1 ∩ . . .∩Y1 (i = 2, . . . ,k+ 1).
Since [Yi] = [Y ], Proposition 11 and the preceding remark show that (1− [Y ]−1)k+1 = 0,
whence the corollary, since [Y ] is invertible in K(X ).

10.4 —
We will use, both here and later on, the following remark; let F and G be sheaves of
algebras on X . Then the direct sum of the TorOX

i (F ,G ) canonically admits the structure of
a sheaf of graded (by i) algebras. If F admits, on U , a resolution L over OX that is a sheaf
of graded algebras, then the product in the homology of L ⊗G induced by the products in
L and G coincides, on U< the the aforementioned coupling of the Tori. [Details left to the
read; see [3, Chap. IX] for some analogous and more general considerations. This follows
from the classical result on maps from an acyclic complex ([3, Proposition 11, p. 76]).]

Proposition 12. We have that i! i!(y) = y ·λ−1(E∗) for all y ∈ K(Y ). In particular, i!γ(Y ) =
λ−1(E∗).
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Proof. By linearity, and Theorem 2, we can restrict to proving Proposition 12 in the case
where y = F is a locally free sheaf. By definition, i! i!(F ) is the alternating sum of the
TorOX

i (F ,OY ), and, since F and the λiE∗ are locally free, F ·λ−1E∗ is the alternating
sum of the F ⊗OY λ

iE∗. Recalling §10.2, it thus suffices, to prove Proposition 12, to show
that

TorOX
1 (F ,OY )=F ⊗OY I (Y )/I (Y )2 (4)

TorOX
i (F ,OY )=F ⊗OY λ

i(TorOX
1 (OY ,OY )). (5)

[In (5), λi is the ith exterior power of a sheaf which is locally free, given (4).]
Unless otherwise mentioned, Tor and ⊗ are taken over OX . The exact sequence of Tor,

applied to (1), gives the exact sequence

0→Tor1(F ,OY )→I (Y )⊗F
g−→F

where g is defined by g(u⊗ v) = u · v. Since I (Y ) annihilates F , g has a zero image, and
so

Tor1(F ,OY )=I (Y )⊗F .

But, since F is a sheaf on Y , it is annihilated by I (Y ), and so the image of I (Y )2⊗F in
I (Y )⊗F is zero, and I (Y )⊗F can be identified with I (Y )/I (Y )2 ⊗F . Finally, since,
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in this product, the two sheaves are over OY , their ⊗ over O can be identified with their
tensor product over OY , which finishes the proof of (4).

Using the notation of §10.2, the Tori(F ,OY ) are, on U , the homology groups of the
complex

0→Mp ⊗F →Mp−1 ⊗F → . . .→F

which can also be written as

0→F ⊗k
∧p V →F ⊗k

∧p−1 V → . . .→F (6)

endowed with the differential that extends d and is zero on F . Since the f i are local
sections of I (Y ), and this sheaf annihilates F , it follows that, in (6), the differential is
identically zero, and so

Tori(F ,OY )=F ⊗k
∧i V =F ⊗OY OY ⊗k

∧i V (for i Ê 0).

In the particular case where F =OY , this formula shows that

Tor1(OY ,OY )=OY ⊗k V

whence we have an isomorphism (for the moment, local, defined by the use of the param-
eters f i) of the two sides of (5). But M, thought of as a tensor product of the algebras OY
and

∧
V , is clearly a differential graded algebra, and so the remark made at the start of

§10.4 applies, and shows that, in fact, this isomorphism is intrinsic (and, in particular,
does not depend on the chosen system of local parameters) and holds true over X .

25 of 38
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10.5 Particular case of the divisor
In this case, we can use the resolution (3), which is global. The Tori(F ,OY ) are thus the
homology groups of the complex

. . .→ 0→OY ([Y ]−1)⊗F
f−→F

where F is the multiplication by a local equation; since F is annihilated by I (Y ), the
homomorphism f has a zero image, which implies that

Tor0(F ,OY )=F

Tor1(F ,OY )= [Y ]−1 ·F
Tori(F ,OY )= 0 (for i Ê 2).

By comparing with Proposition 12, we see that the restrictions of [Y ]−1 to Y and to E∗
define the same element of K(Y ). In fact,

Proposition 13.
Suppose that codimY = 1, and denote by L the restriction of [Y ] to Y . Then:

a. L = E;
b. γ(Y )= 1− [Y ]−1;
c. i! i!(y)= y · (1−L∗). ∣∣∣ p. 124

Proof. Claim (c) was proven above, and (b) was proven in the remark of §10.2. It remains
only to prove (a).

Let (Ui) be a cover of U such that, on Ui, Y is defined by one equation f i = 0, with the
differential d f i being non-zero at every point of Y ∩Ui, and let f i j = f i/ f j on Ui ∩U j. We
know that [Y ] is defined by the system { f i j} of transition functions. Also, on Ui, we can
identify E∗ with the product Ui×k by applying d f i to the unit section. But, on Y ∩Ui∩U j,
we have that d f i = f i j ·d f j (since f j = 0 on Y ), and so we can define E∗ by the system of
transition functions { f −1

i j }, which proves (a).

11 Proof of R–R in the particular case of an injection
Given the results of §7 and §9, it remains only to prove R–R for an injection. In the
notation of §10.1, the formula to prove is then equivalent to

ch i! y= i∗(ch y ·T(E)−1) (for y ∈ K(Y )). (1)

Indeed, E is the quotient of the tangent bundle of X (restricted to Y ) by the tangent bundle
of Y , so i∗T(X )= T(Y ) ·T(E), whence

i∗(ch yT(E)−1)= i∗(ch y ·T(Y ) · i∗(T(X ))−1)

i∗(ch yT(E)−1)= i∗(ch y ·T(Y )) ·T(X )−1

and so (1) gives R–R if we multiply both sides by T(X ).
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To prove (1), Grothendieck first considers the case where Y is a divisor and y ∈ i!(K(X )),
and then reduces to this case by blowing up X along Y . This first particular case will be
covered below, and the general case of the injection will be covered in §13, where we will
assume certain properties of blow ups that will be proven in §14, §15, and §16.

We will use, without explanation, the formulas

f!(y · f !(x))= f!(y) · x
f∗(y · f ∗(x))= f∗(y) · x (2)

where the first was proven in §5.3, and the second was mentioned in §6 (whose notation
we also continue to use).

Proposition 14. The equality (1) is true if codimX Y = 1 and y= i!(x) (x ∈ K(X )).

Proof. By using (2) and Proposition 13, we see that

ch(i! i!(x))= ch(x · i!(1))= ch(x · (1− [Y ]−1)).

Since x 7→ ch x is a ring homomorphism, and since c([Y ])= 1+Y , this implies that
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ch(i!)= ch x ·ch(1− [Y ]−1)= ch x · (1− e−Y ).

The right-hand side of (1) is

i∗(ch(i!x) ·T(L)−1)= i∗(i∗(ch x) · i∗(T([Y ])−1))

= ch x ·T([Y ])−1 · i∗(1)

= ch x ·T([Y ])−1 ·Y

and (1) then follows from T([Y ])=Y /(1− e−Y ).

Corollary 1. R–R is true if X = Y ×P, where P is a projective space, and i is the map
a 7→ (a, p0), with p0 some fixed point of P.

Proof. The map i is the product of the identity on Y with the injection of a point into
P. Given Lemma 16, it suffices to prove R–R in this latter case. If Y is a point, then
K(Y )=Z, and it suffices to consider the case where y= 1. Since 1 ∈ i!(P), our claim follows
from Proposition 14 if dimP = 1. Arguing by induction, we can assume that our claim is
true for the injection u : Y → H of Y into a hyperplane of P; given part (a) of Lemma 15, it
suffices to prove that R–R is true for u!(1) and the injection v : H → P; this, itself, follows
from Proposition 14 if we know that u!(1) ∈ v!(K(P)). But let Z be a second hyperplane and
D a line of H such that Y = D ∩Z ∩H. Then (Proposition 11) γH(Y ) = γH(D) ·γH(H ∩Z).
By part (b) of Proposition 13, γH(H∩Z)= 1−[H∩Z]−1; since [H∩Z] can be identified with
the restriction of [H] to H, part (c) of Proposition 13 then shows that

u!(1)= γH(Y )= v!v!(γH(D))= v!(γP(D)).

27 of 38



12 Blowing up along a subvariety

Corollary 2. If the equality (1) is true whenever 2dimY É dim X − 2, then it is true in
general.

Proof. It suffices to compose i with an injection X → X ×P, where P is of large dimension,
and the apply Corollary 1 and part (b) of Lemma 15.

12 Blowing up along a subvariety

12.1 Notation
We will write X ′ to mean the variety obtained by blowing up X along Y , f to mean the
projection from X ′ to X , g to mean the restriction of f to Y ′ = f −1(Y ), and j to mean the
injection from Y ′ to X ′. We will thus have the commutative diagram

Y ′ j−−−−−→ X ′

g
y y f

Y −−−−−→
i

X

(1)

As before, E is the normal bundle of Y in X , and p = codimX Y . We will sometimes write
E′ to mean the inverse image of E. We will see that f is an isomorphism outside of Y ′,
that g is the projection into a fibration with fibre equal to the projective space Pp−1 of
dimension (p−1), that codimX ′ Y ′ = 1, and that E′ contains the restriction of [Y ′] to Y ′,
which will be denoted L. Finally, we let F = E′/L, which is a vector bundle of rank (p−1).
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12.2 Definition of X ′ by local charts
Over an affine open subset U that does not meet Y , we take U itself as a local chart. Now
suppose that U ∩Y ̸=∅, and that Y admits, in U , uniformising parameters f i (1 É i É p).
Let ti be homogeneous coordinates of Pp−1. Then f −1(U) is the subvariety of Pp−1 ×U
defined by

U ′ = f −1(U)= {
(t,u) | ti f j(u)− t j f i(u)= 0

}
(with the ti being the homogeneous coordinates of t) and f is the projection onto the second
factor. It is evident that f is a morphism, that it is an isomorphism outside of f −1(Y ∩U),
and that, if u ∈ Y , then f −1(u) = Pp−1. The variety U ′ is the union of affine open subsets
U ′

i, where U ′
i is the set of points (t,u) such that ti ̸= 0. If we let f ′j = f j ◦ f , then the local

equation of Y ′ in U ′
i is f ′i = 0, and d f ′i is a basis for the bundle L at each point of U ′

i (see
the proof of Proposition 13).

The differentials d f i are linearly independent at every point of Y ∩U , and, on Y ∩U,
we will identify E∗ with U × kp, by applying d f1, . . .d fp to the canonical basis of kp. Let
b = (t1, . . . , tp) ∈ g−1(a) for a ∈Y ∩U, and suppose that ti ̸= 0. Then the equations in P×U
of the plane tangent to Y at b are d f j = (t j/ti)d f i; it follows that f sends, bijectively, the
normal space of Y at b to the line t1X1 + . . .+ tp X p, where (X i) is the dual basis of (d f j),
whence we have a bijection µU from g−1(a) to the projective space associated to Ea, and
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an inclusion of L into E′, given by sending the fibre Lb of L to the line of E′
b that maps to

t1X1 + . . .+ tp X p under the canonical identification of E′
b with Ea.

Let V be a second affine open subset of X that meets Y , and in which Y has local pa-
rameters g1, . . . , gp. Let P′ be a projective space with homogeneous coordinates s1, . . . , sp.
Then

V ′ = f −1(V )= {
(s,v) | si g j(v)− s j g i(v)= 0

}
and we will have, as before, a canonical map µV from g−1(a) to the projective space of Ea.
This leads us to define the change of charts in U ′×V ′ by the rule:

(t,u)= (s,v) if [v = u ̸∈Y ] or [v = u ∈Y and µU (t)=µV (s)].

We must show that this correspondence is an isomorphism. Let c ∈U ∩V . Since the ( f i)
and the (g i( are two systems of local parameters for Y , the exist elements ai j ∈Oc,X that
form an invertible matrix in Oc,X such that

∣∣∣ p. 127

f i =
∑

j
ai j g j

which also implies that d f i =∑
j ai j dg j on Y . In the neighbourhood of a point c′ ∈ f −1(c),

the above correspondence is then defined by (s,v) 7→ (t,u), with v = u and ti = ∑
ai j(u)s j.

We see that
f i t j − f j ti =

∑
m,n

aima jn(gmsn − gnsm)

and it easily follows that the correspondence in question is an isomorphism.

12.3 Projective embedding of X ′

We consider an embedding of X into some projective space PN of dimension N, with ho-
mogeneous coordinates (zi). Let ϕi (1 É i É s) be a basis for the ideal of Y consisting of
homogeneous polynomials, and let m be an integer Ê the maximum of the degrees of the
ϕi. Let (h1, . . . ,hM) be a basis for the k-vector space of forms of degree m in the zi that
are zero on Y . We can then take hi to be the products of the form ϕ j ·µ (1É j É s) where µ
runs over the set of monomials in the zi whose degrees are equal to m−deg(ϕ j). It follows
immediately that:

i. Given x ∈ X \ Y , there exists some j such that h j(x) ̸= 0. Given y ∈ Y , there exists
some form g of degree m, and a set I of p elements of {0,1, . . . , M} such that the
hi/g (i ∈ I) form, in a suitable affine open neighbourhood of y, a system of local
parameters for Y , and such that the hi/g ∈Oy,X (i = 0, . . . , M).

The hi are sections of the bundle Hm, where H is the bundle associated to a hyperplane
section of X . We denote by h′

i the corresponding sections of the inverse-image bundle, and
we consider, in the usual way, “the map” h : x′ 7→ (h′

0(x′), . . . ,h′
M(x′)) from X to PM defined

by this space of sections. A priori, this is not really a map, since it is not defined at the
points where all the h′

i vanish simultaneously. However, we want to show that:

ii. h is a morphism;
iii. if u′,v′ ∈Y ′ have the same image in Y , and are distinct, then h(u′) ̸= h(v′).
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13 Finishing the proof of R–R

To prove (ii), it suffices to show that, given x′ ∈ X ′, there exists some index k such
that h′

i/h
′
k ∈ Ox,X (0 É i É M), since the h′

i(x
′)/h′

k(x′) will then be the coordinates of h(x′),
and at least one of these quotients is non-zero. Given (i), the existence of h′

i is evident if
x′ ̸∈ Y . Now let x′ ∈ Y . We can apply the second claim of (i), and, to simplify notation, we
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suppose that the f i = hi/g (i = 1, . . . , p) form a system of local parameters; let t1, . . . , tp be
the homogeneous coordinates of x′ in P (the notation from the start of §12.2, and suppose
that tk ̸= 0. Then f ′k = 0 is a local equation for Y ′, and so the h′

j/g
′ are all divisible by f ′k

in Ox′,X ′ , and so h is a morphism in x′. We also see that the ith homogeneous coordinate
of h(x′) is ti/tk (1É i É p), which evidently implies (iii).

With this in mind, consider the mapΨ from X ′ to X×PM defined byΨ(x′)= ( f (x′), (x′)).
Given (ii) and (iii), Ψ is a bijective morphism, and it is clear that Ψ is an isomorphism
outside of Y ′. By the projective normalisation and the Main Theorem of Zariski, we thus
deduce that X ′ is quasi-projective.

13 Finishing the proof of R–R

Lemma 18. Let G be a vector bundle of rank k on a variety X . Then

ch(λ−1G)= ck(G∗)T(G∗)−1.

Proof. Write the Chern class c(G) of G in the form

c(G)=
k∏

i=1
(1+ai).

Then (see [10])
c(G∗)=∏

(1−ai),

c(∧sG)= ∏
i1<...<is

(1+ai1 + . . .+ais ),

whence
ck(G∗)= (−1)ka1 . . .ak,

ch(λ−1G)=∏
(1− eai ),

and so
ch(λ−1G)= ck(G∗)T(G∗)−1.

Lemma 19.
In the notation of §12.1, we have:

a. f∗(1)= 1, and so f∗ f ∗ is the identity;

b. g∗(cp−1(F))= 1;

c. f ! i!(y)= j!(g!(y) ·λ−1F∗) [y ∈ K(Y )];
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13 Finishing the proof of R–R

d. λ−1F ≡ 0 mod (1−L∗) if p Ê dimY +2.

Proof. This lemma will be proven in §14, §15, and §16. ∣∣∣ p. 129

Proposition 15. R–R is true for an injection.

Proof. We must (see §11) establish the equality

ch i!(y)= i∗(ch y ·T(E)−1), (1)

and it suffices to do this in the case where p Ê dimY +2 (Corollary 2 of Proposition 14). In
this case, g!(y) ·λ−1F∗ ≡ 0 mod (1−L∗), by part (d) of Lemma 19, and so is in the image
of K(X ′) under j! (Proposition 13), and (Proposition 14) we can apply R–R to g!(y) ·λ−1F∗
and j. This gives

ch j!(g! y ·λ−1F∗)= j∗(ch(g! y ·λ−1F∗) ·T(L)−1). (2)

To deduce (1) from this, it evidently suffices to show that

f∗(ch j!(g! y ·λ−1F∗))= ch i! y (3)

f∗ j∗(ch(g! y ·λ−1F∗) ·T(L)−1)= i∗(ch y ·T(E)−1). (4)

Part (c) of Lemma 19 shows that the left-hand side of (3) is equal to

f∗(ch f ! i! y)= f ∗∗ (ch i! y)

and thus equal to the right-hand side of (3), given part (a) of Lemma 19.
Since ch is multiplicative, we have that

ch(g! y ·λ−1F∗)= ch g! y ·chλ−1F∗ = g∗(ch y) ·chλ−1F∗

and so (Lemma 18)
ch(g! y ·λ−1F∗)= g∗(ch y)cp−1(F) ·T(F)−1.

But E′/L = F, so
g∗(T(E))= T(E′)= T(F) ·T(L)

whence
ch(g! y ·λ−1F∗) ·T(L)−1 = cp−1(F) · g∗(ch y ·T(E)−1).

Given (2) (in §11) and part (b) of Lemma 19, the image under g∗ of the right-hand side is
equal to ch y·T(E)−1, and the equality in (4) then follows from the fact that f∗ j∗ = i∗g∗.

31 of 38
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14 Proof of parts (a) and (b) of Lemma 19
The map f if an isomorphism outside of Y ′, and so is of local degree 1, and so sends a
fundamental cycle to a fundamental cycle, whence part (a) of Lemma 19.

The map g∗ lowers the degree (which is the geometric codimension) by p − 1, and
corresponds to integration on the fibre. But also, the restriction of L to a fibre Pp−1 of g
can be thought of as kp \{0}, the principal k∗-bundle, on the base Pp−1. We know that the
first Chern class of this latter bundle is the opposite of the class of a hyperplane. If we set
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−u = c1(L), then this implies that

g∗(up−1)= 1,

and we evidently have that g∗(ui)= 0 (0É i < p−1) for dimension reasons.
Since E′/L = F, we have that

c(E′)= c(F)(1−u)

c(F)= g∗(c(E)) · (1+u+u2 + . . .)

cp−1(F)= up−1 + g∗(c1(E)) ·up−2 + . . .+ g∗(cp−1(E))

g∗(cp−1(F))= g∗(up−1)+ c1(E)g∗(up−2)+ . . .+ cp−1(E)g∗(1)

whence
g∗(cp−1(F))= 1.

15 Proof of part (c) of Lemma 19
In this section, we will write J to mean I (Y ), and J ′ to mean I (Y ′). As we remarked
in §10.2, J ′/J ′2 (resp. J /J 2) is the sheaf of germs of sections of L∗ (resp. E∗), and so
J /J 2 ⊗OY OY ′ is the sheaf of germs of sections of g!(E∗)= E′∗.

By associating, to an element u ∈Jx, the element u ◦ f ∈J ′
x′ ( f (x′) = x), we evidently

define a surjective homomorphism of OY ′ -modules µ : J /J 2 ⊗OY OY ′ → J ′/J ′2. This
again shows that E′∗ is sent to L∗, and thus that L injects into E′; the kernel of µ is the
sheaf OY ′ (F∗) of germs of sections of F∗, as we can easily verify; in fact, this verification
is superfluous, since we know that the kernel of µ is locally free (see Lemma 8, §4), and
thus corresponds to a subbundle N of E′∗ such that E′∗/N = L∗, and thus necessarily
represents the same element as F∗ in K(Y ′). We thus have the exact sequence

−→OY ′ (F∗)→J /J 2 ⊗OY OY ′
µ−→J ′/J ′2 → 0. (1)

By linearity, and Theorem 2, it suffices to prove part (c) of Lemma 19 in the case where
y = G is a locally free sheaf. In this case, g!(y) = G ⊗OY OY ′ is locally free over OY , and
g!(y) ·λ−1F∗ is the alternating sum of the

G ⊗OY OY ′OY ′ (λiF∗)=G ⊗OY OY ′ (λiF∗).

Also, f ! i!(y) is the alternating sum of the TorOX
i (G ,OX ′ ); it thus suffices to prove that

TorOX
i (OY ,OX ′ )=λi TorOX

1 (OY ,OX ′ ) (for i Ê 1) (2)
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15 Proof of part (c) of Lemma 19

TorOX
1 (OY ,OX ′ )=OY ′ (F∗) (3)

TorOX
j (G ,OX ′ )=G ⊗OY TorOX

j (OY ,OX ′ ) (for j Ê 1). (4) ∣∣∣ p. 131
The equalities (3) and (4) correspond to the particular case of part (c) of Lemma 19

where y = 1; their proof will be analogous to that of Proposition 12 (§10). We will first
prove (2), as well as the fact that the TorOX

i (OY ,OX ′ ) are annihilated by J ′, and can thus
be identified with sheaves on Y ′.

It is clear that the two sides of (2) are zero on an open subset that does not meet Y ′.
To prove (2) in the neighbourhood of a point b′ ∈Y ′, we reuse the notation from §10.3 and
§12.2. So we need to calculate the homology of the complex

0→Mp ⊗OX OX ′ → . . .→OX ′

which can also be written as

0→OX ′ ⊗k
∧p V → . . .→OX ′ .

Suppose that b′ is in the open subset U ′
j where t j ̸= 0. Then it is clear that this complex of

sheaves is isomorphic to the complex

0→OX ′ ⊗k
∧p V ′ → . . .→OX ′

where V ′ has a basis (e′i), and where the differential is characterised by

d(1⊗ e′j)= f j ⊗1

d(1⊗ e′i)= ( f i − ti f j/t j)⊗1

and by the fact that it extends to a differential of algebras. In this new complex, it is
immediate that the cycles of exterior degree s form OX ′ ⊗k

∧s(e′1, . . . , ê′j, . . . , e′p) and that
the boundaries of exterior degree s form the ideal

f j ·OX ′ ⊗k
∧s(e′1, . . . , ê′j, . . . , e′p).

Consequently,
TorOX

i (OY ,OX ′ )∼=OY ′ ⊗k
∧i(e′1, . . . , ê′j, . . . , e′p),

which proves that the Tori are sheaves on Y ′, and, taking the initial remark of §10.4 into
account, also gives (2).

Proof. (of (3)). The exact sequence of Tor, applied to

0→J →OX →OY → 0,

gives the exact sequence

0→TorOX
1 (OY ,OX ′ )→J ⊗OX OX ′

g−→OX ′ .

It is clear that, if b = f (b′), then J ′
b′ = Jb ·Ob′,X ′ , and so the image of g is J ′, and we

obtain the exact sequence

0→TorOX
1 (OY ,OX ′ )→J ⊗OX OX ′ →J ′ → 0. (5)
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Since Tor1(OY ,OX ′ ) is a sheaf on Y ′, we can write

TorOX
1 (OY ,OX ′ )⊗OX ′ OY ′ =TorOX

1 (OY ,OX ′ )⊗OY ′ OY ′ =Tor1(OY ,OX ′ ).

Also, J ′ can be identified with OX ′ ([Y ′]−1), and is locally free, and so TorOX ′
1 (J ′,OY ′ )= 0,

and the exact sequence of Tor, applied to (5), gives the exact sequence

0→TorOX
1 (OY ,OX ′ )→J ⊗OX OY ′

g−→J ′⊗OX ′ OY ′ → 0. (6)

It is immediate that the canonical image of J 2⊗OX OY ′ (resp. J ′2⊗OX ′ OY ′ ) in J ⊗OX
⊗OY ′ (resp. J ′⊗OX ′ OY ′ ) is zero, whence we have canonical isomorphisms

J ⊗OX OY ′ =J /J 2 ⊗OX OY ′ =J /J 2 ⊗OY OY ′

J ′⊗OX ′ OY ′ =J ′/J ′2 ⊗OX ′ OY ′ =J ′/J ′2

which send g to the homomorphism µ from the sequence (1). The equality (2) then follows
from (1) and (6).

The equality (4) then follows from an associativity formula of Tor (see [3]). We consider
T(G ,OX ′ )=G ⊗OY OY ⊗OX ′ as a functor in G and OX ′ . To calculate its left-derived functors
LiT, we have two spectral sequences, with respective E2 pages

E i j
2 =TorOY

i (TorOX
j (OX ′ ,OY ),G )

E′i j
2 =TorOX

j (TorOY
i (G ,OY ),OX ′ ).

From this, it evidently follows that E i j
2 = E′ ji

2 = 0 if i > 0, and thus that

E0 j
2 = E′ j0

2 =L jT(G ,OX ′ )[]

since E0 j
2 and E′ j0

2 are equal to the right- and left-hand sides (respectively) of (4), this
proves the equality.

16 Proof of part (d) of Lemma 19

Lemma 20. Let G be an ample vector bundle of rank (q+k) on Y (q = dimY ; k Ê 0). Then
G contains a trivial subbundle of rank k.

Proof. The fact that G is ample implies that, at each point y, the fibre G y is generated by
its sections. So there exists a finite-dimensional k-vector space V of sections, such that
the map r y : V →G y, that sends each section to its value at y, is surjective for all y ∈Y . (If
Y is not complete, take a cover by affine open subsets that are complete, and then extract
a finite subcover by “quasi-compactness.”) We thus have an exact sequence

0→ Ny →V → E y → 0

for all y ∈ Y , where codimV Ny = q+ k. The Ny form a vector subbundle N ′ of the trivial
∣∣∣ p. 133
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16 Proof of part (d) of Lemma 19

bundle V ×Y , by Lemma 8 (§4). The injection of the Ny into V thus defines a morphism
u : N →V . Since dimV = q+dim Ny, the closure of Imu is of codimension Ê k. Since Imu is
a union of vector subspaces, Imu is an algebraic homogeneous space; consequently, there
exists a subspace W of dimension k whose intersection with Imu is {0}. Then W ∩Ny = (0)
for all y ∈Y , and so W defines the required subbundle. (For this proof, see [1].)

Lemma 21. Let G be a vector bundle of rank p = q+k on Y (q = dimY ). Then λs(G−k)= 0
for all s Ê q+1.

Proof. Let h be the bundle associated to a hyperplane section of Y . Then (by the Corollary
of Proposition 11)

(1−h)q+1 = 0

and so h = 1+u, with uq+1 = 0, whence

hn = ∑
0ÉiÉq

(
n
i

)
ui.

It follows that

λt(Ghn −k)=
q∏

i=1
λt(Gui)(

n
i) · (1− t)−k

and the reader can, from this, deduce that λs(Ghn −k) is of the form

λs(Ghn −k)=
ms∑
i=1

Bs,iPs,i(n)

where Bs,i ∈ K(Y ), and where Ps,i(n) is a polynomial with rational coefficients that, for all
n > 0 large enough, takes integer values. We then know (Hilbert) that Ps,i is a Z-linear
combination of the polynomials(

X
j

)
= X (X −1) . . . (X − j+1)/ j!

and so, finally,

λs(Ghn −k)=
ns∑
i=0

As,i

(
n
i

)
(for As,i ∈ K(Y )). (1)

For n > n0, the bundle Ghn is ample ([12]), and so (Lemma 20) contains a trivial bundle
of rank k< and Ghn −k can be identified with a bundle of rank q; its sth exterior power is
then evidently zero for all s Ê q+1. Given (1), it suffices to show that, if the polynomial
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P(n)=
m∑

i=0
A i

(
n
i

)
(for A i ∈ K(Y ))
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is zero for n > n0, then all the A i are zero. For this, we proceed by induction on m, and
consider the first difference

∆P(n)= P(n+1)−P(n)

=
m∑

i=1
A i

(
n

i−1

)

=
m−1∑
j=0

A j−1

(
n
j

)
.

Since ∆P(n)= 0 for n > n0, the A i (1É i É m) are zero by the induction hypothesis, whence
clearly A0 = 0 as well.

Lemma 22. Let G and L be vector bundles on Y , with respective ranks p and 1. Then

a. λp(G−1)= (−1)pλ−1(G);
b. λtG(1−L)≡ 1 mod (1−L);

and so, if G1 ≡ G2 mod (1−L) [G1,G2 ∈ K(Y )], then λiG1 ≡ λiG2 mod (1−L) for all
i Ê 1.

Proof. —

a. We have that
λt(G−1)=λt(G)/λt(1)=λt(G) · (1+ t)−1

=λt(G)(1− t+ t2 − t3 + . . .)

and it suffices to compare the coefficients of tp.

b. We have that
λi(G ·L)= Li ·λiG ≡λi(G) mod (1−L)

or, again, λt(GL)≡λt(G) mod (1−L), which gives (b).

Proof. (of part (d) of Lemma 19). By Lemma 22, we have that

(−1)p−1λ−1F∗ =λp−1(F∗−1).

But E′∗/F∗ = L∗, so F∗−1≡ E′∗−2 mod (1−L∗), whence (Lemma 22)

λ−1F∗ ≡λp−1(E′∗−2) mod (1−L∗),

which can also be written as

λ−1F∗ ≡ g!(λp−1(E′∗−2)) mod (1−L∗).

It thus suffices to show that λp−1(E∗−2) = 0 if p Ê dimY +2, which follows from Lemma
∣∣∣ p. 135

21.
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17 An application of R–R
The following application (pointed out by Hirzebruch) is about “integration on the fibre”
in an algebraic bundle. We place ourselves in the classical case, i.e. k =C.

Proposition 16. Let (E,B,F, g) be an algebraic bundle, where E, B, and F are projective,
irreducible, and non-singular, and let ξ be the tangent bundle along the fibres. Then

g∗(T(ξ))=To(F) ·1.

[Here To(X ) denotes the Todd genus of X .]

Proof. The tangent bundle to E is an extension of ξ by the fibre induced by the tangent
bundle to B, so

T(X )= g∗(T(B)) ·T(ξ),

whence
g∗(T(X ))= T(B) · g∗(T(ξ)).

We apply R–R to g and the bundle 1 on X , which gives us that

g∗(T(X ))= ch g!(1) ·T(B),

and so, given the above,
g∗(T(ξ))= ch g!(1).

We need to calculate g!(1). Let U be an affine open subset of B over which the bundle is
trivial. By Künneth (see the proof of Lemma 16), we have that

Hq(U ×F,OX )= ∑
i+ j=q

Hi(U ,OU )⊗H j(F,OF ).

Since U is affine, Hi(U ,OU ) = 0 for i > 0, and H0 can be identified with regular functions
on U. But, in an algebraic bundle, the structure group G is connected (by hypothesis),
and so acts trivially on H j(F,OF ), which is the type-(0, j) component of H j(F,C).4 It thus
follows that

g!(1)=OB ⊗
(∑

q
(−1)qHq(F,OF )

)
.

Then g!(1) is the alternating sum of trivial bundles, and so g!(1) has exactly one compo-
nent, which is in degree 0, and which is the alternating sum of the dimHq(F,OF ), which
proves the proposition. ∣∣∣ p. 136

Remark. This proposition implies that the multiplicative sequence that defines the Todd
class is “strictly multiplicative” for algebraic fibres, in the terminology of Borel-Hirzebruch
[2]. In particular, it thus follows that To(E) = To(B) ·To(F). In [2], this property, of strict
multiplicativity, is proven in the differentiable, almost-complex case, and where also the
fibre is some G/T or associated space.

4We do not know if the fact that G acts trivially on the H j(F,OF ) remains true in characteristic p > 0. This is
why we had to assume that k =C.
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What follows constitutes the notes from a seminar that took place in Princeton in the autumn of 1957 on the works of Grothendieck;
the new results that are included are due to Grothendieck;
our contribution is solely of an editorial nature.

The ``Riemann--Roch theorem'' of which we speak here holds true for (non-singular) algebraic varieties over a field of arbitrary characteristic;
in the classical case, where the base field is \(\mathbb{C}\), this theorem encapsulates, as a particular example, the result proven a few years ago by Hirzebruch {[}\protect\hyperlink{ref-9}{10}{]}.

The full statement and proof of the Riemann--Roch theorem can be found in sections \protect\hyperlink{section-7}{7} to \protect\hyperlink{section-16}{16}, with the last section being devoted to an application.
Sections \protect\hyperlink{section-1}{1} to \protect\hyperlink{section-6}{6} contain some preliminaries on coherent algebraic sheaves {[}\protect\hyperlink{ref-12}{12}{]}.
The terminology that we follow is the same as in {[}\protect\hyperlink{ref-12}{12}{]}, up to one difference: to conform with a custom which is becoming more and more widespread, we use the word ``morphism'' instead of ``regular map.''

\hypertarget{section-1}{%
\section{Supplementary results concerning sheaves}\label{section-1}}

(All the varieties considered below are algebraic varieties over an algebraically closed field \(k\) of arbitrary characteristic.
Unless otherwise mentioned, all the sheaves considered are coherent algebraic sheaves.)
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\leavevmode\hypertarget{proposition-1}{}%
\begin{itenv}{Proposition 1}
Let \(U\) be an open subset of a variety \(V\), and let \({\mathscr{F}}\) be a coherent sheaf on \(V\) and \({\mathscr{G}}\) a coherent subsheaf of \({\mathscr{F}}|U\) (the restriction of \({\mathscr{F}}\) to \(U\)).
Then there exists a coherent sheaf \({\mathscr{G}}'\subset{\mathscr{F}}\) such that \({\mathscr{G}}'|U={\mathscr{G}}\).

\end{itenv}

(In fact, the proof will show that there exists a \emph{largest} such sheaf having this property.)

\begin{proof}
For every open subset \(W\subset V\), we define \({\mathscr{G}}'_W\) as the set of sections of \({\mathscr{F}}\) over \(W\) that belong to \({\mathscr{G}}\) over \(U\cap W\).
Everything reduces to showing that the sheaf \({\mathscr{G}}'\) associated to this presheaf is coherent.
Since this is a local question, we can suppose that \(V\) is an affine variety.
Let \(A\) be its coordinate ring.
There exist elements \(f_i\in A\) such that \(U=\bigcup V_{f_i}\), where \(V_{f_i}=U_i\) denotes the set of points of \(V\) where \(f_i\neq0\).
If, in the definition of \({\mathscr{G}}'\), we replace the open subset \(U\) by the open subset \(U_i\), then we obtain a sheaf \({\mathscr{G}}'_i\subset{\mathscr{F}}\), and it is clear that \({\mathscr{G}}'=\bigcap{\mathscr{G}}'_i\).
By known results on coherent sheaves {[}\protect\hyperlink{ref-12}{12}{]}, it suffices to show that the \({\mathscr{G}}'_i\) are coherent.
We can thus restrict to considering the case where \(V\) is affine, and where \(U=V_f\), for some \(f\in A\).
In this case, the sheaf \({\mathscr{F}}\) is defined by an \(A\)-module \(M\), and the subsheaf \({\mathscr{G}}\) of \({\mathscr{F}}|U\) is defined by a submodule \(N\) of \(M_f=M\otimes_A A_f\).
Let \(N'\) be the inverse image of \(N\) in \(M\) under the canonical map \(M\to M_f\).
The module \(N'\) then corresponds to a coherent subsheaf of \({\mathscr{F}}\), and we can immediately verify (by taking the \(V_{f'}\) to be the \(W\), for example) that this sheaf is exactly \({\mathscr{G}}'\), which finishes the proof.
\end{proof}

\leavevmode\hypertarget{lemma-1}{}%
\begin{itenv}{Lemma 1}
Let \(U\) be an open subset of an affine variety \(V\), and let \({\mathscr{F}}\) be a (coherent) sheaf on \(U\).
Then \({\mathscr{F}}\) is generated by its sections (over \(U\)).

\end{itenv}

\begin{proof}
Let \(x\in U\), and let \(f\) be a regular function on \(V\), zero on \(V\setminus U\) and non-zero at \(x\).
We have \(V_f\subset U\subset V\).
Since \(V_f\) is affine, we know {[}\protect\hyperlink{ref-12}{12}{]} that \({\mathscr{F}}_x\) is generated by its sections over \(V_f\), and it thus suffices to prove that these sections can be extended to \(U\), after multiplying by a suitable power of \(f\).
This follows from the following more general lemma:
\end{proof}

\leavevmode\hypertarget{lemma-2}{}%
\begin{itenv}{Lemma 2}
Let \(X\) be a variety, \(f\) a regular function on \(X\), \({\mathscr{F}}\) a sheaf on \(X\), and \(s\) a section of \({\mathscr{F}}\) over \(U=X_f\).
Then there exists an integer \(n>0\) such that \(f^ns\) can be extended to a section of \({\mathscr{F}}\) over \(X\).

\end{itenv}

\begin{proof}
We can cover \(X\) by finitely many affine opens \(X_i\).
By applying {[}\protect\hyperlink{ref-12}{12}, Lemma 1, p.~247{]}, or by arguing directly (as in \protect\hyperlink{proposition-1}{Proposition 1}), we see that there exists an integer \(n\) and sections \(s_i\) of \({\mathscr{F}}\) over the \(X_i\) that extend \(f^ns\) over \(X_i\cap U\).
Since the \(s_i-s_j\) are zero on \(X_i\cap X_j\cap U\), there exists an integer \(m\) such that \(f^m(s_i-s_j)=0\) on \(X_i\cap X_j\) ({[}\protect\hyperlink{ref-12}{12}{]}, or arguing directly), and \(m\) can be chosen independent of the pair \((i,j)\).
The \(f^ms_i\) then define a section \(s'\) of \({\mathscr{F}}\) over \(X\) that indeed extend \(f^{n+m}s\).
\end{proof}
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\leavevmode\hypertarget{proposition-2}{}%
\begin{itenv}{Proposition 2}
If \(U\) is an open subset of a variety \(V\), then every sheaf \({\mathscr{F}}\) over \(U\) can be extended to \(V\).

\end{itenv}

\begin{proof}
We show that, if \(U\neq V\), we can extend \({\mathscr{F}}\) to an open subset \(U'\supset U\), with \(U'\neq U\);
from that fact that every (strictly) increasing chain of open subsets stabilises, this will imply the proposition.
Let \(x\in V\setminus U\), and let \(W\) be an affine open that contains \(x\);
let \(U'=W\cup U\).
We are thus led to extending the sheaf \({\mathscr{F}}|W\cap U\) to \(W\), or, in other words, we can restrict to proving the proposition in the specific case where \(V\) is affine.
In this case, \protect\hyperlink{lemma-1}{Lemma 1} shows that \({\mathscr{F}}\) is generated by its sections, i.e.~it is of the form \({\mathscr{L}}/{\mathscr{R}}\), where \({\mathscr{L}}\) is the direct sum of the sheaves \({\mathscr{O}}_U\).
The sheaf \({\mathscr{L}}\) can be extended in the obvious way to \(V\), and, by \protect\hyperlink{proposition-1}{Proposition 1}, there exists a subsheaf \({\mathscr{R}}'\) of \({\mathscr{L}}\) on \(V\) whose restriction to \(U\) is \({\mathscr{R}}\).
The sheaf \({\mathscr{L}}/{\mathscr{R}}'\) is then the desired extension.
\end{proof}

\begin{rmenv}{Remark}
\protect\hyperlink{proposition-1}{Proposition 1} and \protect\hyperlink{proposition-2}{Proposition 2} correspond to the geometric fact that the closure of any algebraic subvariety of \(U\) is an algebraic subvariety of \(V\).
These propositions do not extend \emph{as is} to the \emph{analytic} case.
The most we can hope for (by results of Rothstein) is that they still hold true if we make certain restrictions on the dimensions of \(V\setminus U\) and the varieties appearing in the local primary decomposition of the sheaf \({\mathscr{F}}\).

\end{rmenv}

\hypertarget{section-2}{%
\section{Proper maps of quasi-projective varieties}\label{section-2}}

A variety \(X\) is said to be \emph{quasi-projective} if it is isomorphic to a locally closed subvariety of a projective space.
It is said to be \emph{projective} if it is isomorphic to a closed subvariety of a projective space.
\emph{From here on in, all the varieties considered are assumed to be quasi-projective.}

\leavevmode\hypertarget{lemma-3}{}%
\begin{itenv}{Lemma 3}
Let \(\mathbf{P}\) be a projective space, \(U\) an arbitrary variety, and \(G\) a closed subset of \(\mathbf{P}\times U\).
Then the projection of \(G\) in \(U\) is closed.

\end{itenv}

This is a translation into geometric language of the well-known fact that a projective space is a ``complete'' variety, in the sense of Weil.
We briefly recall the principal of the proof:

\begin{proof}
Since the question is local with respect to \(U\), we can assume that \(U\) is affine, and even that \(U\) is as affine open of the space \(k^n\).
We can also assume that \(G\) is irreducible.
So we choose projective coordinates \(x_i\) in \(\mathbf{P}\) such that \(G\) meets the set \(\mathbf{P}_0\times U\) of points where \(x_0\neq0\).
If \(A\) denotes the coordinate ring of \(U\), then the coordinate ring of the affine variety \(\mathbf{P}_0\times U\) is \(A[x_i/x_0]=B_0\);
the set \(G\) defines (and is defined by) a prime ideal \(\mathfrak{p}\) of \(B_0\).
If \(\mathfrak{p}'\) denotes \(A\cap\mathfrak{p}\), then the prime ideal \(\mathfrak{p}'\) corresponds to the closure of the projection \(G'\) of \(G\) in \(U\).
A point in this closure is thus a homomorphism \(f\colon A\to k\) (where \(k\) denotes the base field) that is zero on \(\mathfrak{p}'\);
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this point is the image of a point in \(G\) that lies in \(\mathbf{P}_0\times U\) if and only if \(f\) can be extended to a homomorphism \(g\colon B_0\to k\) that is zero on \(\mathfrak{p}\).
So let \(L\) be the field of functions of \(G\);
the field \(L\) contains \(A/\mathfrak{p}'\) as a subring.
By the theorem of extension of specialisations, there exists a valuation \(v\) of \(L\), with values in \(k\), that extends \(f\).
Let \(\Phi\) be the place associated to this valuation.
If \(v(x_i/x_0)\geqslant 0\) for all \(i\), then the place \(\Phi\) is finite over the \(x_i/x_0\), and thus induces, on \(B_0/\mathfrak{p}\subset L\), a homomorphism \(g\) that extends \(f\).
If \(v(x_i/x_0)<0\) for some \(i\), then we replace \(x_0\) by the \(x_i\) that gives the smallest possible value of \(v(x_i/x_0)\), and we are then back in the previous case.
\end{proof}

If \(f\colon X\to Y\) is a morphism, then we write \(G_f\) to denote its graph.
It is trivial that \(G_f\) is closed in \(X\times Y\).

\leavevmode\hypertarget{lemma-4}{}%
\begin{itenv}{Lemma 4}
Let \(f\colon X\to Y\) and \(g\colon Y\to Z\) be morphisms, where \(X\) and \(Y\) are subvarieties of projective spaces \(\mathbf{P}\) and \(\mathbf{P}'\) (respectively).
Suppose that \(G_f\) is closed in \(P\times Y\), and that \(G_g\) is closed in \(\mathbf{P}'\times Z\).
Then \(G_{gf}\) is closed in \(\mathbf{P}\times Z\).

\end{itenv}

\begin{proof}
We have \(G_f \subset \mathbf{P}\times Y = \mathbf{P}\times G_g \subset \mathbf{P}\times \mathbf{P}'\times Z\), and since each one is closed in the next, we see that \(G_f\) can be identified with a closed subset of \(\mathbf{P}\times \mathbf{P}'\times Z\).
Since \(G_{gf}\) is exactly the projection of \(G_f\) to the factor \(\mathbf{P}\times Z\), the lemma follows from \protect\hyperlink{lemma-3}{Lemma 3}.
\end{proof}

\leavevmode\hypertarget{lemma-5}{}%
\begin{itenv}{Lemma 5}
Let \(f\colon X\to Y\) be a morphism, and let \(X\subset \mathbf{P}\) and \(X\subset \mathbf{P}'\) be embeddings of \(X\) into projective spaces.
If \(G_f\) is closed in \(\mathbf{P}\times Y\), then it is also closed in \(\mathbf{P}'\times Y\).

\end{itenv}

\begin{proof}
We apply \protect\hyperlink{lemma-4}{Lemma 4} to the morphisms \(X\xrightarrow{i}X\xrightarrow{f}Y\), where \(i\) denotes the identity morphism.
Everything then reduces to showing that the graph \(G_i\) of \(i\) in \(\mathbf{P}\times X\) is closed, which follows from the fact that it is given by the intersection of \(\mathbf{P}\times X\) with the diagonal of \(\mathbf{P}\times \mathbf{P}\).
\end{proof}

\protect\hyperlink{lemma-5}{Lemma 5} justifies the following definition:

\begin{rmenv}{Definition}
A map \(f\colon X\to Y\) is said to be \emph{proper} if it is a morphism and if its graph \(G_f\) is closed in \(\mathbf{P}\times Y\), where \(\mathbf{P}\) is a projective space containing \(X\).

\end{rmenv}

We can give a definition of proper maps that is analogous to the definition of complete varieties:

\leavevmode\hypertarget{proposition-3}{}%
\begin{itenv}{Proposition 3}
For a morphism \(f\colon X\to Y\) to be proper, it is necessary and sufficient, for every variety \(Z\) and every closed subset \(T\) of \(X\times Z\), for the image of \(T\) in \(Y\times Z\) to be closed.

\end{itenv}

\begin{proof}
Let \(\mathbf{P}\) be a projective space inside which \(X\) can be embedded;
since \(G_f\) is closed in \(\mathbf{P}\times Y\), the product \(G_f\times Z\) is closed in \(\mathbf{P}\times Y\times Z\), and so \(T\) can be embedded as a closed subset into \(\mathbf{P}\times Y\times Z\).
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Applying \protect\hyperlink{lemma-3}{Lemma 3}, we see that the projection of \(T\) to \(Y\times Z\) (which is exactly \((f\times1)(T)\)) is closed.
Conversely, suppose that this property holds true, and apply it to \(Z=\mathbf{P}\), with the set \(T\) being the diagonal of \(X\times X\), embedded into \(X\times \mathbf{P}\).
The image of \(T\) in \(Y\times Z=Y\times \mathbf{P}\) is then exactly \(G_f\), which is indeed closed.
\end{proof}

\hypertarget{proposition-4}{}
\begin{itenv}{Proposition 4}

---

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  The identity morphism \(i\colon X\to X\) is proper.
\item
  The composition of two proper maps is proper.
\item
  The direct product of two proper maps is proper.
\item
  The image of a closed subset by a proper map is a closed subset.
\item
  An injection \(Y\to X\) is proper if and only if \(Y\) is closed in \(X\).
\item
  Every morphism from a projective variety is proper.
\item
  A projection \(Y\times Z\to Y\) is proper if and only if \(Z\) is projective (assuming the variety \(Y\) to be non-empty).
\end{enumerate}

\end{itenv}

\begin{proof}
We indicate, as an example, how to prove (vii) (since the other claims are even easier to prove).
If \(Z\) is projective, then we apply the criteria of \protect\hyperlink{proposition-3}{Proposition 3};
so let \(Z'\) be an arbitrary variety, and \(T\) a closed subset of \(Y\times Z\times Z'\);
we need to show that the projection of \(T\) in \(Y\times Z'\) is closed, which follows from \protect\hyperlink{lemma-3}{Lemma 3}.
Conversely, if \(Y\times Z\to Y\) is proper, then the composition \(Z\to Y\times Z\to Y\) is proper.
Since the image of this map is a point, we immediately deduce that \(Z\) is projective (by returning to the definition).
\end{proof}

(\emph{{[}Trans.{]}} The following corollary is labelled ``Corollary 5'' in the original, but this seems to be a numbering error).

\leavevmode\hypertarget{corollary-5}{}%
\begin{itenv}{Corollary}
For a morphism \(f\colon X\to Y\) to be proper, it is necessary and sufficient for it to factor as \(X\to \mathbf{P}\times Y\to Y\), where \(X\to \mathbf{P}\times Y\) is an injection into a closed subvariety, and \(\mathbf{P}\times Y\to Y\) is the projection onto the second factor (where \(\mathbf{P}\) denotes some projective space).

\end{itenv}

\begin{proof}
By the definition of a proper map, this condition is necessary (if we take \(\mathbf{P}\) to be a projective space into which we can embed \(X\)).
It is sufficient by (ii), (v), and (vii).
\end{proof}

\leavevmode\hypertarget{proposition-5}{}%
\begin{itenv}{Proposition 5}
Suppose that the base field \(k\) is the field of complex numbers.
For a morphism \(f\colon X\to Y\) to be proper (in the above sense), it is necessary and sufficient for it to be proper (in the topological sense) when we endow \(X\) and \(Y\) with the ``usual'' topology.

\end{itenv}

\begin{proof}
Suppose that \(f\) is proper in the algebraic sense, and let \(K\) be a compact subset of \(Y\) (for the usual topology).
Suppose that \(X\) is embedded into some projective space \(\mathbf{P}\).
Since \(\mathbf{P}\) is compact, we know that \(f^{-1}(K)=G_f\cap(\mathbf{P}\times K)\) is compact, which shows that \(f\) is proper in the topological sense.
Conversely, assume that this condition is satisfied, and aim to prove that the condition of \protect\hyperlink{proposition-3}{Proposition 3} is satisfied:
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the image of \(T\) in \(Y\times Z\) is closed for the usual topology, and thus also for the Zariski topology {[}\protect\hyperlink{ref-13}{13}, Proposition 7, p.~12{]}.
\end{proof}

\begin{rmenv}{Remark}
The notion of a proper map can be extended to ``abstract'' (that is, non-quasi-projective) varieties:
it suffices to take the criteria of \protect\hyperlink{proposition-3}{Proposition 3} as a definition {[}\protect\hyperlink{ref-4}{4}{]}.
\protect\hyperlink{proposition-4}{Proposition 4} and \protect\hyperlink{proposition-5}{Proposition 5} still hold true (if we replace ``projective'' with ``complete'' in item (vii) of \protect\hyperlink{proposition-4}{Proposition 4}).
The proofs are essentially the same:
instead of using embeddings into projective spaces, we use the fact that every variety is the image of a quasi-projective variety under a proper map (Chow's lemma {[}\protect\hyperlink{ref-4}{4},\protect\hyperlink{ref-14}{14}{]}.

\end{rmenv}

\hypertarget{section-3}{%
\section{Image of a sheaf under a proper map}\label{section-3}}

Let \(f\colon X\to Y\) be a morphism, with \(Y\) a variety, and let \({\mathscr{F}}\) be a (coherent algebraic, as always) sheaf on \(X\).
We define, by the classical procedure of Leray, sheaves \(\mathrm{R}^qf({\mathscr{F}})\) on \(Y\) by setting
\[
  \mathrm{R}^qf({\mathscr{F}})_U = \mathrm{H}^q(f^{-1}(U),{\mathscr{F}})
  \quad\text{for every open subset }U\text{ of }Y.
\]
For \(q=0\), we have the sheaf associated to the presheaf given by the \(\mathrm{H}^0(f^{-1}(U),{\mathscr{F}})\);
this is the \emph{direct image} of the sheaf \({\mathscr{F}}\).
We can show {[}\protect\hyperlink{ref-7}{8}{]} that the \(\mathrm{R}^qf\) are the \emph{derived functors} of the functor \({\mathscr{F}}\to\mathrm{R}^0f({\mathscr{F}})\) (where \({\mathscr{F}}\) runs over the category of all sheaves on \(X\), coherent or not).

\hypertarget{examples}{}
\begin{rmenv}{Examples}

---

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
  If \(X\to Y\) is an injection of a closed subvariety, then the sheaf \(\mathrm{R}^0f({\mathscr{F}})\) is exactly the sheaf \({\mathscr{F}}\) extended by \(0\) outside of \(X\), and the sheaves \(\mathrm{R}^qf({\mathscr{F}})\), for \(q\geqslant 1\), are zero (let \(U\) be an affine open; then \(f^{-1}(U)=U\cap X\) is affine, whence \(\mathrm{R}^qf({\mathscr{F}})=0\)).
\item
  Let \(Y\) be a point.
  A sheaf on a point is simply a group (or a \(k\)-vector space, if we are talking about algebraic sheaves).
  The \(\mathrm{R}^qf({\mathscr{F}})\) are then simply the cohomology groups \(\mathrm{H}^q(X,{\mathscr{F}})\);
  we note that these are not necessarily vector spaces \emph{of finite dimension} (or, in other words, not necessarily \emph{coherent} sheaves on \(Y\)).
\item
  Suppose that \(f\colon X\to Y\) defines a birational isomorphism between the varieties \(X\) and \(Y\) (assumed to be projective and non-singular).
  Take \({\mathscr{F}}\) to be the sheaf \({\mathscr{O}}_X\) of local rings of \(X\);
  we immediately see that \(\mathrm{R}^0f({\mathscr{O}}_X)={\mathscr{O}}_Y\).
  Is it true that \(\mathrm{R}^qf({\mathscr{O}}_X)=0\) for \(q\geqslant 1\)?
  We can at least verify this for ``blow-ups,'' and it would be interesting to know the answer in the general case.
\end{enumerate}

\end{rmenv}

We note that Leray's theory can be translated without any changes (see {[}\protect\hyperlink{ref-7}{8}{]});
there is a spectral sequence abutting \(\mathrm{H}^\bullet(X,{\mathscr{F}})\), and with \(E_2^{p,q}=\mathrm{H}^p(Y,\mathrm{R}^qf({\mathscr{F}}))\).
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If we apply, for example, this spectral sequence to \protect\hyperlink{examples}{Example 3} above, then we see that \(\mathrm{R}^qf({\mathscr{O}}_X)=0\) for \(q\geqslant 1\) implies that \(\mathrm{H}^\bullet(X,{\mathscr{O}}_X)=\mathrm{H}^\bullet(Y,{\mathscr{O}}_Y)\).

We have seen (\protect\hyperlink{examples}{Example 2}) that the \(\mathrm{R}^qf({\mathscr{F}})\) are not, in general, coherent sheaves on \(Y\).
However:

\leavevmode\hypertarget{theorem-1}{}%
\begin{itenv}{Theorem 1}
If \(f\colon X\to Y\) is proper, then the \(\mathrm{R}^qf({\mathscr{F}})\), for \(q>0\), are coherent sheaves on \(Y\), for any coherent sheaf \({\mathscr{F}}\) on \(X\).

\end{itenv}

Let \(\mathbf{P}\) be a projective space into which we can embed \(X\), and let \(G_f\) be the graph of \(f\) in \(\mathbf{P}\times Y\).
By definition of what it means to be a proper map, \(G_f\) is closed in \(\mathbf{P}\times Y\).
Let \({\mathscr{F}}'\) be the sheaf on \(\mathbf{P}\times Y\) obtained by extending \({\mathscr{F}}\) by \(0\) outside of \(G_f=X\) (see \protect\hyperlink{examples}{Example 2});
if \(\pi\) denotes the projection from \(\mathbf{P}\times Y\) to \(Y\), then we immediately see that \(\mathrm{R}^q\pi({\mathscr{F}}')=\mathrm{R}^qf({\mathscr{F}})\).
\emph{We can thus restrict to proving \protect\hyperlink{theorem-1}{Theorem 1} for \(\pi\colon \mathbf{P}\times Y\to Y\)}.
Furthermore, since the question is local with respect to \(Y\), we can assume that \(Y\) is an affine variety.

On \(\mathbf{P}\) we have a ``standard'' bundle \(L\) of dimension \(1\), whose sections are the linear forms (see {[}\protect\hyperlink{ref-12}{12}, Chap. III, §2{]});
this fibre defines a fibre on \(X=\mathbf{P}\times Y\) that we denote also by \(L\).
The sheaf associated to \(L^n\) on \(\mathbf{P}\times Y\) will be denoted \({\mathscr{O}}_X(n)\).
We then have:

\leavevmode\hypertarget{lemma-6}{}%
\begin{itenv}{Lemma 6}
Every coherent algebraic sheaf \({\mathscr{F}}\) on \(X=\mathbf{P}\times Y\), with \(Y\) affine, is isomorphic to a quotient of some direct sum of sheaves of the form \({\mathscr{O}}_X(n)\).

\end{itenv}

\begin{proof}
When \(Y\) consists of a single point, this is {[}\protect\hyperlink{ref-12}{12}, Théorème 1, p.~247{]}.
We are going to reduce to this particular case: let \(Y\subset\mathbf{P}'\) be an embedding of \(Y\) into a projective space, and let \(\overline{Y}\) be the closure of \(Y\).
By \protect\hyperlink{proposition-2}{Proposition 2}, the sheaf \({\mathscr{F}}\) can be extended to a sheaf \(\overline{{\mathscr{F}}}\) on \(\mathbf{P}\times\overline{Y}\).
The embedding of \(\overline{Y}\) into \(\mathbf{P}'\) defines, on \(\overline{Y}\) (and thus also on \(\mathbf{P}\times\overline{Y}\)), a bundle \(L'\) of dimension \(1\).
The product bundle \(LL'\) corresponds to the well known embedding of \(\mathbf{P}\times\mathbf{P}'\) into a projective space \(P''\) (the ``Segre'' embedding, given by the products \(x_i y_j\) of the homogeneous coordinates of the two projective spaces).
Then applying the result from {[}\protect\hyperlink{ref-12}{12}{]} cited above to \(\overline{{\mathscr{F}}}\) and \(\mathbf{P}''\), we see that \(\overline{{\mathscr{F}}}\) is a quotient of a direct sum of sheaves of the form \({\mathscr{O}}_{\mathbf{P}\times\overline{Y}}(L^nL'^n)\);
by restricting to \(\mathbf{P}\times Y\), and taking into account the fact that \(\mathbf{P}'\) is \emph{trivial} on \(Y\), we indeed obtain the desired result.
\end{proof}

{[}Of course, we could also give a direct proof, copied from the one in {[}\protect\hyperlink{ref-12}{12}{]}.{]}

\leavevmode\hypertarget{lemma-7}{}%
\begin{itenv}{Lemma 7}
The \(\mathrm{R}^q\pi({\mathscr{O}}_X(n))\) are coherent sheaves on \(Y\).

\end{itenv}

\begin{proof}
We explicitly calculate the sheaves \(\mathrm{R}^q\pi({\mathscr{O}}_X(n))\).
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If \(U\) is an affine open subset of \(Y\), then
\[
  \mathrm{R}^q\pi({\mathscr{O}}_X(n))_U = \mathrm{H}^q(\mathbf{P}\times U,{\mathscr{O}}_X(n)).
\]

If \(\mathfrak{U}=\{U_i\}\) is an affine cover of \(\mathbf{P}\), then the \(U_i\times U\) form an affine cover \(\mathfrak{U}'\) of \(\mathbf{P}\times U\);
taking into account the fact that \({\mathscr{O}}_X(n)\) ``comes from'' \(\mathbf{P}\), we see that the complex \(C(\mathfrak{U}',{\mathscr{O}}_X(n))\) is isomorphic to the tensor product \(C(\mathfrak{U}',{\mathscr{O}}_{\mathbf{P}}(n))\otimes_k\mathrm{H}^0(U,{\mathscr{O}}_U)\).
The universal coefficient formula then shows that
\[
  \mathrm{H}^q(\mathbf{P}\times U,{\mathscr{O}}_X(n)) = \mathrm{H}^q(\mathbf{P},{\mathscr{O}}_{\mathbf{P}}(n))\otimes_k\mathrm{H}^0(U,{\mathscr{O}}_U).
\]

This latter equality implies that \(\mathrm{R}^q\pi({\mathscr{O}}_X(n))\) is isomorphic to the sheaf \({\mathscr{O}}_Y\otimes_k V^q\), where \(V^q=\mathrm{H}^q(\mathbf{P},{\mathscr{O}}_P(n))\).
Since \(V^q\) is a vector space of finite dimension over \(k\), it is indeed a coherent sheaf on \(Y\), which proves the lemma.
\end{proof}

{[}The above proof applies more generally to any projection \(\pi\colon Y\times Z\to Y\) with \(Z\) projective, whenever the sheaf \({\mathscr{F}}\) is of the form \({\mathscr{G}}\otimes{\mathscr{H}}\), with \({\mathscr{G}}\) coherent on \(Y\) and \({\mathscr{H}}\) coherent on \(Z\).
We then find that \(\mathrm{R}^q\pi({\mathscr{F}})={\mathscr{G}}\otimes\mathrm{H}^q(Z,{\mathscr{H}})\).
We could consider, even more generally, the case of a product map \(Y\times Z\to Y'\times Z'\) \ldots{]}

\begin{proof}
\emph{(of \protect\hyperlink{theorem-1}{Theorem 1}).}
We can now prove \protect\hyperlink{theorem-1}{Theorem 1} for an arbitrary sheaf \({\mathscr{F}}\) on \(X=\mathbf{P}\times Y\).
We argue by decreasing induction on the integer \(q\).
If \(q>\dim X\), then it is clear that \(\mathrm{R}^q\pi({\mathscr{F}})=0\).
So suppose that the theorem is proven for \(q+1\).
By \protect\hyperlink{lemma-6}{Lemma 6}, there exists an exact sequence \(0\to{\mathscr{R}}\to{\mathscr{L}}\to{\mathscr{F}}\to0\), where \({\mathscr{L}}\) is isomorphic to a direct sum of sheaves of the form \({\mathscr{O}}_X(n)\).
The exact sequence of cohomology (or the exact sequence of derived functors) shows that we have an exact sequence
\[
  \mathrm{R}^q\pi({\mathscr{R}}) \to
  \mathrm{R}^q\pi({\mathscr{L}}) \to
  \mathrm{R}^q\pi({\mathscr{F}}) \to
  \mathrm{R}^{q+1}\pi({\mathscr{R}}) \to
  \mathrm{R}^{q+1}\pi({\mathscr{L}}).
\]

Given the induction hypothesis and \protect\hyperlink{lemma-7}{Lemma 7}, the sheaves \(\mathrm{R}^q\pi({\mathscr{L}})\), \(\mathrm{R}^{q+1}\pi({\mathscr{R}})\), and \(\mathrm{R}^{q+1}\pi({\mathscr{L}})\) are coherent.
It follows that \(\mathrm{R}^q\pi({\mathscr{F}})\) admits a subsheaf of finite type, with the quotient being coherent.
An immediate argument then shows that \(\mathrm{R}^q\pi({\mathscr{F}})\) is of finite type.
This result, having been proven for any coherent sheaf, also holds for \({\mathscr{R}}\).
The image of \(\mathrm{R}^q\pi({\mathscr{R}})\) in \(\mathrm{R}^q\pi({\mathscr{L}})\) is then a coherent sheaf ({[}\protect\hyperlink{ref-12}{12}{]}), and \(\mathrm{R}^q\pi({\mathscr{F}})\) is an extension of two coherent sheaves, and is thus coherent (\emph{id.}).
\end{proof}

\begin{rmenv}{Remarks}

---

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
  \protect\hyperlink{theorem-1}{Theorem 1} holds true even if we don't suppose that \(X\) is quasi-projective (we can restrict to this case by using Chow's lemma and the ``devissage'' of coherent sheaves, see {[}\protect\hyperlink{ref-6}{7}{]}).
\item
  Grauert and Remmert have proven the analytic analogue of \protect\hyperlink{theorem-1}{Theorem 1} for the projection \(\pi\colon\mathbf{P}\times Y\to Y\).
  Needless to say that the proof is more difficult!
\end{enumerate}

\end{rmenv}

\hypertarget{section-4}{%
\section{\texorpdfstring{The group \(K(X)\) of classes of sheaves on a variety \(X\)}{The group K(X) of classes of sheaves on a variety X}}\label{section-4}}

Let \(X\) be an algebraic variety, and let \(F(X)\) be the free abelian group generated by the set \({\mathcal{C}}\) of (coherent algebraic, as always) sheaves on \(X\).
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An element of \(F(X)\) is thus a formal linear combination
\[
  x = \sum n_i{\mathscr{F}}_i
  \quad
  \text{where }n_i\in\mathbb{Z}\text{ and }{\mathscr{F}}_i\in{\mathcal{C}}.
\]
We agree, of course, to identify isomorphic sheaves {[}if not, then \(F(X)\) would not even be a ``set!''{]}.

Let
\[
  (E)\quad
  0\to{\mathscr{F}}'\to{\mathscr{F}}\to{\mathscr{F''}}\to0
\]
be an exact sequence of sheaves.
To this exact sequence we associate the element \(Q(E)={\mathscr{F}}-{\mathscr{F}}'-{\mathscr{F}}''\) of \(F(X)\).

\begin{rmenv}{Definition}
We define the \emph{group of classes of sheaves on \(X\)} to be the quotient of \(F(X)\) by the subgroup generated by the \(Q(E)\), where \(E\) runs over all short exact sequences.

\end{rmenv}

This group will be denoted by \(K(X)\) in what follows.
If \({\mathscr{F}}\) is a sheaf on \(X\), then its canonical image in \(K(X)\) will be denoted \(\gamma_X({\mathscr{F}})\), or \(\gamma({\mathscr{F}})\), or simply \({\mathscr{F}}\), depending on the risk of confusion.
The \(\gamma({\mathscr{F}})\) generate \(K(X)\), and the map \({\mathscr{F}}\to\gamma({\mathscr{F}})\) is ``additive'';
in other words, if we have the exact sequence (E), then \(\gamma({\mathscr{F}})=\gamma({\mathscr{F}}')+\gamma({\mathscr{F}}'')\).
Conversely, by the very definition of \(K(X)\), every additive map from the set of sheaves into an abelian group \(G\) can be written in the form \({\mathscr{F}}\mapsto\pi(\gamma({\mathscr{F}}))\), where \(\pi\colon K(X)\to G\) is a uniquely determined homomorphism.

We can apply the above to construction to many other situations, apart from that of sheaves.
We will need, in particular, to apply it to the case of \emph{vector bundles} on \(X\).
So let \({\mathcal{V}}\) be the set of vector bundles;
we define \(F_1(X)\) to be the free group generated by \({\mathcal{V}}\), and \(K_1(X)\) to be the quotient of \(F_1(X)\) by the subgroup generated by the \(Q_1(E)={\mathscr{F}}-{\mathscr{F}}'-{\mathscr{F}}''\), where (E) now denotes a short exact sequence of vector bundles.
If \(X\) is connected (which we will assume), then we know that we can identify vector bundles with locally free sheaves on \(X\);
we thus have \({\mathcal{V}}\subset{\mathcal{C}}\), and the injection \({\mathcal{V}}\to{\mathcal{C}}\) defines a canonical homomorphism \(\varepsilon\colon K_1(X)\to K(X)\).

\leavevmode\hypertarget{theorem-2}{}%
\begin{itenv}{Theorem 2}
Suppose that \(X\) is an irreducible non-singular quasi-projective variety.
Then the homomorphism \(\varepsilon\colon K_1(X)\to K(X)\) defined above is a bijection.

\end{itenv}

We will need a certain number of auxiliary results on the relation between \({\mathcal{V}}\) and \({\mathcal{C}}\):

\leavevmode\hypertarget{lemma-8}{}%
\begin{itenv}{Lemma 8}
Let \(0\to{\mathscr{Z}}\to{\mathscr{L}}'\to{\mathscr{L}}\to0\) be an exact sequence such that \({\mathscr{L}}',{\mathscr{L}}\in{\mathcal{V}}\).
Then \({\mathscr{Z}}\in{\mathcal{V}}\).

\end{itenv}
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\begin{proof}
If \(P\in X\), then the local module \({\mathscr{L}}_P\) is free over \({\mathscr{O}}_P\), and so a direct factor of \({\mathscr{L}}'_P\), which proves that \({\mathscr{Z}}_P\) is a projective \({\mathscr{O}}_P\)-module, and thus free, since \({\mathscr{O}}_P\) is a local ring.
But a coherent algebraic sheaf such that all its stalks are free is itself locally free (see {[}\protect\hyperlink{ref-12}{12}, lines 10--11 from the bottom{]}).
\end{proof}

\leavevmode\hypertarget{lemma-9}{}%
\begin{itenv}{Lemma 9}
Let \(n=\dim X\), and let \(0\to{\mathscr{Z}}\to{\mathscr{L}}_p\to\ldots\to{\mathscr{L}}_0\to{\mathscr{F}}\to0\) be an exact sequence, with \({\mathscr{L}}_i\in{\mathcal{V}}\).
If \(p\geqslant n-1\), then \({\mathscr{Z}}\in{\mathcal{V}}\).

\end{itenv}

\begin{proof}
This is again a local question.
So let \(P\in X\);
the fact that the local ring \({\mathscr{O}}_P\) is a \emph{regular} local ring of dimension \(n\) means that we can apply the syzygy theorem, and show that \({\mathscr{Z}}_P\) is \({\mathscr{O}}_P\)-free, whence the desired result (noting that the hypothesis that \(X\) is non-singular is used in an essential way).
\end{proof}

\leavevmode\hypertarget{lemma-10}{}%
\begin{itenv}{Lemma 10}
Every \({\mathscr{F}}\in{\mathcal{C}}\) is a quotient of some \({\mathscr{L}}\in{\mathcal{V}}\).

\end{itenv}

\begin{proof}
Let \(X\subset \mathbf{P}\) be a projective embedding of \(X\), and let \(\overline{X}\) be its closure in \(P\).
By \protect\hyperlink{proposition-2}{Proposition 2}, \({\mathscr{F}}\) can be extended to a sheaf \({\mathscr{F}}'\) on \(\overline{X}\).
By {[}\protect\hyperlink{ref-12}{12}, Théorème 1, p.~247{]} (and see also \protect\hyperlink{lemma-6}{Lemma 6}), the sheaf \({\mathscr{F}}'\) is the quotient of a direct sum of sheaves of the form \({\mathscr{O}}_{\overline{X}}(n)\), and thus a locally free sheaf on \(\overline{X}\).
By restriction to \(X\), we obtain the desired result.
\end{proof}

\begin{itenv}{Corollary}
For every \({\mathscr{F}}\in{\mathcal{C}}\), there exists an exact sequence
\[
  0\to{\mathscr{L}}_n\to{\mathscr{L}}_{n-1}\to\ldots\to{\mathscr{L}}_0\to{\mathscr{F}}\to0
\]
with \({\mathscr{L}}_i\in{\mathcal{V}}\).

\end{itenv}

\begin{proof}
This is a consequence of \protect\hyperlink{lemma-9}{Lemma 9} and \protect\hyperlink{lemma-10}{Lemma 10}.
We can state this corollary in a different way by saying that there exists a ``complex'' \({\mathscr{L}}\) in \({\mathcal{V}}\) that is acyclic in degrees \(\geqslant 1\), and such that \(\mathrm{H}_0({\mathscr{L}})={\mathscr{F}}\).
\end{proof}

\begin{proof}
\emph{(of \protect\hyperlink{theorem-2}{Theorem 2}).}
We now continue to the proof of \protect\hyperlink{theorem-2}{Theorem 2}.
If \({\mathscr{F}}\in{\mathcal{C}}\), we take an acyclic complex \({\mathscr{L}}\) in \({\mathcal{V}}\) such that \(\mathrm{H}_0({\mathscr{L}})={\mathscr{F}}\).
We set
\[
  \gamma_1({\mathscr{L}}) = \sum(-1)^p\gamma_1({\mathscr{L}}_p);
\]
this is an element of \(K_1(X)\);
we define \(\gamma({\mathscr{L}})\in K(X)\) analogously.
Suppose that the following two lemmas have been proven:

\leavevmode\hypertarget{lemma-11}{}%
\begin{itenv}{Lemma 11}
\(\gamma_1({\mathscr{L}})\) depends only on \({\mathscr{F}}\).

\end{itenv}

\leavevmode\hypertarget{lemma-12}{}%
\begin{itenv}{Lemma 12}
\(\gamma_1({\mathscr{L}})\) is an additive function of \({\mathscr{F}}\).

\end{itenv}

Then, setting \(\eta({\mathscr{F}})=\gamma_1({\mathscr{L}})\), we obtain a homomorphism \(\eta\colon K(X)\to K_1(X)\).
By the definition of \({\mathscr{L}}\), we have that
\[
  \eta(\gamma_1({\mathscr{L}})) = \gamma({\mathscr{L}}) = \gamma({\mathscr{F}}),
\]
whence \(\varepsilon\circ\eta=1\).
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The proof that \(\eta\circ\varepsilon=1\) is even more trivial.
So everything relies only on proving \protect\hyperlink{lemma-11}{Lemma 11} and \protect\hyperlink{lemma-12}{Lemma 12}.
\end{proof}

\begin{proof}
\emph{(of \protect\hyperlink{lemma-11}{Lemma 11}).}
We first start by stating a corollary of \protect\hyperlink{lemma-10}{Lemma 10}:

\leavevmode\hypertarget{lemma-13}{}%
\begin{itenv}{Lemma 13}
Let \({\mathscr{A}},{\mathscr{B}},{\mathscr{C}}\in{\mathcal{C}}\), and let \(u\colon{\mathscr{A}}\to{\mathscr{B}}\) and \(v\colon{\mathscr{C}}\to{\mathscr{B}}\), with \(u\) and \(v\) surjective.
Then there exist \({\mathscr{L}}\in{\mathcal{V}}\), and \(u'\colon{\mathscr{L}}\to{\mathscr{C}}\) and \(v'\colon{\mathscr{L}}\to{\mathscr{A}}\), such that \(v\circ u'=u\circ v'\), with \(u'\) and \(v'\) surjective:
\[
  \begin{CD}
    {\mathscr{L}} @>v'>> {\mathscr{A}}
  \\@Vu'VV @VVuV
  \\{\mathscr{C}} @>>vw> {\mathscr{B}}
  \end{CD}
\]

\end{itenv}

\begin{proof}
Let \(({\mathscr{A}},{\mathscr{C}})\) be the subsheaf of \({\mathscr{A}}\times{\mathscr{C}}\) given by the elements having the same image in \({\mathscr{B}}\).
Since \(u\) and \(v\) are surjective, the canonical projections \(({\mathscr{A}},{\mathscr{C}})\to{\mathscr{A}}\) and \(({\mathscr{A}},{\mathscr{C}})\to{\mathscr{C}}\) are surjective.
By applying \protect\hyperlink{lemma-10}{Lemma 10} to \(({\mathscr{A}},{\mathscr{C}})\), we obtain the desired result.
\end{proof}

Now let \({\mathscr{L}}\) and \({\mathscr{L}}'\) be two resolutions of \({\mathscr{F}}\), which we intend to compare.
We will show that there exists a third resolution \({\mathscr{L}}''\) of \({\mathscr{F}}\), along with surjective homomorphisms \({\mathscr{L}}''\to{\mathscr{L}}\) and \({\mathscr{L}}''\to{\mathscr{L}}'\) that induce the identity on \(\mathrm{H}^0\);
everything will then rely only on proving that \(\gamma_1({\mathscr{L}}'')=\gamma_1({\mathscr{L}})\), for example.
But, if we denote by \({\mathscr{L}}_1\) the kernel of \({\mathscr{L}}''\to{\mathscr{L}}\), then \({\mathscr{L}}_1\in{\mathcal{V}}\), by \protect\hyperlink{lemma-8}{Lemma 8}, and the exact sequence of homology shows that \(\mathrm{H}^q({\mathscr{L}}_1)=0\) for all \(q\geqslant 0\).
We thus immediately deduce that \(\gamma_1({\mathscr{L}}_1)=0\), and, since \(\gamma_1({\mathscr{L}}'')=\gamma_1({\mathscr{L}})+\gamma_1({\mathscr{L}}_1)\), this gives the desired result.
Everything thus relies only on proving the existence of the resolution \({\mathscr{L}}''\), which we do dimension by dimension (where \protect\hyperlink{lemma-9}{Lemma 9} tells us that the procedure will eventually stop), using the following lemma:

\leavevmode\hypertarget{lemma-14}{}%
\begin{itenv}{Lemma 14}
Let
\[
  0\to{\mathscr{Z}}\to{\mathscr{L}}\to{\mathscr{B}}\to0
  \quad\text{and}\quad
  0\to{\mathscr{Z}}'\to{\mathscr{L}}'\to{\mathscr{B}}'\to0
\]
be exact sequences (with \({\mathscr{L}},{\mathscr{L}}'\in{\mathcal{V}}\)), and let \({\mathscr{B}}''\to{\mathscr{B}}\) and \({\mathscr{B}}''\to{\mathscr{B}}'\) be surjective maps.
We can then extend \({\mathscr{B}}''\) to an exact sequence
\[
  0\to{\mathscr{Z}}''\to{\mathscr{L}}''\to{\mathscr{B}}''\to0
  \quad
  \text{with }{\mathscr{L}}''\in{\mathcal{V}}
\]
and find surjective homomorphisms
\[
  {\mathscr{Z}}''\to{\mathscr{Z}},
  \quad
  {\mathscr{Z}}''\to{\mathscr{Z}}',
  \quad
  {\mathscr{L}}''\to{\mathscr{L}},
  \quad
  {\mathscr{L}}''\to{\mathscr{L}}'
\]
such that the following diagram commutes:
\[
  \begin{CD}
    0 @>>> {\mathscr{Z}} @>>> {\mathscr{L}} @>>> {\mathscr{B}} @>>> 0
  \\@. @AAA @AAA @AAA @.
  \\0 @>>> {\mathscr{Z}}'' @>>> {\mathscr{L}}'' @>>> {\mathscr{B}}'' @>>> 0
  \\@. @VVV @VVV @VVV @.
  \\0 @>>> {\mathscr{Z}}' @>>> {\mathscr{L}}' @>>> {\mathscr{B}}' @>>> 0
  \end{CD}
\]

\end{itenv}
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\begin{proof}
By applying \protect\hyperlink{lemma-13}{Lemma 13} to \({\mathscr{L}}\to{\mathscr{B}}\) and \({\mathscr{B}}''\to{\mathscr{B}}\), we see that \({\mathscr{L}}_1\to{\mathscr{L}}\) and \({\mathscr{L}}_1\to{\mathscr{B}}''\) are surjective.
By applying the same lemma to \({\mathscr{L}}_1\to{\mathscr{B}}''\to{\mathscr{B}}'\) and \({\mathscr{L}}'\to{\mathscr{B}}'\), we see that \({\mathscr{L}}_2\to{\mathscr{L}}_1\) and \({\mathscr{L}}_2\to{\mathscr{L}}'\) are surjective, making the diagram commute.

Now let \({\mathscr{L}}_3\to{\mathscr{Z}}\) and \({\mathscr{L}}'_3\to{\mathscr{Z}}'\) be surjective, and set
\[
  {\mathscr{L}}'' = {\mathscr{L}}_2\oplus{\mathscr{L}}_3\oplus{\mathscr{L}}'_3.
\]
We define \({\mathscr{L}}''\to{\mathscr{B}}''\) as being \(0\) on \({\mathscr{L}}_3\) and \({\mathscr{L}}'_3\), and equal to \({\mathscr{L}}_2\to{\mathscr{L}}_1\to{\mathscr{B}}\) on \({\mathscr{L}}_2\);
we define \({\mathscr{L}}''\to{\mathscr{L}}\) as being equal to \({\mathscr{L}}_2\to{\mathscr{L}}_1\to{\mathscr{L}}\) on \({\mathscr{L}}_2\), to \(0\) on \({\mathscr{L}}'_3\), and to \({\mathscr{L}}_2\to{\mathscr{Z}}\to{\mathscr{L}}\) on \({\mathscr{L}}_3\);
we define \({\mathscr{L}}''\to{\mathscr{L}}'\) analogously.
We then define \({\mathscr{Z}}''\) as the kernel of \({\mathscr{L}}''\to{\mathscr{B}}''\), and \({\mathscr{Z}}''\to{\mathscr{Z}}\) and \({\mathscr{Z}}''\to{\mathscr{Z}}'\) as restrictions of the maps from \({\mathscr{L}}''\).
The commutativity of the diagram is then immediate;
furthermore, \({\mathscr{Z}}''\) evidently contains \({\mathscr{L}}_3\), which maps to \({\mathscr{Z}}\);
\emph{a fortiori}, \({\mathscr{Z}}''\to{\mathscr{Z}}\) is surjective, and so too is \({\mathscr{Z}}''\to{\mathscr{Z}}'\), which finished the proof of \protect\hyperlink{lemma-13}{Lemma 13}.
\end{proof}

This finishes the proof of \protect\hyperlink{lemma-11}{Lemma 11}.
\end{proof}

\begin{proof}
\emph{(of \protect\hyperlink{lemma-12}{Lemma 12}).}
Let \(0\to{\mathscr{F}}'\to{\mathscr{F}}\to{\mathscr{F}}''\to0\) be an exact sequence.
We are going to show that there exists resolutions \({\mathscr{L}}'\), \({\mathscr{L}}\), and \({\mathscr{L}}''\) of these sheaves, such that we also have an exact sequence \(0\to{\mathscr{L}}'\to{\mathscr{L}}\to{\mathscr{L}}''\to0\).
The additivity of \(\gamma_1({\mathscr{L}})\) will then be evident.
To construct these resolutions, we proceed, again, dimension by dimension.
Everything relies on proving that, given an exact sequence as above, we can extend it to a commutative diagram
\[
  \begin{CD}
    0 @>>> {\mathscr{F}}' @>>> {\mathscr{F}} @>>> {\mathscr{F}}'' @>>> 0
  \\@. @AAA @AAA @AAA @.
  \\0 @>>> {\mathscr{L}}' @>>> {\mathscr{L}} @>>> {\mathscr{L}}'' @>>> 0
  \end{CD}
\]
with \({\mathscr{L}}',{\mathscr{L}},{\mathscr{L}}''\in{\mathcal{V}}\), and where the \({\mathscr{L}}\to{\mathscr{F}}\) are surjective.

For this, we first take some surjective \({\mathscr{L}}''\to{\mathscr{F}}''\), and apply \protect\hyperlink{lemma-13}{Lemma 13} to \({\mathscr{F}}\to{\mathscr{F}}''\) and \({\mathscr{L}}\to{\mathscr{F}}''\).
From this we obtain surjective \({\mathscr{L}}_1\to{\mathscr{F}}\) and \({\mathscr{L}}_1\to{\mathscr{L}}''\) that make the diagram commute.
Next, we take some surjective \({\mathscr{L}}_2\to{\mathscr{F}}'\), and set \({\mathscr{L}}={\mathscr{L}}_2\oplus{\mathscr{L}}_1\).
We define \({\mathscr{L}}\to{\mathscr{F}}\) and \({\mathscr{L}}\to{\mathscr{L}}''\) in the evident way, and we take \({\mathscr{L}}'\) to be the kernel of \({\mathscr{L}}\to{\mathscr{L}}''\).
Then \({\mathscr{L}}_2\subset{\mathscr{L}}'\), which shows that \({\mathscr{L}}'\) maps to \({\mathscr{F}}'\), and all the desired conditions are satisfied.
\end{proof}

This completes the proof of \protect\hyperlink{theorem-2}{Theorem 2}.

\begin{rmenv}{Remark}
The hypothesis that \(X\) is quasi-projective was used only in \protect\hyperlink{lemma-10}{Lemma 10}, to prove that every coherent sheaf on \(X\) is the quotient of some locally free sheaf.
We do not know if this lemma can be extended to ``abstract'' algebraic varieties.

\end{rmenv}

\hypertarget{section-5}{%
\section{\texorpdfstring{Operations on \(K(X)\)}{Operations on K(X)}}\label{section-5}}

\hypertarget{section-5.a}{%
\subsection{\texorpdfstring{Ring structure on \(K(X)\)}{Ring structure on K(X)}}\label{section-5.a}}

Let \({\mathscr{F}}\) and \({\mathscr{G}}\) be (coherent) sheaves on \(X\).
The \(\operatorname{Tor}_p({\mathscr{F}},{\mathscr{G}})\) (\(p=0,1,\ldots\)) are coherent sheaves on \(X\) (of course, the \(\operatorname{Tor}\) are taken over the structure sheaf of \(X\)).
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Since \(X\) is non-singular, \(\operatorname{Tor}_p({\mathscr{F}},{\mathscr{G}})=0\) when \(p>\dim X\), which means that the alternating sum \(\chi({\mathscr{F}},{\mathscr{G}})=\sum(-1)^p\operatorname{Tor}_p({\mathscr{F}},{\mathscr{G}})\) is a well-defined element of \(K(X)\).
The exact sequence of \(\operatorname{Tor}\) shows that \(\chi({\mathscr{F}},{\mathscr{G}})\) is bilinear in \({\mathscr{F}}\) and \({\mathscr{G}}\), and so extends to a bilinear map from \(K(X)\times K(X)\) to \(K(X)\), that we will denote by \((x,x')\mapsto x\cdot x'\).

\leavevmode\hypertarget{proposition-6}{}%
\begin{itenv}{Proposition 6}
The product defined above is commutative and associative.

\end{itenv}

\begin{proof}
Commutativity is trivial, since each \(\operatorname{Tor}\) is commutative.
The associativity follows from the ``associativity formula'' of the \(\operatorname{Tor}\) (see {[}\protect\hyperlink{ref-3}{3}{]}):
we define the ``simultaneous \(\operatorname{Tor}\)'' \(\operatorname{Tor}({\mathscr{F}},{\mathscr{G}},{\mathscr{H}})\), and two spectral sequences abutting to \(\operatorname{Tor}({\mathscr{F}},{\mathscr{G}},{\mathscr{H}})\), and with \(E_2\) pages \(\operatorname{Tor}({\mathscr{F}},\operatorname{Tor}({\mathscr{G}},{\mathscr{H}}))\) and \(\operatorname{Tor}(\operatorname{Tor}({\mathscr{F}},{\mathscr{G}}),{\mathscr{H}})\) (respectively);
we use the fact that the Euler-Poincaré characteristics are invariant in a spectral sequence.

We can give a simpler proof by using \protect\hyperlink{theorem-2}{Theorem 2}:
note that, if \({\mathscr{F}}\) and \({\mathscr{G}}\) are locally free, then
\[
  \chi({\mathscr{F}},{\mathscr{G}}) = \gamma({\mathscr{F}}\otimes{\mathscr{G}})
\]
which means that associativity is evident when \({\mathscr{F}}\), \({\mathscr{G}}\), and \({\mathscr{H}}\) are locally free.
Since \(K(X)\) is generated by the \(\gamma({\mathscr{F}})\), with \({\mathscr{F}}\) locally free, this proves associativity.
\end{proof}

{[}The above product thus corresponds to the tensor product of vector bundles.{]}

\hypertarget{section-5.b}{%
\subsection{The exterior power operation}\label{section-5.b}}

Let \(E\) be a vector bundle.
The exterior powers \(\bigwedge\nolimits^p E\) are vector bundles, and their class in \(K(X)=K_1(X)\) will be denoted by \(\lambda^p(E)\).
If we have an exact sequence
\[
  0\to E'\to E\to E''\to0
\]
then we define, by a well known procedure (Koszul's thesis!) a filtration of \(\bigwedge(E)\) with quotients \(\bigwedge(E')\otimes\bigwedge(E'')\).
From this we obtain the following formula:
\[
  \lambda^p(E) = \sum_{r+s=p} \lambda^r(E')\cdot\lambda^s(E'').
\]

This formula can be understood as an additivity formula by introducing the formal series (in \(t\))
\[
  \lambda_t(E) = \sum \lambda^p(E)t^p;
\]
this is an element of \(K(X)[[t]]\), starting with \(1\).
\oldpage{110}
The above formula implies that
\[
  \lambda_t(E) = \lambda_t(E')\lambda_t(E'').
\]

The map \(E\mapsto\lambda_t(E)\) can thus be extended to a homomorphism \(x\mapsto\lambda_t\) from \(K(X)=K_1(X)\) to the multiplicative group \(U\) of formal series
\[
  1+a_1t+\ldots+a_nt^n+\ldots
  \quad
  \text{with }a_i\in K(X).
\]
By definition, \(\lambda^p(x)\) is the coefficient of \(t^p\) in \(\lambda_t(x)\).

In characteristic \(0\), Grothendieck has shown that, for every sheaf \({\mathscr{F}}\), \(\lambda^p({\mathscr{F}})\) is equal to the alternating sum of the ``alternating \(\operatorname{Tor}\)'' of \(p\) copies of \({\mathscr{F}}\).
In characteristic \(\neq0\), we do not know any analogous formula.

\hypertarget{section-5.c}{%
\subsection{\texorpdfstring{The operation \(f^!\)}{The operation f\^{}!}}\label{section-5.c}}

Let \(f\colon Y\to X\) be a morphism.
If \(E\) is a vector bundle over \(X\), then the bundle \(f^{-1}(E)\) is a vector bundle over \(Y\).
This operation is additive, and thus extends to a homomorphism \(f^!\colon K(X)\to K(Y)\).
By arguing on the fibres, we immediately see that \emph{\(f^!\) is a ring homomorphism, compatible with the operation \(\lambda^p\), and such that \((fg)^!=g^!f^!\)}.

If \({\mathscr{F}}\) is a coherent sheaf on \(X\), then we can directly define \(f^!({\mathscr{F}})\) as the alternating sum of the \(\operatorname{Tor}_p^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{F}})\);
indeed, this expression is additive in \({\mathscr{F}}\) (by the exact sequence of \(\operatorname{Tor}\)), and reduces to \({\mathscr{O}}_Y\otimes{\mathscr{F}}\) when \({\mathscr{F}}\) is locally free.

\hypertarget{section-5.d}{%
\subsection{\texorpdfstring{The operation \(f_!\)}{The operation f\_!}}\label{section-5.d}}

Again, let \(f\colon Y\to X\) be a morphism, that we now assume to be \emph{proper}.
If \({\mathscr{F}}\) is coherent on \(Y\), then we have seen (\protect\hyperlink{theorem-1}{Theorem 1}, \protect\hyperlink{section-3}{§3}) that the \(\mathrm{R}^qf({\mathscr{F}})\) (\(q=0,1,\ldots\)) are coherent sheaves on \(X\), and their alternating sum is a well-defined element of \(K(X)\).
Since this alternating sum is additive in \({\mathscr{F}}\) (by the exact sequence of cohomology), we thus obtain an additive homomorphism \(f_!\colon K(Y)\to K(X)\).
In the particular case where \(Y\) is a closed subvariety of \(X\), and \(f\) is the canonical injection \(Y\to X\), this operation reduces to extending by \(0\) outside of \(Y\).

The map \(f_!\) is not compatible with multiplication.
We do, however, have the following formula:
\[
  f_!(y\cdot f^!(x)) = f_!(y)\cdot x
  \quad
  \text{for }x\in K(X)\text{ and }y\in K(Y).
\]

It suffices to prove this formula when \(y=\gamma_Y({\mathscr{F}})\) and \(x=\gamma_X({\mathscr{L}})\), where \({\mathscr{F}}\) (resp. \({\mathscr{L}}\)) is a coherent sheaf on \(Y\) (resp. a locally free sheaf on \(X\)).
In this case, we even have the more precise formula
\[
  \mathrm{R}^qf({\mathscr{F}}\otimes_{{\mathscr{O}}_Y}f^{-1}({\mathscr{L}})) = \mathrm{R}^qf({\mathscr{F}})\otimes_{{\mathscr{O}}_X}{\mathscr{L}}
  \tag{$\star$}
\]
where we set
\[
  f^{-1}({\mathscr{L}}) = {\mathscr{L}}\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_Y.
\]
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To prove (\(\star\)), we first note that
\[
  {\mathscr{F}}\otimes_{{\mathscr{O}}_Y}f^{-1}({\mathscr{L}}) = {\mathscr{F}}\otimes_{{\mathscr{O}}_X}{\mathscr{L}}.
\]
Returning to the definition of \(\mathrm{R}^qf\), we define a canonical homomorphism from the right-hand side of (\(\star\)) to the left-hand side;
to show that it is an isomorphism we can argue locally.
We can thus restrict to the case where \({\mathscr{L}}={\mathscr{O}}_X\), and in this case our claim is trivial.

If we have two proper maps \(Z\xrightarrow{g}Y\xrightarrow{f}X\), and if \({\mathscr{F}}\) is a coherent sheaf on \(Z\), then we can construct a spectral sequence with second page
\[
  E_2^{p,q} = \mathrm{R}^pf(\mathrm{R}^qg({\mathscr{F}}))
\]
that abuts to \(\mathrm{R}^n(fg)({\mathscr{F}})\):
this is a particular case of the spectral sequence of composition of functors (see {[}\protect\hyperlink{ref-7}{8}{]}).
From this, we obtain the formula
\[
  (fg)_!({\mathscr{F}}) = f_!(g_!({\mathscr{F}}))
\]
whence finally the fact that \((fg)_!=f_!g_!\).

\hypertarget{section-6}{%
\section{Chern classes}\label{section-6}}

The fact that \(K_1(X)=K(X)\) allows us to extend the definition of Chern classes to arbitrary coherent sheaves.

First consider the case where the base field is \(\mathbb{C}\);
every vector bundle \(E\) over \(X\) defines Chern classes \(c_i(E)\in\mathrm{H}^{2i}(X,\mathbb{Z})\).
If we have an exact sequence
\[
  0\to E'\to E\to E''\to0
\]
then we know that \(c_p(E)=\sum_{r+s=p}c_r(E')\cdot c_s(E'')\).

As in \protect\hyperlink{section-5.b}{§5.2}, this can be understood as a multiplicative property of the Chern polynomial \(c_t(E)=\sum c_p(E)t^p\), and allows us to define \(c_t(x)\) for all \(x\in K(X)\).
The \(c_p(x)\) are homogeneous elements of degree \(2p\) of \(\mathrm{H}^\bullet(X,\mathbb{Z})\).

In the case of an arbitrary base field, Grothendieck proceeded in the same way, but replacing \(\mathrm{H}^\bullet(X)\) with the graded ring \(A(X)\) of \emph{cycle classes} on \(X\), under linear equivalence (`\{a\} la Chow).
We recall only that a cycle \(Z\) on \(X\) of codimension \(p\) {[}i.e.~a degree-\(p\) element of \(A(X)\){]} is said to be linearly equivalent to zero if there exists a cycle \(H\) on \(X\times\mathbf{D}\) (where \(\mathbf{D}\) denotes the projective line) such that \(Z=H_a-H_b\) for points \(a,b\in\mathbf{D}\);
we denote by \(H_a\) the projection to \(X\) of \(H\cdot(X\times\{a\})\) if it is proper.
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Chow and Samuel\footnote{See Chow {[}\protect\hyperlink{ref-5}{6}{]} and Samuel {[}\protect\hyperlink{ref-10}{11}{]}. See also the \emph{Séminaire Chevalley} {[}\protect\hyperlink{ref-11}{5}{]}.} have shown that this equivalence relation possesses all sorts of reasonable properties, and Chow has shown (unpublished) that we could also construct a theory of Chern classes for vector bundles\footnote{See the paper by Grothendieck which follows this present work {[}\protect\hyperlink{ref-8}{9}{]}.}, with these classes being elements of \(A(X)\).
Note that, even in the classical case, this definition is somehow \emph{finer} than the cohomological definition (since two cycles can indeed be homologous without being linearly equivalent).

In what follows, we denote by \(A(X)\) either this ring of cycle classes or \(\mathrm{H}^\bullet(X)\), and leave it to the reader to choose between the two theories.

Note that, in all cases, if \(f\colon Y\to X\) is a morphism (resp. a proper morphism), then we can associate to it a homomorphism \(f^*\colon A(X)\to A(Y)\) (resp. a homomorphism \(f_*\colon A(Y)\to A(X)\)).
The formula
\[
  f_*(y\cdot f^*(x)) = f_*(y)\cdot x
\]
holds true.

All of the usual formal constructions explained in the work by Hirzebruch {[}\protect\hyperlink{ref-9}{10}{]} can be applied to the Chern classes \(c_p(x)\) of an element \(x\in K(X)\).
We can, for example, define the \emph{Todd class \(T(x)\in A(X)\otimes\mathbb{Q}\)} of an element \(x\):
we write \(c_t(x)\) formally in the form \(\prod(1+a_it)\), and let \(T(x)=\prod a_i/(1-e^{-a_i})\).
Then
\[
  T(x+y) = T(x)\cdot T(y).
\]

Similarly, we can define the ``exponential'' Chern class, denoted by \(\operatorname{ch}(x)\) (which is also an element of \(A(X)\otimes\mathbb{Q}\)), by
\[
  \operatorname{ch}(x) = \operatorname{rank}(x)+\sum(e^{a_i}-1)
\]
where \(\operatorname{rank}(x)\) is the \emph{rank} of \(x\) {[}it is the unique homomorphism from \(K(X)\) to \(\mathbb{Z}\) that sends a vector bundle to its dimension{]}.
Then
\[
  \begin{aligned}
    \operatorname{ch}(x+y) &= \operatorname{ch}(x)+\operatorname{ch}(y)
  \\\operatorname{ch}(xy) &= \operatorname{ch}(x)\cdot\operatorname{ch}(y)
  \end{aligned}
\]
by the analogous properties of vector bundles.
With this, we can calculate \(\operatorname{ch}(x)\) in terms of \(c_t(x)\) and \(\operatorname{rank}(x)\) by ``universal'' formulas.
If \(f\colon Y\to X\) is a morphism, then
\[
  \begin{aligned}
    c_p(f^!(x)) &= f^*(c_p(x))
    \operatorname{ch}(f^!(x)) &= f^*(\operatorname{ch}(x))
  \end{aligned}
\]
for \(x\in K(X)\).

These formulas are well known when \(x=\gamma(E)\), with \(E\) a vector bundle on \(X\), and the general case follows from linearity, by applying \protect\hyperlink{theorem-2}{Theorem 2}.

\hypertarget{section-7}{%
\section{Statement of the Riemann--Roch theorem; First simplifications}\label{section-7}}

Let \(f\colon Y\to X\) be a proper morphism, with \(X\) and \(Y\) irreducible non-singular quasi-projective varieties.
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We denote by \(T(X)\) the Todd class of the tangent bundle of \(X\);
it is an element of \(A(X)\otimes\mathbb{Q}\).
Now let \(y\in K(Y)\).
Then:

\leavevmode\hypertarget{theorem-riemann-roch}{}%
\begin{itenv}{Theorem (Riemann--Roch)}
---
\[
  f_*(\operatorname{ch}(y)\cdot T(Y)) = \operatorname{ch}(f_!(y))\cdot T(X).
\]

\end{itenv}

{[}The two sides of the equality are thought of as elements of \(A(X)\otimes\mathbb{Q}\);
with this in mind, we can say that \protect\hyperlink{theorem-riemann-roch}{R--R} is a formula ``modulo torsion'';
Grothendieck has more precise formulas, without torsion --- i.e.~that hold in \(A(X)\) --- but he does not yet know how to prove them except in characteristic zero.{]}

We now show how the \protect\hyperlink{theorem-riemann-roch}{Riemann--Roch theorem}, in Grothendieck's form, \emph{implies the Riemann--Roch formula of Hirzebruch {[}\protect\hyperlink{ref-9}{10}{]}}:

We apply \protect\hyperlink{theorem-riemann-roch}{R--R} to a projective \(Y\), with \(X\) consisting of a single point, and \(y\) the class of a coherent sheaf \({\mathscr{F}}\) on \(Y\).
Since \(A(X)\) is simply \(\mathbb{Z}\) in dimension \(0\), and is zero in higher dimensions, \(f_*(u)\), for \(u\in A(Y)\), is simply the terms \(x_n(u)\) of degree \(n=\dim Y\) in \(u\).
Also, \(T(X)=1\), and \(f_!(y)\) is the alternating sum of the sheaves \(\mathrm{R}^qf({\mathscr{F}})\);
a sheaf on a point is simply a vector space of finite dimension;
in particular, \(\mathrm{R}^qf({\mathscr{F}})\) is the vector space \(\mathrm{H}^q(Y,{\mathscr{F}})\).
On \(X\), the map \({\mathscr{G}}\mapsto\operatorname{ch}({\mathscr{G}})\) consists simply of taking the \emph{rank} of a sheaf;
the right-hand side of \protect\hyperlink{theorem-riemann-roch}{R--R} thus becomes \(\sum(-1)^p\dim\mathrm{H}^p(Y,{\mathscr{F}}) = \chi(Y,{\mathscr{F}})\), and \protect\hyperlink{theorem-riemann-roch}{R--R} then reduces to the form given by Hirzebruch:
\[
  x_n(\operatorname{ch}({\mathscr{F}})\cdot T(Y)) = \chi(Y,{\mathscr{F}}).
\]

We note that this formula is proven for any coherent sheaf, and not simply for vector bundles;
this generality is somewhat illusory, by the linear character of \protect\hyperlink{theorem-riemann-roch}{R--R} and by \protect\hyperlink{theorem-2}{Theorem 2}.

The proof of \protect\hyperlink{theorem-riemann-roch}{R--R} proceeds by reduction to particular cases of a projection and an injection.
For this, we use the following lemma:

\hypertarget{lemma-15}{}
\begin{itenv}{Lemma 15}

Let \(Z\xrightarrow{g}Y\xrightarrow{f}X\) be proper morphisms.
Let \(z\in K(Z)\) and let \(y=g^!(z)\). Then:

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  If \protect\hyperlink{theorem-riemann-roch}{R--R} is true for \(\{g,z\}\) and \(\{f,y\}\), then it is also true for \(\{fg,z\}\).
\item
  If \protect\hyperlink{theorem-riemann-roch}{R--R} is true of \(\{fg,z\}\) and \(\{f,y\}\), and if \(f_*\) is injective, then \protect\hyperlink{theorem-riemann-roch}{R--R} is also true for \(\{g,z\}\).
\end{enumerate}

\end{itenv}

\begin{proof}
First we prove (a).
By \protect\hyperlink{theorem-riemann-roch}{R--R} for \(g\), we have
\[
  g_*(\operatorname{ch}(z)\cdot T(Z)) = \operatorname{ch}(y)\cdot T(Y).
\]
\oldpage{114}
Applying \(f_*\) to both sides, and taking into account the fact that \((fg)_*=f_*g_*\), we see that
\[
  (fg)_*(\operatorname{ch}(z)\cdot T(Z)) = f_*(\operatorname{ch}(y)\cdot T(Y)).
\]

Applying \protect\hyperlink{theorem-riemann-roch}{R--R} for \(\{f,y\}\), we see that the right-hand side of the above is equal to \(\operatorname{ch}((fg)_!(z)\cdot T(X))\), which indeed proves \protect\hyperlink{theorem-riemann-roch}{R--R} for \(\{fg,z\}\).

Now we prove (b).
Let
\[
  \begin{aligned}
    u &= g_*(\operatorname{ch}(z)\cdot T(Z))
  \\v &= \operatorname{ch}(y)\cdot T(Y).
  \end{aligned}
\]
We wish to show that \(u=v\).
Given the hypothesis on \(f_*\), it suffices to prove that \(f_*(u)=f_*(v)\).
But \protect\hyperlink{theorem-riemann-roch}{R--R} for \(\{fg,z\}\) proves that
\[
  f_*(u) = \operatorname{ch}(x)\cdot T(X)
  \quad
  \text{where }x=(fg)_!(z)=f_!(y).
\]
Similarly, \protect\hyperlink{theorem-riemann-roch}{R--R} for \(\{f,y\}\) proves that
\[
  f_*(v) = \operatorname{ch}(x)\cdot T(X).
\]
\end{proof}

Now let \(Y\) and \(Y'\) be varieties, and consider their product \(Y\times Y'\).
The projections \(Y\times Y'\to Y\) and \(Y\times Y'\to Y'\) define homomorphisms \(K(Y)\to K(Y\times Y')\) and \(K(Y')\to K(Y\times Y')\), whence a homomorphism \(K(Y)\otimes K(Y')\to K(Y\times Y')\).
By an abuse of language, we also denote by \(y\otimes y'\) the image in \(K(Y\times Y')\) of the tensor product of two elements \(y\in K(Y)\) and \(y'\in K(Y')\).

\leavevmode\hypertarget{lemma-16}{}%
\begin{itenv}{Lemma 16}
Let \(f\colon Y\to X\) and \(f'\colon Y'\to X'\) be proper morphisms, and let \(y\in K(Y)\) and \(y'\in K(Y')\).
If \protect\hyperlink{theorem-riemann-roch}{R--R} is true for \(\{f,y\}\) and \(\{f',y'\}\), then it is true for \(\{f\times f',y\otimes y'\}\).

\end{itenv}

(We denote by \(f\times f'\colon Y\times Y'\to X\times X'\) the product of \(f\) and \(f'\).)

\begin{proof}
The proof consists of a calculation analogous to that for \protect\hyperlink{lemma-15}{Lemma 15};
we have to use the following formulas:

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  \((f\times f')_!(y\otimes y') = f_!(y)\otimes f'_!(y')\);
\item
  \((f\times f')_*(x\otimes x') = f_*(x)\otimes f'_*(x')\), where \(x\in A(Y)\) and \(x\in A(Y')\);
\item
  \(\operatorname{ch}(y\otimes y') = \operatorname{ch}(y)\otimes\operatorname{ch}(y')\).
\end{enumerate}

Formula (i) can be proven by taking \(y=\gamma({\mathscr{F}})\) and \(y'=\gamma({\mathscr{F}}')\), and applying the Künneth formula to calculate \((f\times f')_!(y\otimes y')\);
the validity of the Künneth formula for coherent sheaves follows from the calculation of the cohomology by covers and from the Eilenberg-Zilber theorem (see the book by Godement on sheaves).

Formula (ii) is immediate, whether we consider the point of view of classes of cycles (for linear equivalence), or the cohomological point of view (in the classical case).

\oldpage{115}

Formula (iii) is a consequence of the multiplicative property of \(\operatorname{ch}\).
\end{proof}

{[}In fact, we will only use the above lemma in the case where one of the varieties \(X'\) and \(Y'\) consists of a single point.{]}

\protect\hyperlink{lemma-15}{Lemma 15}, along with \protect\hyperlink{corollary-5}{the Corollary of Proposition 4}, shows that \emph{it suffices to prove \protect\hyperlink{theorem-riemann-roch}{R--R} in the two following cases:}

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  \(Y=X\times\mathbf{P}\), with \(\mathbf{P}\) a projective space, and \(f\colon X\times\mathbf{P}\to X\) the projection onto the first factor.
\item
  an injection \(f\colon Y\to X\) of a closed subvariety \(Y\) of \(X\).
\end{enumerate}

By \protect\hyperlink{lemma-16}{Lemma 16}, (a) follows from:

\medskip

a'. The homomorphism \(K(X)\otimes K(\mathbf{P})\to K(X\times\mathbf{P})\) is surjective;

a'\,'. \protect\hyperlink{theorem-riemann-roch}{R--R} is true for the map from \(\mathbf{P}\) to a point (or, in other words, the R--R-Hirzebruch formula is true for \(\mathbf{P}\)).
\medskip

The next two sections are dedicated to the proof of (a') and (a'\,').
The case of an injection (which is more difficult) will be covered later on.

\hypertarget{section-8}{%
\section{\texorpdfstring{Exactness and homotopy properties of \(K(X)\)}{Exactness and homotopy properties of K(X)}}\label{section-8}}

\leavevmode\hypertarget{proposition-7}{}%
\begin{itenv}{Proposition 7}
Let \(X\) be an algebraic variety (singular or not), and \(X'\) a closed subvariety of \(X\), and set \(U=X\setminus X'\).
Then we have an exact sequence
\[
  K(X') \to K(X) \to K(U) \to 0.
\]

\end{itenv}

{[}The homomorphism \(K(X')\to K(X)\) is that given by extending a sheaf on \(X'\) by zero outside of \(X'\);
in the case where \(X\) and \(X'\) are non-singular, and denoting the canonical injection \(X'\to X\) by \(i\), this homomorphism is \(i_!\).
As for \(K(X)\to K(U)\), this is the restriction homomorphism;
in the case where \(X\) is non-singular, and denoting the canonical injection \(U\to X\) by \(j\), this homomorphism is \(j^!\).{]}

\begin{proof}
Let \(A=K(X)/\operatorname{Im} K(X')\).
We will define a homomorphism from \(K(U)\) to \(A\).
For this, let \({\mathscr{F}}\) be a coherent sheaf on \(U\);
by \protect\hyperlink{proposition-2}{Proposition 2}, we can extend \({\mathscr{F}}\) to a sheaf \({\mathscr{G}}\) on \(X\).
We will show that the image of \(\gamma_X({\mathscr{G}})\) in \(A\) does not depend on \({\mathscr{G}}\), but only on \({\mathscr{F}}\).
So let \({\mathscr{G}}\) and \({\mathscr{G}}'\) be extensions of \({\mathscr{F}}\).
Embed \({\mathscr{F}}\) diagonally into \({\mathscr{F}}\times{\mathscr{F}}=({\mathscr{G}}\times{\mathscr{G}}')|U\);
by \protect\hyperlink{proposition-1}{Proposition 1}, there exists a subsheaf \({\mathscr{G}}''\) of \({\mathscr{G}}\times{\mathscr{G}}'\) such that its restriction to \(U\) is \({\mathscr{F}}\), and everything then relies on proving that
\[
  \gamma_X({\mathscr{G}}'') \equiv \gamma_X({\mathscr{G}}') \mod \operatorname{Im}K(X')
\]
and similarly for \({\mathscr{G}}'\).
But, since \({\mathscr{G}}''\subset{\mathscr{G}}\times{\mathscr{G}}'\), we have a homomorphism \(f\colon{\mathscr{G}}''\to{\mathscr{G}}\) that is bijective over \(U\).
Let \({\mathscr{N}}\) and \({\mathscr{Q}}\) be the kernel and cokernel (respectively) of \(f\);
then
\[
  \gamma_X({\mathscr{G}}'') - \gamma_X({\mathscr{G}})
  \equiv \gamma_X({\mathscr{N}}) - \gamma_X({\mathscr{Q}}).
\]
But \({\mathscr{N}}\) and \({\mathscr{Q}}\) are supported outside of \(X'\);
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if \({\mathscr{I}}\) denotes the sheaf of ideals of \(X'\) in \({\mathscr{O}}_X\), then there exists an integer \(n>0\) such that \({\mathscr{I}}^n{\mathscr{N}}=0\), and similarly for \({\mathscr{Q}}\) (this is a local statement that is essentially equivalent to the ``Nullstellensatz,'' see {[}\protect\hyperlink{ref-14}{14}{]});
we thus conclude that \({\mathscr{N}}\) and \({\mathscr{Q}}\) admit composition series whose successive quotients are annihilated by \({\mathscr{I}}\), i.e.~are coherent on \(X'\), and so
\[
  \gamma_X({\mathscr{Q}}) \equiv \gamma_X({\mathscr{N}}) \equiv 0 \mod \operatorname{Im}K(X').
\]
The independence of \(\gamma_X({\mathscr{G}}) \mod\operatorname{Im}K(X)\) is thus proven, and so we obtain a well-defined element \(\eta({\mathscr{F}})\in A\).
If \(0\to{\mathscr{F}}'\to{\mathscr{F}}\to{\mathscr{F}}''\to0\) is an exact sequence on \(U\), then we can extend \({\mathscr{F}}\) and \({\mathscr{G}}\) to \(X\), and \({\mathscr{F}}'\) to a subsheaf \({\mathscr{G}}'\) of \({\mathscr{G}}\) (see \protect\hyperlink{proposition-1}{Proposition 1}).
The sheaf \({\mathscr{G}}''={\mathscr{G}}/{\mathscr{G}}'\) extends \({\mathscr{F}}''\), which proves that \(\eta({\mathscr{F}})=\eta({\mathscr{F}}')+\eta({\mathscr{F}}'')\).
The operation \(\eta\), being additive, defines \(\eta\colon K(U)\to A\).
If we denote by \(\varepsilon\) the canonical homomorphism from \(A\) to \(K(U)\), we immediately see that \(\eta\circ\varepsilon=1\) and \(\varepsilon\circ\eta=1\), which finishes the proof.
\end{proof}

Now let \(X\) and \(Y\) be varieties.
Denote by \(p\colon X\times Y\to X\) the canonical projection.
If \(X\) and \(Y\) are \emph{non-singular}, then the homomorphism \(p^!\colon K(X)\to K(X\times Y)\) is defined (see \protect\hyperlink{section-5.c}{§5.3}, as well as \protect\hyperlink{section-7}{§7}).
In fact, this homomorphism can be defined \emph{in the general case}.
This comes from the fact that \({\mathscr{O}}_{X\times Y}\) is \({\mathscr{O}}_X\)-flat (i.e.~an annihilator of \(\operatorname{Tor}\)), since it is a ring of fractions of the usual tensor product \({\mathscr{O}}_X\otimes_k{\mathscr{O}}_Y\).
We can thus set \(p^!({\mathscr{F}})={\mathscr{F}}\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_{X\times Y}\) for any coherent sheaf \({\mathscr{F}}\) on \(X\), and \(p^!({\mathscr{F}})\) is additive, and so defines some \(K(X)\to K(X\times Y)\).
Thus:

\leavevmode\hypertarget{proposition-8}{}%
\begin{itenv}{Proposition 8}
If \(Y\) is an affine line, then the homomorphism \(p^!\colon K(X)\to K(X\times Y)\) is bijective.

\end{itenv}

\begin{proof}
Let \(a\) be the origin in \(Y\), and identify \(X\) with \(X\times\{a\}\subset X\times Y\).
We have an exact sequence:
\[
  0 \to {\mathscr{O}}_{X\times Y} \xrightarrow{t} {\mathscr{O}}_{X\times Y} \to {\mathscr{O}}_X \to 0
\]
where \(t\) denotes the projection \(X\times Y\to Y\), considered as a function to \(X\times Y\).
This exact sequence shows that \(\operatorname{Tor}_p^{{\mathscr{O}}_{X\times Y}}({\mathscr{O}}_X,{\mathscr{F}})=0\) for \(p\geqslant 2\), if \({\mathscr{F}}\) is a coherent sheaf on \(X\times Y\).
We can thus define \(\pi_a\colon K(X\times Y)\to K(X)\) by setting
\[
  \pi_a({\mathscr{F}}) = \operatorname{Tor}_0({\mathscr{O}}_X,{\mathscr{F}}) - \operatorname{Tor}_1({\mathscr{O}}_X,{\mathscr{F}});
\]
we see, furthermore, that \(\pi_a\circ p^1=1\), which already shows that \(p^1\) is \emph{injective}.
From now on, we will consider \(K(X)\) as \emph{embedded} into \(K(X\times Y)\).

To prove that \(K(X)=K(X\times Y)\), we argue by induction on \(n=\dim X\), and we use the following diagram (where \(X'\) is closed in \(X\), and \(U=X\setminus X'\)):
\[
  \begin{CD}
    K(X') @>>> K(X) @>>> K(U) @>>> 0
  \\@VVV @VVV @VVV @.
  \\K(X'\times Y) @>>> K(X\times Y) @>>> K(U\times Y) @>>> 0
  \end{CD}
\]
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By \protect\hyperlink{proposition-7}{Proposition 7}, the rows of this diagram are exact.
We thus conclude that, if \(K(X')=K(X'\times Y)\) (which is the case, by the induction hypothesis, if \(\dim X'<n\)), every element of \(K(X\times Y)\) whose restriction to \(U\times Y\) is in \(K(U)\) is also an element of \(K(X)\).
In other words, we can ``neglect'' the subvarieties of \(X\) of dimension \(<n\).
In particular, we can suppose \(X\) to be \emph{affine, non-singular, and irreducible} (since the complement of the set of singular points is a union of disjoint irreducible varieties).
We will make use of the following dévissage lemma:

\leavevmode\hypertarget{lemma-17}{}%
\begin{itenv}{Lemma 17}
Let \(Z\) be an algebraic variety.
Then the \(\gamma_Z({\mathscr{O}}_T)\) generate \(K(Z)\), where \(T\) runs over the set of irreducible subvarieties of \(Z\).

\end{itenv}

\begin{proof}
We argue by induction on \(\dim Z\);
using \protect\hyperlink{proposition-7}{Proposition 7}, we can assume that \(Z\) is irreducible.
Let \({\mathscr{F}}\) be a sheaf on \(Z\);
if \({\mathscr{F}}\) is a torsion sheaf, then it is concentrated on a subvariety, and the induction hypothesis shows that it is contained in the subgroup \(K'(Z)\) of \(K(Z)\) generated by the \(\gamma_Z({\mathscr{O}}_T)\).
In the case where \({\mathscr{F}}\) is torsion-free, we embed it into \({\mathscr{F}}\otimes_{{\mathscr{O}}_Z}K\), where \(K\) is the field of rational functions on \(Z\);
we then have that \({\mathscr{F}}\otimes K=K^n\), and from this we conclude that \({\mathscr{F}}\) is isomorphic to \(({\mathscr{O}}_Z)^n\) modulo a torsion sheaf;
whence the result.
(For more details, see {[}\protect\hyperlink{ref-14}{14}{]}, or {[}\protect\hyperlink{ref-6}{7}{]}.)
\end{proof}

By applying \protect\hyperlink{lemma-17}{Lemma 17} to the case that interests us, we see that it suffices to show that \(\gamma({\mathscr{O}}_T)\in K(X)\) for every irreducible subvariety \(T\) of \(X\times Y\).
If \(\operatorname{proj}_X(T)\neq X\), then it is evident, by the induction hypothesis;
if \(T=X\times Y\), then it is even more evident.
Thus the only remaining case is when \(\dim T=n\), and \(\operatorname{proj}_X(T)\) is dense in \(X\).
If \(A\) denotes the coordinate ring of \(X\), then \(T\) corresponds to a minimal prime ideal \(\mathfrak{p}\) in the coordinate ring \(A[t]\) of \(X\times Y\);
the fact that the projection from \(T\) to \(X\) is dense implies that \(A\cap\mathfrak{p}=0\).
Let \(S\) be the set of invertible elements of \(A\), and let \(K=A_S\) te bhe field of fractions of \(A\).
We have that \(A[t]_S=K[t]\), and the fact that \(\mathfrak{p}\cap S=\varnothing\) implies that \(\mathfrak{p}\) is of the form \(\mathfrak{p}'\cap A[t]\), where \(\mathfrak{p}'\) is a non-zero prime ideal of \(K[t]\).
There thus exists an irreducible polynomial \(P(t)\), with coefficients in \(A\) if we want, such that \(\mathfrak{p}\) is the set of polynomials of \(A[t]\) that are divisible by \(P(t)\) in \(K[t]\).
Then
\[
  A[t] \supset \mathfrak{p} \supset P(t)\cdot A[t] = \mathfrak{q}.
\]
The sheaf \({\mathscr{O}}_T\) corresponds to the module \(A[t]/\mathfrak{p}\);
let \({\mathscr{F}}\) be the sheaf that corresponds to \(A[t]/\mathfrak{q}\).
Since \(\mathfrak{p}_S=\mathfrak{q}_S\), there exists some \(a\in S\) such that \(a\cdot(\mathfrak{p}/\mathfrak{q})=0\), which shows that \({\mathscr{O}}_T\) is congruent to \({\mathscr{F}}\) modulo an element of \(K(X'\times Y)\), with \(\dim X'<\dim X\).
Also, the exact sequence
\[
  0 \to {\mathscr{O}}_{X\times Y} \xrightarrow{P(t)} {\mathscr{O}}_{X\times Y} \to {\mathscr{F}} \to 0
\]
shows that \(\gamma({\mathscr{F}})=0\) in \(K(X\times Y)\), whence
\[
  \gamma({\mathscr{O}}_T) \in \operatorname{Im} K(X'\times Y) = \operatorname{Im} K(X') \subset K(X)
\]
which finishes the proof.
\end{proof}
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\begin{rmenv}{Remark}[Cartier]
We can avoid the need for the dévissage lemma by applying, to an arbitrary module \(M\) over \(A[t]\), the procedure applied above to the prime ideal \(\mathfrak{p}\).
We form \(M\otimes_A K=M_S\), which is a \(K[t]\)-module.
The structure of modules over principal rings shows that the group of classes of \(K[t]\)-modules is infinite cyclic, generated by the module \(A[t]\).
Since passing to \(M_S\) consists of ``neglecting'' everything that is concentrated on \(X'\times Y\), the result follows.

\end{rmenv}

\leavevmode\hypertarget{proposition-8-corollary}{}%
\begin{itenv}{Corollary}
If \(Y\) is an affine space \(k^n\), then
\[
  K(X) = K(X\times Y).
\]

\end{itenv}

\begin{proof}
This is immediate, by induction on \(\dim Y\).
\end{proof}

\hypertarget{section-9}{%
\section{\texorpdfstring{Proof of the Riemann--Roch theorem for \(f\colon X\times\mathbf{P}\to X\)}{Proof of the Riemann--Roch theorem for f\textbackslash colon X\textbackslash times\textbackslash mathbf\{P\}\textbackslash to X}}\label{section-9}}

We will first prove claim (a') from the end of \protect\hyperlink{section-7}{§7}:

\leavevmode\hypertarget{proposition-9}{}%
\begin{itenv}{Proposition 9}
For every variety \(X\), and every projective space \(\mathbf{P}\), the homomorphism \(K(X)\otimes K(\mathbf{P})\to K(X\times \mathbf{P})\) is surjective.

\end{itenv}

\begin{proof}
We argue by induction on \(\dim\mathbf{P}\).
For \(\dim\mathbf{P}=0\), the proposition is trivial.
So let \(\mathbf{P}'\) be a hyperplane in \(\mathbf{P}\), and let \(U=\mathbf{P}\setminus\mathbf{P}'\).
We then have a diagram of exact sequences
\[
  \begin{CD}
    K(X)\otimes K(\mathbf{P}') @>>> K(X)\otimes K(\mathbf{P}) @>>> K(X)\otimes K(U) @>>> 0
  \\@VV\varepsilon_1V @VV\varepsilon_2V @VV\varepsilon_3V @.
  \\K(X\times\mathbf{P}') @>>> K(X\times\mathbf{P}) @>>> K(X\times U) @>>> 0
  \end{CD}
\]

This diagram commutes:
this is trivial for the second and third squares, and, for the first square, it suffices to verify locally, on affine opens, for example.
Given the induction hypothesis, \(\varepsilon_1\) is surjective.
But \(U\) is an affine space;
the \protect\hyperlink{proposition-8-corollary}{Corollary of Proposition 8} then shows that \(K(U)=\mathbb{Z}\), and that \(K(X\times U)=K(X)\), whence the fact that \(\varepsilon_3\) is bijective.
The five lemma then shows that \(\varepsilon_2\) is surjective.
\end{proof}

\begin{rmenv}{Remark}
The above proof shows that
\[
  K(X)\otimes K(Y) \to K(X\times Y)
\]
is surjective whenever \(Y\) admits an \emph{algebraic cellular decomposition}, where the cells are \emph{affine spaces}.
This is notably the case if \(Y\) is a Grassmannian.

\end{rmenv}

We now proceed to the proof of claim (a'\,'):

\leavevmode\hypertarget{proposition-10}{}%
\begin{itenv}{Proposition 10}
Let \({\mathscr{F}}\) be a coherent sheaf on a projective space \(\mathbf{P}\) of dimension \(r\).
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Then the R--R-Hirzebruch formula
\[
  x_r(\operatorname{ch}({\mathscr{F}})\cdot T(\mathbf{P})) = \chi(\mathbf{P},{\mathscr{F}})
\]
holds true.

\end{itenv}

\begin{proof}
Let \(H\) be a hyperplane, and \(x\) its class in \(A^1(\mathbf{P})\).
We know that the Chern polynomial of \(\mathbf{P}\) is \((1+tx)^{r+1}\);
thus
\[
  T(\mathbf{P}) = x^{r+1}/(1-e^{-x})^{r+1}.
\]

We also know that \({\mathscr{F}}\) corresponds to a graded module \(M\) over \(k[X_0,\ldots,X_r]\).
By the Hilbert syzygy theorem, \(M\) admits a finite resolution by free graded modules;
it follows that \({\mathscr{F}}\) is equal {[}in \(K(X)\){]} to a linear combination of sheaves \({\mathscr{O}}(n)\), defined in {[}\protect\hyperlink{ref-12}{12}{]}, and it suffices to verify the R--R-Hirzebruch formula for \({\mathscr{F}}={\mathscr{O}}(n)\).
This sheaf is exactly the sheaf associated to the divisor \(nH\);
thus \(\operatorname{ch}({\mathscr{F}})=e^{nx}\).
Now, a direct calculation shows that \(\chi(\mathbf{P},{\mathscr{F}})\) is equal to \(\binom{n+r}{r}\) (see {[}\protect\hyperlink{ref-12}{12}{]}), and we are thus led to prove the formula:
\[
  x_r[e^{nx}\cdot x^{r+1}/(1-e^{-x})^{r+1}] = \binom{n+r}{r}.
  \tag{$\star$}
\]

It is useful to write this formula in terms of residues:
\[
  \operatorname{Res}[e^{nx}\operatorname{d}\!x/(1-e^{-x})^{r+1}] = \binom{n+r}{r}.
  \tag{$\star\star$}
\]

By defining the new variable \(y=1-e^{-x}\), we see that the left-hand side is equal to
\[\begin{aligned}
  \operatorname{Res}(\operatorname{d}\!y\cdot y^{-r-1}\cdot(1-y)^{-n-1})
  &= z_r((1-y)^{-n-1})
\\&= (-1)^r\binom{-n-1}{r}
  = \binom{n+r}{r}.
\end{aligned}\]
\end{proof}

Since we have proven (a') and (a'\,'), we can state:

\begin{itenv}{Corollary}
\protect\hyperlink{theorem-riemann-roch}{R--R} is true for the projection \(X\times\mathbf{P}\to X\).

\end{itenv}

\begin{rmenv}{Remark}
The fact that \(K(\mathbf{P})\) is generated by the \({\mathscr{O}}(n)\) can also be seen, without using the syzygy theorem, by the cellular decomposition of \(\mathbf{P}\).
We again obtain the complete structure of \(K(\mathbf{P})\):
if we denote by \(\alpha\) the class in \(K(\mathbf{P})\) of the \({\mathscr{O}}_H\), then the elements \(1,\alpha,\alpha^2,\ldots,\alpha^r\) form a \emph{basis} of \(K(\mathbf{P})\), and \(\alpha^{r+1}=0\).
The \({\mathscr{O}}(n)\) are equal to \((1-\alpha)^{-n}\), as shown by the exact sequence
\[
  0 \to {\mathscr{O}}(-1) \to {\mathscr{O}} \to {\mathscr{O}}_H \to 0.
\]

\end{rmenv}

\hypertarget{section-10}{%
\section{General remarks on the injection of a subvariety}\label{section-10}}

\hypertarget{section-10.a}{%
\subsection{Notation}\label{section-10.a}}

Before continuing the proof of \protect\hyperlink{theorem-riemann-roch}{R--R}, we first discuss the local resolution of the structure sheaf of a subvariety, and study some of its consequences.
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Some of these will be more general than necessary for our purposes, but they are interesting in their own right, and are no more difficult than the particular cases that we will need.

In what follows, \(Y\) is a (non-singular) subvariety of \(X\), \(i\) the injection of \(Y\) into \(X\), \(p\) the codimension of \(Y\) in \(X\), \(E\) the normal bundle of \(Y\), and \({\mathscr{I}}(Y)\) the sheaf of local ideals of \(Y\).
We thus have the exact sequence
\[
  0 \to {\mathscr{I}}(Y) \to {\mathscr{O}}_X \xrightarrow{r} {\mathscr{O}}_Y \to 0
\tag{1}
\]
where \(r\) is the restriction.

Finally, write \(F^*\) to mean the dual of a vector bundle \(F\), and \([Z]\) to mean the bundle associated to a divisor \(Z\).
Recall that \(c([Z])=1+Z\).

\hypertarget{section-10.b}{%
\subsection{Local parameters; Normal bundle}\label{section-10.b}}

Let \(a\in Y\).
Then there exists an affine open subset \(U\subset X\) containing \(a\), and functions \(f_1,\ldots,f_p\) that are regular on \(U\), and that form a system of local parameters, or a system of ``uniformising'' parameters, for \(Y\).
This implies that \(Y\cap U\) is defined by the equations \(f_1=\ldots=f_p=0\), that \(\operatorname{d}\!f_1,\ldots,\operatorname{d}\!f_p\) are linearly independent at every point in \(Y\cap U\), that the \(f_i\) form a basis for the ideal \({\mathscr{I}}(Y)_b\) of \(Y\) in \({\mathscr{O}}_{b,X}(b\in Y\cap U)\), and, finally, that this ideal is ``perfect,'' i.e.~that the annihilator of \(f_i\) in \({\mathscr{O}}_{b,X}/(f_1,\ldots,f_{i-1})\) is zero (\(1\leqslant i\leqslant p\); \(f_0=0\)).

At every point \(b\in Y\cap U\), the \(\operatorname{d}\!f_i\) form a basis for \(E_b^*\).
Also, \({\mathscr{I}}(Y)/{\mathscr{I}}(Y)^2\) is a sheaf concentrated on \(Y\), and annihilated by \({\mathscr{I}}(Y)\), and is thus a sheaf of \({\mathscr{O}}_Y\)-modules.
It is immediate that \(f\mapsto\operatorname{d}\!f\) is a homomorphism of \({\mathscr{O}}_Y\)-modules from \({\mathscr{I}}(Y)/{\mathscr{I}}(Y)^2\) to the sheaf \({\mathscr{O}}_Y(E^*)\) of germs of sections of \(E^*\).
By using the local parameters, we see that

\emph{the map \(D\colon{\mathscr{I}}(Y)/{\mathscr{I}}(Y)^2 \to {\mathscr{O}}_Y(E^*)\) defined by \(f\mapsto\operatorname{d}\!f\) is an isomorphism of \({\mathscr{O}}_Y\)-modules.}

\hypertarget{section-10.c}{%
\subsection{\texorpdfstring{Local resolution of \({\mathscr{O}}_Y\) over \({\mathscr{O}}_X\)}{Local resolution of \{\textbackslash mathscr\{O\}\}\_Y over \{\textbackslash mathscr\{O\}\}\_X}}\label{section-10.c}}

Let \(V\) be a vector space over \(k\) of dimension \(p\), and \(e_1,\ldots,e_p\) be a basis of \(V\), and define \(\mathfrak{M}_i = {\mathscr{O}}_X\otimes_k\bigwedge\nolimits^i V\).
We endow the direct sum \(\mathfrak{M}\) of the \(\mathfrak{M}_i\) with a differential \(\operatorname{d}\!\) defined by\footnote{As usual, the notation \(\,\,\widehat{\,}\,\,\,\) indicates that the symbol below the hat should be omitted.}
\[
  \operatorname{d}\!\,(f\otimes e_{i_1}\wedge\ldots\wedge e_{i_k})
  = \sum_j (-1)^i f\cdot f_{i_j}\otimes e_{i_1}\wedge\ldots\wedge \widehat{e_{i_j}} \wedge\ldots\wedge e_{i_k}.
\]
Then the sequence
\[
  0 \to \mathfrak{M}_p \xrightarrow{\mathrm{d}} \mathfrak{M}_{p-1} \to \ldots \to \mathfrak{M}_1 \xrightarrow{\mathrm{d}} {\mathscr{O}}_X \xrightarrow{r} {\mathscr{O}}_Y \to 0
\tag{2}
\]
is exact at every point of \(U\), and \(\mathfrak{M}\) is thus, on \(U\), a projective resolution of \({\mathscr{O}}_Y\) over \({\mathscr{O}}_X\).
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The exactness of (2) at a point \(b\in U\cap Y\) is a well-known result (see, for example, {[}\protect\hyperlink{ref-3}{3}, Proposition 4.3, p.~151{]}, taking into account the fact that \({\mathscr{O}}_{b,Y}={\mathscr{O}}_{b,X}/(f_1,\ldots,f_p)\)).
For \(b\in U\setminus(U\cap Y)\), we have that \({\mathscr{O}}_{b,Y}=0\), and the exactness of (2) is then an elementary exercise left to the reader.

\begin{rmenv}{Remark}
If \(Y\) is a divisor, then (1) is exactly another way of writing the exact sequence of sheaves (which is exact on any \(X\))
\[
  0 \to {\mathscr{O}}_X([Y]^{-1}) \xrightarrow{f} {\mathscr{O}}_X \to {\mathscr{O}}_Y \to 0,
\tag{3}
\]
where \(f\) is the multiplication by a local equation on \(Y\).
This exact sequence thus shows that \(\gamma(Y)=1-[Y]^{-1}\).

\end{rmenv}

\leavevmode\hypertarget{proposition-11}{}%
\begin{itenv}{Proposition 11}
Let \(Y_1,\ldots,Y_m\) be non-singular subvarieties of \(X\) such that \(Y_i\) intersects transversally with
\[
  Y_{i-1} \cap\ldots\cap Y_1
  \quad\text{(for }i=2,\ldots,m\text{).}
\]
Then
\[
  \gamma(Y_1\cap\ldots\cap Y_m) = \prod_i\gamma(Y_i).
\]

\end{itenv}

\begin{proof}
An evident induction on \(m\) shows that it suffices to consider the case of two subvarieties \(Y\) and \(Z\) that intersect transversally.

By definition, \(\gamma(Y)\cdot\gamma(Z)\) is the alternating sum of the \(\operatorname{Tor}_i^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_Z)\).
It is clear that these sheaves, and the sheaf \({\mathscr{O}}_{Y\cap Z}\), are equal (and zero) at any point not contained inside \(Y\cap Z\), which, in particular, proves our claim if \(Y\cap Z=\varnothing\).

Now let \(a\in Y\cap Z\).
Since \(Y\) and \(Z\) intersect transversally, we can find an affine open subset \(U\) containing \(a\), and functions \(f_1,\ldots,f_p\) and \(g_1,\ldots,g_q\) that are regular on \(U\) such that the \(f_i\) (resp. the \(g_j\); resp, the \(f_i\) and the \(g_j\)) form a system of uniformising parameters for \(Y\) (resp. for \(Z\); resp. for \(Y\cap Z\)).
To calculate the \(\operatorname{Tor}_i({\mathscr{O}}_Y,{\mathscr{O}}_Z)\), we resolve \({\mathscr{O}}_Y\) by using (2).
We must thus determine the homology of the complex
\[
  0 \to \mathfrak{M}_n\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_Z \to \ldots \to {\mathscr{O}}_X\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_Z
\]
which can also be written as
\[
  0 \to {\mathscr{O}}_Z\otimes_k\bigwedge\nolimits^p V \to \ldots \to {\mathscr{O}}_Z\otimes_k V \to {\mathscr{O}}_Z
\]
endowed with the same differential as above, with the \(f_i\) being considered as element of \({\mathscr{O}}_Z\).
Since \({\mathscr{O}}_{a,Z} = {\mathscr{O}}_{a,X}/(g_1,\ldots,g_q)\), the \(f_i\) generate a perfect ideal inside;
so this complex is acyclic (see \protect\hyperlink{section-10.c}{§10.3}) and its \(0\)-th homology group is \({\mathscr{O}}_{a,Z}(f_1,\ldots,f_p)\), i.e.~\({\mathscr{O}}_{a,Y\cap Z}\).
Thus
\[
  \operatorname{Tor}_0 = {\mathscr{O}}_{Y\cap Z}
  \quad\text{and}\quad
  \operatorname{Tor}_i = 0
  \quad\text{(for }i\geqslant 1\text{),}
\]
which finishes the proof.
\end{proof}
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\leavevmode\hypertarget{proposition-11-corollary}{}%
\begin{itenv}{Corollary}
Let \(Y\) be a non-singular hyperplane section of \(Z\), and let \(k\) be the dimension of \(X\).
Then \((1-[Y])^{k+1}=0\).

\end{itenv}

\begin{proof}
We take the non-singular hyperplane sections \(Y_1,\ldots,Y_{k+1}\) whose intersection is empty, and such that the \(Y_i\) intersect transversally with \(Y_{i-1}\cap\ldots\cap Y_1\) (\(i=2,\ldots,k+1\)).
Since \([Y_i]=[Y]\), \protect\hyperlink{proposition-11}{Proposition 11} and the preceding remark show that \((1-[Y]^{-1})^{k+1} = 0\), whence the corollary, since \([Y]\) is invertible in \(K(X)\).
\end{proof}

\hypertarget{section-10.d}{%
\subsection{---}\label{section-10.d}}

We will use, both here and later on, the following remark;
let \({\mathscr{F}}\) and \({\mathscr{G}}\) be sheaves of algebras on \(X\).
Then the direct sum of the \(\operatorname{Tor}_i^{{\mathscr{O}}_X}({\mathscr{F}},{\mathscr{G}})\) canonically admits the structure of a sheaf of graded (by \(i\)) algebras.
If \({\mathscr{F}}\) admits, on \(U\), a resolution \({\mathscr{L}}\) over \({\mathscr{O}}_X\) that is a sheaf of graded algebras, then the product in the homology of \({\mathscr{L}}\otimes{\mathscr{G}}\) induced by the products in \({\mathscr{L}}\) and \({\mathscr{G}}\) coincides, on \(U\)\textless{} the the aforementioned coupling of the \(\operatorname{Tor}_i\).
{[}Details left to the read;
see {[}\protect\hyperlink{ref-3}{3}, Chap. IX{]} for some analogous and more general considerations.
This follows from the classical result on maps from an acyclic complex ({[}\protect\hyperlink{ref-3}{3}, Proposition 11, p.~76{]}).{]}

\leavevmode\hypertarget{proposition-12}{}%
\begin{itenv}{Proposition 12}
We have that \(i^!i_!(y)=y\cdot\lambda_{-1}(E^*)\) for all \(y\in K(Y)\).
In particular, \(i^!\gamma(Y)=\lambda_{-1}(E^*)\).

\end{itenv}

\begin{proof}
By linearity, and \protect\hyperlink{theorem-2}{Theorem 2}, we can restrict to proving \protect\hyperlink{proposition-12}{Proposition 12} in the case where \(y={\mathscr{F}}\) is a locally free sheaf.
By definition, \(i^!i_!({\mathscr{F}})\) is the alternating sum of the \(\operatorname{Tor}_i^{{\mathscr{O}}_X}({\mathscr{F}},{\mathscr{O}}_Y)\), and, since \({\mathscr{F}}\) and the \(\lambda^i E^*\) are locally free, \({\mathscr{F}}\cdot\lambda_{-1}E^*\) is the alternating sum of the \({\mathscr{F}}\otimes_{{\mathscr{O}}_Y}\lambda^i E^*\).
Recalling \protect\hyperlink{section-10.b}{§10.2}, it thus suffices, to prove \protect\hyperlink{proposition-12}{Proposition 12}, to show that
\[
  \operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{F}},{\mathscr{O}}_Y)
  = {\mathscr{F}} \otimes_{{\mathscr{O}}_Y} {\mathscr{I}}(Y)/{\mathscr{I}}(Y)^2
\tag{4}
\]
\[
  \operatorname{Tor}_i^{{\mathscr{O}}_X}({\mathscr{F}},{\mathscr{O}}_Y)
  = {\mathscr{F}} \otimes_{{\mathscr{O}}_Y} \lambda^i(\operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_Y)).
\tag{5}
\]
{[}In (5), \(\lambda^i\) is the \(i\)th exterior power of a sheaf which is locally free, given (4).{]}

Unless otherwise mentioned, \(\operatorname{Tor}\) and \(\otimes\) are taken over \({\mathscr{O}}_X\).
The exact sequence of \(\operatorname{Tor}\), applied to (1), gives the exact sequence
\[
  0 \to \operatorname{Tor}_1({\mathscr{F}},{\mathscr{O}}_Y) \to {\mathscr{I}}(Y)\otimes{\mathscr{F}} \xrightarrow{g} {\mathscr{F}}
\]
where \(g\) is defined by \(g(u\otimes v)=u\cdot v\).
Since \({\mathscr{I}}(Y)\) annihilates \({\mathscr{F}}\), \(g\) has a zero image, and so
\[
  \operatorname{Tor}_1({\mathscr{F}},{\mathscr{O}}_Y) = {\mathscr{I}}(Y)\otimes{\mathscr{F}}.
\]
But, since \({\mathscr{F}}\) is a sheaf on \(Y\), it is annihilated by \({\mathscr{I}}(Y)\), and so the image of \({\mathscr{I}}(Y)^2\otimes{\mathscr{F}}\) in \({\mathscr{I}}(Y)\otimes{\mathscr{F}}\) is zero, and \({\mathscr{I}}(Y)\otimes{\mathscr{F}}\) can be identified with \({\mathscr{I}}(Y)/{\mathscr{I}}(Y)^2\otimes{\mathscr{F}}\).
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Finally, since, in this product, the two sheaves are over \({\mathscr{O}}_Y\), their \(\otimes\) over \({\mathscr{O}}\) can be identified with their tensor product over \({\mathscr{O}}_Y\), which finishes the proof of (4).

Using the notation of \protect\hyperlink{section-10.b}{§10.2}, the \(\operatorname{Tor}_i({\mathscr{F}},{\mathscr{O}}_Y)\) are, on \(U\), the homology groups of the complex
\[
  0\to\mathfrak{M}_p\otimes{\mathscr{F}}\to\mathfrak{M}_{p-1}\otimes{\mathscr{F}}\to\ldots\to{\mathscr{F}}
\]
which can also be written as
\[
  0 \to {\mathscr{F}}\otimes_k\bigwedge\nolimits^p V \to {\mathscr{F}}\otimes_k\bigwedge\nolimits^{p-1}V \to \ldots \to {\mathscr{F}}
  \tag{6}
\]
endowed with the differential that extends \(\operatorname{d}\!\) and is zero on \({\mathscr{F}}\).
Since the \(f_i\) are local sections of \({\mathscr{I}}(Y)\), and this sheaf annihilates \({\mathscr{F}}\), it follows that, in (6), the differential is identically zero, and so
\[
  \operatorname{Tor}_i({\mathscr{F}},{\mathscr{O}}_Y) = {\mathscr{F}}\otimes_k\bigwedge\nolimits^iV = {\mathscr{F}}\otimes_{{\mathscr{O}}_Y}{\mathscr{O}}_Y\otimes_k\bigwedge\nolimits^i V
  \quad\text{(for }i\geqslant 0\text{).}
\]
In the particular case where \({\mathscr{F}}={\mathscr{O}}_Y\), this formula shows that
\[
  \operatorname{Tor}_1({\mathscr{O}}_Y,{\mathscr{O}}_Y) = {\mathscr{O}}_Y\otimes_k V
\]
whence we have an isomorphism (for the moment, local, defined by the use of the parameters \(f_i\)) of the two sides of (5).
But \(\mathfrak{M}\), thought of as a tensor product of the algebras \({\mathscr{O}}_Y\) and \(\bigwedge V\), is clearly a differential graded algebra, and so the remark made at the start of \protect\hyperlink{section-10.d}{§10.4} applies, and shows that, in fact, this isomorphism is intrinsic (and, in particular, does not depend on the chosen system of local parameters) and holds true over \(X\).
\end{proof}

\hypertarget{section-10.e}{%
\subsection{Particular case of the divisor}\label{section-10.e}}

In this case, we can use the resolution (3), which is global.
The \(\operatorname{Tor}_i({\mathscr{F}},{\mathscr{O}}_Y)\) are thus the homology groups of the complex
\[
  \ldots \to 0 \to {\mathscr{O}}_Y([Y]^{-1})\otimes{\mathscr{F}} \xrightarrow{f}{\mathscr{F}}
\]
where \({\mathscr{F}}\) is the multiplication by a local equation;
since \({\mathscr{F}}\) is annihilated by \({\mathscr{I}}(Y)\), the homomorphism \(f\) has a zero image, which implies that
\[
  \begin{aligned}
    \operatorname{Tor}_0({\mathscr{F}},{\mathscr{O}}_Y) &= {\mathscr{F}}
  \\\operatorname{Tor}_1({\mathscr{F}},{\mathscr{O}}_Y) &= [Y]^{-1}\cdot{\mathscr{F}}
  \\\operatorname{Tor}_i({\mathscr{F}},{\mathscr{O}}_Y) &= 0 \qquad\text{(for }i\geqslant 2\text{).}
  \end{aligned}
\]
By comparing with \protect\hyperlink{proposition-12}{Proposition 12}, we see that the restrictions of \([Y]^{-1}\) to \(Y\) and to \(E^*\) define the same element of \(K(Y)\).
In fact,

\hypertarget{proposition-13}{}
\begin{itenv}{Proposition 13}

Suppose that \(\operatorname{codim}Y=1\), and denote by \(L\) the restriction of \([Y]\) to \(Y\).
Then:

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  \(L=E\);
\item
  \(\gamma(Y) = 1-[Y]^{-1}\);
\item
  \(i^!i_!(y) = y\cdot(1-L^*).\)
\end{enumerate}

\end{itenv}
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\begin{proof}
Claim (c) was proven above, and (b) was proven in the remark of \protect\hyperlink{section-10.b}{§10.2}.
It remains only to prove (a).

Let \((U_i)\) be a cover of \(U\) such that, on \(U_i\), \(Y\) is defined by one equation \(f_i=0\), with the differential \(\operatorname{d}\!f_i\) being non-zero at every point of \(Y\cap U_i\), and let \(f_{ij}=f_i/f_j\) on \(U_i\cap U_j\).
We know that \([Y]\) is defined by the system \(\{f_{ij}\}\) of transition functions.
Also, on \(U_i\), we can identify \(E^*\) with the product \(U_i\times k\) by applying \(\operatorname{d}\!f_i\) to the unit section.
But, on \(Y\cap U_i\cap U_j\), we have that \(\operatorname{d}\!f_i=f_{ij}\cdot\operatorname{d}\!f_j\) (since \(f_j=0\) on \(Y\)), and so we can define \(E^*\) by the system of transition functions \(\{f_{ij}^{-1}\}\), which proves (a).
\end{proof}

\hypertarget{section-11}{%
\section{Proof of R--R in the particular case of an injection}\label{section-11}}

Given the results of \protect\hyperlink{section-7}{§7} and \protect\hyperlink{section-9}{§9}, it remains only to prove \protect\hyperlink{theorem-riemann-roch}{R--R} for an injection.
In the notation of \protect\hyperlink{section-10.a}{§10.1}, the formula to prove is then equivalent to
\[
  \operatorname{ch}i_!y = i_*(\operatorname{ch}y\cdot T(E)^{-1})
  \qquad\text{(for }y\in K(Y)\text{).}
\tag{1}
\]
Indeed, \(E\) is the quotient of the tangent bundle of \(X\) (restricted to \(Y\)) by the tangent bundle of \(Y\), so \(i^*T(X) = T(Y)\cdot T(E)\), whence
\[
  \begin{aligned}
    i_*(\operatorname{ch}y T^(E){-1}) &= i_*(\operatorname{ch}y\cdot T(Y)\cdot i^*(T(X))^{-1})
  \\i_*(\operatorname{ch}y T^(E){-1}) &= i_*(\operatorname{ch}y\cdot T(Y))\cdot T(X)^{-1}
  \end{aligned}
\]
and so (1) gives \protect\hyperlink{theorem-riemann-roch}{R--R} if we multiply both sides by \(T(X)\).

To prove (1), Grothendieck first considers the case where \(Y\) is a divisor and \(y\in i^!(K(X))\), and then reduces to this case by blowing up \(X\) along \(Y\).
This first particular case will be covered below, and the general case of the injection will be covered in \protect\hyperlink{section-13}{§13}, where we will assume certain properties of blow ups that will be proven in \protect\hyperlink{section-14}{§14}, \protect\hyperlink{section-15}{§15}, and \protect\hyperlink{section-16}{§16}.

We will use, without explanation, the formulas
\[
  \begin{aligned}
    f_!(y\cdot f^!(x)) = f_!(y)\cdot x
  \\f_*(y\cdot f^*(x)) = f_*(y)\cdot x
  \end{aligned}
\tag{2}
\]
where the first was proven in \protect\hyperlink{section-5.c}{§5.3}, and the second was mentioned in \protect\hyperlink{section-6}{§6} (whose notation we also continue to use).

\leavevmode\hypertarget{proposition-14}{}%
\begin{itenv}{Proposition 14}
The equality (1) is true if \(\operatorname{codim}_XY=1\) and \(y=i^!(x)\) (\(x\in K(X)\)).

\end{itenv}

\begin{proof}
By using (2) and \protect\hyperlink{proposition-13}{Proposition 13}, we see that
\[
  \operatorname{ch}(i_!i^!(x)) = \operatorname{ch}(x\cdot i_!(1)) = \operatorname{ch}(x\cdot(1-[Y]^{-1})).
\]
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Since \(x\mapsto\operatorname{ch}x\) is a ring homomorphism, and since \(c([Y])=1+Y\), this implies that
\[
  \operatorname{ch}(i_!) = \operatorname{ch}x\cdot\operatorname{ch}(1-[Y]^{-1}) = \operatorname{ch}x\cdot(1-e^{-Y}).
\]
The right-hand side of (1) is
\[
  \begin{aligned}
    i_*(\operatorname{ch}(i^!x)\cdot T(L)^{-1})
    &= i_*(i^*(\operatorname{ch}x)\cdot i^*(T([Y])^{-1}))
  \\&= \operatorname{ch}x\cdot T([Y])^{-1}\cdot i_*(1)
  \\&= \operatorname{ch}x\cdot T([Y])^{-1}\cdot Y
  \end{aligned}
\]
and (1) then follows from \(T([Y])=Y/(1-e^{-Y})\).
\end{proof}

\leavevmode\hypertarget{corollary-1}{}%
\begin{itenv}{Corollary 1}
\protect\hyperlink{theorem-riemann-roch}{R--R} is true if \(X=Y\times\mathbf{P}\), where \(\mathbf{P}\) is a projective space, and \(i\) is the map \(a\mapsto(a,p_0)\), with \(p_0\) some fixed point of \(\mathbf{P}\).

\end{itenv}

\begin{proof}
The map \(i\) is the product of the identity on \(Y\) with the injection of a point into \(\mathbf{P}\).
Given \protect\hyperlink{lemma-16}{Lemma 16}, it suffices to prove \protect\hyperlink{theorem-riemann-roch}{R--R} in this latter case.
If \(Y\) is a point, then \(K(Y)=\mathbb{Z}\), and it suffices to consider the case where \(y=1\).
Since \(1\in i^!(\mathbf{P})\), our claim follows from \protect\hyperlink{proposition-14}{Proposition 14} if \(\dim\mathbf{P}=1\).
Arguing by induction, we can assume that our claim is true for the injection \(u\colon Y\to H\) of \(Y\) into a hyperplane of \(\mathbf{P}\);
given part (a) of \protect\hyperlink{lemma-15}{Lemma 15}, it suffices to prove that \protect\hyperlink{theorem-riemann-roch}{R--R} is true for \(u_!(1)\) and the injection \(v\colon H\to \mathbf{P}\);
this, itself, follows from \protect\hyperlink{proposition-14}{Proposition 14} if we know that \(u_!(1)\in v^!(K(\mathbf{P}))\).
But let \(Z\) be a second hyperplane and \(D\) a line of \(H\) such that \(Y=D\cap Z\cap H\).
Then (\protect\hyperlink{proposition-11}{Proposition 11}) \(\gamma_H(Y) = \gamma_H(D)\cdot\gamma_H(H\cap Z)\).
By part (b) of \protect\hyperlink{proposition-13}{Proposition 13}, \(\gamma_H(H\cap Z)=1-[H\cap Z]^{-1}\);
since \([H\cap Z]\) can be identified with the restriction of \([H]\) to \(H\), part (c) of \protect\hyperlink{proposition-13}{Proposition 13} then shows that
\[
  u_!(1) = \gamma_H(Y) = v^!v_!(\gamma_H(D)) = v^!(\gamma_{\mathbf{P}}(D)).
\]
\end{proof}

\leavevmode\hypertarget{corollary-2}{}%
\begin{itenv}{Corollary 2}
If the equality (1) is true whenever \(2\dim Y\leqslant\dim X-2\), then it is true in general.

\end{itenv}

\begin{proof}
It suffices to compose \(i\) with an injection \(X\to X\times\mathbf{P}\), where \(\mathbf{P}\) is of large dimension, and the apply \protect\hyperlink{corollary-1}{Corollary 1} and part (b) of \protect\hyperlink{lemma-15}{Lemma 15}.
\end{proof}

\hypertarget{section-12}{%
\section{Blowing up along a subvariety}\label{section-12}}

\hypertarget{section-12.a}{%
\subsection{Notation}\label{section-12.a}}

We will write \(X'\) to mean the variety obtained by blowing up \(X\) along \(Y\), \(f\) to mean the projection from \(X'\) to \(X\), \(g\) to mean the restriction of \(f\) to \(Y'=f^{-1}(Y)\), and \(j\) to mean the injection from \(Y'\) to \(X'\).
We will thus have the commutative diagram
\[
  \begin{CD}
    Y' @>j>> X'
  \\@VgVV @VVfV
  \\Y @>>i> X
  \end{CD}
\tag{1}
\]
As before, \(E\) is the normal bundle of \(Y\) in \(X\), and \(p=\operatorname{codim}_XY\).
We will sometimes write \(E'\) to mean the inverse image of \(E\).
We will see that \(f\) is an isomorphism outside of \(Y'\), that \(g\) is the projection into a fibration with fibre equal to the projective space \(\mathbf{P}_{p-1}\) of dimension \((p-1)\), that \(\operatorname{codim}_{X'}Y'=1\), and that \(E'\) contains the restriction of \([Y']\) to \(Y'\), which will be denoted \(L\).
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Finally, we let \(F=E'/L\), which is a vector bundle of rank \((p-1)\).

\hypertarget{section-12.b}{%
\subsection{\texorpdfstring{Definition of \(X'\) by local charts}{Definition of X' by local charts}}\label{section-12.b}}

Over an affine open subset \(U\) that does not meet \(Y\), we take \(U\) itself as a local chart.
Now suppose that \(U\cap Y\neq\varnothing\), and that \(Y\) admits, in \(U\), uniformising parameters \(f_i\) (\(1\leqslant i\leqslant p\)).
Let \(t_i\) be homogeneous coordinates of \(\mathbf{P}_{p-1}\).
Then \(f^{-1}(U)\) is the subvariety of \(\mathbf{P}_{p-1}\times U\) defined by
\[
  U' = f^{-1}(U) = \big\{(t,u) \mid t_if_j(u)-t_jf_i(u)=0\big\}
\]
(with the \(t_i\) being the homogeneous coordinates of \(t\)) and \(f\) is the projection onto the second factor.
It is evident that \(f\) is a morphism, that it is an isomorphism outside of \(f^{-1}(Y\cap U)\), and that, if \(u\in Y\), then \(f^{-1}(u)=\mathbf{P}_{p-1}\).
The variety \(U'\) is the union of affine open subsets \(U'_i\), where \(U'_i\) is the set of points \((t,u)\) such that \(t_i\neq 0\).
If we let \(f'_j=f_j\circ f\), then the local equation of \(Y'\) in \(U'_i\) is \(f'_i=0\), and \(\operatorname{d}\!f'_i\) is a basis for the bundle \(L\) at each point of \(U'_i\) (see the proof of \protect\hyperlink{proposition-13}{Proposition 13}).

The differentials \(\operatorname{d}\!f_i\) are linearly independent at every point of \(Y\cap U\), and, on \(Y\cap U\), we will identify \(E^*\) with \(U\times k^p\), by applying \(\operatorname{d}\!f_1,\ldots\operatorname{d}\!f_p\) to the canonical basis of \(k^p\).
Let \(b=(t_1,\ldots,t_p)\in g^{-1}(a)\) for \(a\in Y\cap U\), and suppose that \(t_i\neq 0\).
Then the equations in \(\mathbf{P}\times U\) of the plane tangent to \(Y\) at \(b\) are \(\operatorname{d}\!f_j=(t_j/t_i)\operatorname{d}\!f_i\);
it follows that \(f\) sends, bijectively, the normal space of \(Y\) at \(b\) to the line \(t_1X_1+\ldots+t_pX_p\), where \((X_i)\) is the dual basis of \((\operatorname{d}\!f_j)\), whence we have a bijection \(\mu_U\) from \(g^{-1}(a)\) to the projective space associated to \(E_a\), and an inclusion of \(L\) into \(E'\), given by sending the fibre \(L_b\) of \(L\) to the line of \(E'_b\) that maps to \(t_1X_1+\ldots+t_pX_p\) under the canonical identification of \(E'_b\) with \(E_a\).

Let \(V\) be a second affine open subset of \(X\) that meets \(Y\), and in which \(Y\) has local parameters \(g_1,\ldots,g_p\).
Let \(\mathbf{P}'\) be a projective space with homogeneous coordinates \(s_1,\ldots,s_p\).
Then
\[
  V' = f^{-1}(V) = \big\{(s,v) \mid s_ig_j(v)-s_jg_i(v)=0\big\}
\]
and we will have, as before, a canonical map \(\mu_V\) from \(g^{-1}(a)\) to the projective space of \(E_a\).
This leads us to define the change of charts in \(U'\times V'\) by the rule:
\[
  (t,u) = (s,v)
  \quad\text{if [}v=u\not\in Y\text{] or [}v=u\in Y\text{ and }\mu_U(t)=\mu_V(s)\text{].}
\]
We must show that this correspondence is an isomorphism.
Let \(c\in U\cap V\).
Since the \((f_i)\) and the \((g_i(\) are two systems of local parameters for \(Y\), the exist elements \(a_{ij}\in{\mathscr{O}}_{c,X}\) that form an invertible matrix in \({\mathscr{O}}_{c,X}\) such that
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\[
  f_i = \sum_j a_{ij}g_j
\]
which also implies that \(\operatorname{d}\!f_i = \sum_j a_{ij}\operatorname{d}\!g_j\) on \(Y\).
In the neighbourhood of a point \(c'\in f^{-1}(c)\), the above correspondence is then defined by \((s,v)\mapsto(t,u)\), with \(v=u\) and \(t_i=\sum a_{ij}(u)s_j\).
We see that
\[
  f_it_j-f_jt_i = \sum_{m,n} a_{im}a_{jn}(g_ms_n-g_ns_m)
\]
and it easily follows that the correspondence in question is an isomorphism.

\hypertarget{section-12.c}{%
\subsection{\texorpdfstring{Projective embedding of \(X'\)}{Projective embedding of X'}}\label{section-12.c}}

We consider an embedding of \(X\) into some projective space \(\mathbf{P}_N\) of dimension \(N\), with homogeneous coordinates \((z_i)\).
Let \(\varphi_i\) (\(1\leqslant i\leqslant s\)) be a basis for the ideal of \(Y\) consisting of homogeneous polynomials, and let \(m\) be an integer \(\geqslant\) the maximum of the degrees of the \(\varphi_i\).
Let \((h_1,\ldots,h_M)\) be a basis for the \(k\)-vector space of forms of degree \(m\) in the \(z_i\) that are zero on \(Y\).
We can then take \(h_i\) to be the products of the form \(\varphi_j\cdot\mu\) (\(1\leqslant j\leqslant s\)) where \(\mu\) runs over the set of monomials in the \(z_i\) whose degrees are equal to \(m-\deg(\varphi_j)\).
It follows immediately that:

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  Given \(x\in X\setminus Y\), there exists some \(j\) such that \(h_j(x)\neq0\).
  Given \(y\in Y\), there exists some form \(g\) of degree \(m\), and a set \(I\) of \(p\) elements of \(\{0,1,\ldots,M\}\) such that the \(h_i/g\) (\(i\in I\)) form, in a suitable affine open neighbourhood of \(y\), a system of local parameters for \(Y\), and such that the \(h_i/g\in{\mathscr{O}}_{y,X}\) (\(i=0,\ldots,M\)).
\end{enumerate}

The \(h_i\) are sections of the bundle \(H^m\), where \(H\) is the bundle associated to a hyperplane section of \(X\).
We denote by \(h'_i\) the corresponding sections of the inverse-image bundle, and we consider, in the usual way, ``the map'' \(h\colon x'\mapsto(h'_0(x'),\ldots,h'_M(x'))\) from \(X\) to \(\mathbf{P}_M\) defined by this space of sections.
\emph{A priori}, this is not really a map, since it is not defined at the points where all the \(h'_i\) vanish simultaneously.
However, we want to show that:

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\setcounter{enumi}{1}
\tightlist
\item
  \(h\) is a morphism;
\item
  if \(u',v'\in Y'\) have the same image in \(Y\), and are distinct, then \(h(u')\neq h(v')\).
\end{enumerate}

To prove (ii), it suffices to show that, given \(x'\in X'\), there exists some index \(k\) such that \(h'_i/h'_k\in{\mathscr{O}}_{x,X}\) (\(0\leqslant i\leqslant M\)), since the \(h'_i(x')/h'_k(x')\) will then be the coordinates of \(h(x')\), and at least one of these quotients is non-zero.
Given (i), the existence of \(h'_i\) is evident if \(x'\not\in Y\).
Now let \(x'\in Y\).
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We can apply the second claim of (i), and, to simplify notation, we suppose that the \(f_i=h_i/g\) (\(i=1,\ldots,p\)) form a system of local parameters;
let \(t_1,\ldots,t_p\) be the homogeneous coordinates of \(x'\) in \(\mathbf{P}\) (the notation from the start of \protect\hyperlink{section-12.b}{§12.2}, and suppose that \(t_k\neq0\).
Then \(f'_k=0\) is a local equation for \(Y'\), and so the \(h'_j/g'\) are all divisible by \(f'_k\) in \({\mathscr{O}}_{x',X'}\), and so \(h\) is a morphism in \(x'\).
We also see that the \(i\)th homogeneous coordinate of \(h(x')\) is \(t_i/t_k\) (\(1\leqslant i\leqslant p\)), which evidently implies (iii).

With this in mind, consider the map \(\Psi\) from \(X'\) to \(X\times\mathbf{P}_M\) defined by \(\Psi(x')=(f(x'),(x'))\).
Given (ii) and (iii), \(\Psi\) is a bijective morphism, and it is clear that \(\Psi\) is an isomorphism outside of \(Y'\).
By the projective normalisation and the Main Theorem of Zariski, we thus deduce that \(X'\) is quasi-projective.

\hypertarget{section-13}{%
\section{Finishing the proof of R--R}\label{section-13}}

\leavevmode\hypertarget{lemma-18}{}%
\begin{itenv}{Lemma 18}
Let \(G\) be a vector bundle of rank \(k\) on a variety \(X\).
Then
\[
  \operatorname{ch}(\lambda_{-1}G) = c_k(G^*)T(G^*)^{-1}.
\]

\end{itenv}

\begin{proof}
Write the Chern class \(c(G)\) of \(G\) in the form
\[
  c(G) = \prod_{i=1}^k (1+a_i).
\]
Then (see {[}\protect\hyperlink{ref-9}{10}{]})
\[
  \begin{aligned}
    c(G^*) &= \prod (1-a_i),
  \\c(\wedge^sG) &= \prod_{i_1<\ldots<i_s} (1+a_{i_1}+\ldots+a_{i_s}),
  \end{aligned}
\]
whence
\[
  \begin{aligned}
    c_k(G^*) &= (-1)^k a_1\ldots a_k,
  \\\operatorname{ch}(\lambda_{-1}G) &= \prod (1-e^{a_i}),
  \end{aligned}
\]
and so
\[
  \operatorname{ch}(\lambda_{-1}G) = c_k(G^*)T(G^*)^{-1}.
\]
\end{proof}

\hypertarget{lemma-19}{}
\begin{itenv}{Lemma 19}

In the notation of \protect\hyperlink{section-12.a}{§12.1}, we have:

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\item
  \(f_*(1) = 1\), and so \(f_*f^*\) is the identity;
\item
  \(g_*(c_{p-1}(F)) = 1\);
\item
  \(f^!i_!(y) = j_!(g^!(y)\cdot\lambda_{-1}F^*)\) {[}\(y\in K(Y)\){]};
\item
  \(\lambda_{-1}F\equiv0 \mod(1-L^*)\) if \(p\geqslant\dim Y+2\).
\end{enumerate}

\end{itenv}

\begin{proof}
This lemma will be proven in \protect\hyperlink{section-14}{§14}, \protect\hyperlink{section-15}{§15}, and \protect\hyperlink{section-16}{§16}.
\end{proof}
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\leavevmode\hypertarget{proposition-15}{}%
\begin{itenv}{Proposition 15}
\protect\hyperlink{theorem-riemann-roch}{R--R} is true for an injection.

\end{itenv}

\begin{proof}
We must (see \protect\hyperlink{section-11}{§11}) establish the equality
\[
  \operatorname{ch}i_!(y) = i_*(\operatorname{ch}y\cdot T(E)^{-1}),
\tag{1}
\]
and it suffices to do this in the case where \(p\geqslant\dim Y+2\) (\protect\hyperlink{corollary-2}{Corollary 2 of Proposition 14}).
In this case, \(g^!(y)\cdot\lambda_{-1}F^*\equiv0\mod(1-L^*)\), by part (d) of \protect\hyperlink{lemma-19}{Lemma 19}, and so is in the image of \(K(X')\) under \(j^!\) (\protect\hyperlink{proposition-13}{Proposition 13}), and (\protect\hyperlink{proposition-14}{Proposition 14}) we can apply \protect\hyperlink{theorem-riemann-roch}{R--R} to \(g^!(y)\cdot\lambda_{-1}F^*\) and \(j\).
This gives
\[
  \operatorname{ch}j_!(g^! y\cdot\lambda_{-1}F^*)
  = j_*(\operatorname{ch}(g^! y\cdot \lambda_{-1}F^*)\cdot T(L)^{-1}).
\tag{2}
\]
To deduce (1) from this, it evidently suffices to show that
\[
  f_*(\operatorname{ch}j_!(g^!y\cdot\lambda_{-1}F^*)) = \operatorname{ch}i_! y
\tag{3}
\]
\[
  f_*j_*(\operatorname{ch}(g^!y\cdot\lambda_{-1}F^*)\cdot T(L)^{-1}) = i_*(\operatorname{ch}y\cdot T(E)^{-1}).
\tag{4}
\]

Part (c) of \protect\hyperlink{lemma-19}{Lemma 19} shows that the left-hand side of (3) is equal to
\[
  f_*(\operatorname{ch}f^!i_!y) = f_*^*(\operatorname{ch}i_!y)
\]
and thus equal to the right-hand side of (3), given part (a) of \protect\hyperlink{lemma-19}{Lemma 19}.

Since \(\operatorname{ch}\) is multiplicative, we have that
\[
  \operatorname{ch}(g^!y\cdot\lambda_{-1}F^*)
  = \operatorname{ch}g^!y\cdot\operatorname{ch}\lambda_{-1}F^*
  = g^*(\operatorname{ch}y)\cdot\operatorname{ch}\lambda_{-1}F^*
\]
and so (\protect\hyperlink{lemma-18}{Lemma 18})
\[
  \operatorname{ch}(g^!y\cdot\lambda_{-1}F^*) = g^*(\operatorname{ch}y)c_{p-1}(F)\cdot T(F)^{-1}.
\]
But \(E'/L=F\), so
\[
  g^*(T(E)) = T(E') = T(F)\cdot T(L)
\]
whence
\[
  \operatorname{ch}(g^!y\cdot\lambda_{-1}F^*)\cdot T(L)^{-1} = c_{p-1}(F)\cdot g^*(\operatorname{ch}y\cdot T(E)^{-1}).
\]
Given (2) (in \protect\hyperlink{section-11}{§11}) and part (b) of \protect\hyperlink{lemma-19}{Lemma 19}, the image under \(g_*\) of the right-hand side is equal to \(\operatorname{ch}y\cdot T(E)^{-1}\), and the equality in (4) then follows from the fact that \(f_*j_*=i_*g_*\).
\end{proof}

\hypertarget{section-14}{%
\section{Proof of parts (a) and (b) of Lemma 19}\label{section-14}}

The map \(f\) if an isomorphism outside of \(Y'\), and so is of local degree \(1\), and so sends a fundamental cycle to a fundamental cycle, whence part (a) of \protect\hyperlink{lemma-19}{Lemma 19}.

The map \(g_*\) lowers the degree (which is the geometric codimension) by \(p-1\), and corresponds to integration on the fibre.
But also, the restriction of \(L\) to a fibre \(\mathbf{P}_{p-1}\) of \(g\) can be thought of as \(k^p\setminus\{0\}\), the principal \(k^*\)-bundle, on the base \(\mathbf{P}_{p-1}\).
We know that the first Chern class of this latter bundle is the opposite of the class of a hyperplane.
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If we set \(-u=c_1(L)\), then this implies that
\[
  g_*(u^{p-1}) = 1,
\]
and we evidently have that \(g_*(u^i)=0\) (\(0\leqslant i<p-1\)) for dimension reasons.

Since \(E'/L=F\), we have that
\[
  \begin{aligned}
    c(E') &= c(F)(1-u)
  \\c(F) &= g^*(c(E))\cdot(1+u+u^2+\ldots)
  \\c_{p-1}(F) &= u^{p-1}+g^*(c_1(E))\cdot u^{p-2} +\ldots+ g^*(c_{p-1}(E))
  \\g_*(c_{p-1}(F)) &= g_*(u^{p-1})+c_1(E)g_*(u^{p-2}) +\ldots+ c_{p-1}(E)g_*(1)
  \end{aligned}
\]
whence
\[
  g_*(c_{p-1}(F)) = 1.
\]

\hypertarget{section-15}{%
\section{Proof of part (c) of Lemma 19}\label{section-15}}

In this section, we will write \({\mathscr{J}}\) to mean \({\mathscr{I}}(Y)\), and \({\mathscr{J}}'\) to mean \({\mathscr{I}}(Y')\).
As we remarked in \protect\hyperlink{section-10.b}{§10.2}, \({\mathscr{J}}'/{\mathscr{J}}'^2\) (resp. \({\mathscr{J}}/{\mathscr{J}}^2\)) is the sheaf of germs of sections of \(L^*\) (resp. \(E^*\)), and so \({\mathscr{J}}/{\mathscr{J}}^2\otimes_{{\mathscr{O}}_Y}{\mathscr{O}}_{Y'}\) is the sheaf of germs of sections of \(g^!(E^*)=E'^*\).

By associating, to an element \(u\in{\mathscr{J}}_x\), the element \(u\circ f\in{\mathscr{J}}'_{x'}(f(x')=x)\), we evidently define a surjective homomorphism of \({\mathscr{O}}_{Y'}\)-modules \(\mu\colon{\mathscr{J}}/{\mathscr{J}}^2\otimes_{{\mathscr{O}}_Y}{\mathscr{O}}_{Y'}\to{\mathscr{J}}'/{\mathscr{J}}'^2\).
This again shows that \(E'^*\) is sent to \(L^*\), and thus that \(L\) injects into \(E'\);
the kernel of \(\mu\) is the sheaf \({\mathscr{O}}_{Y'}(F^*)\) of germs of sections of \(F^*\), as we can easily verify;
in fact, this verification is superfluous, since we know that the kernel of \(\mu\) is locally free (see \protect\hyperlink{lemma-8}{Lemma 8}, \protect\hyperlink{section-4}{§4}), and thus corresponds to a subbundle \(N\) of \(E'^*\) such that \(E'^*/N=L^*\), and thus necessarily represents the same element as \(F^*\) in \(K(Y')\).
We thus have the exact sequence
\[
  - \to {\mathscr{O}}_{Y'}(F^*) \to {\mathscr{J}}/{\mathscr{J}}^2\otimes_{{\mathscr{O}}_Y}{\mathscr{O}}_{Y'} \xrightarrow{\mu} {\mathscr{J}}'/{\mathscr{J}}'^2 \to 0.
\tag{1}
\]

By linearity, and \protect\hyperlink{theorem-2}{Theorem 2}, it suffices to prove part (c) of \protect\hyperlink{lemma-19}{Lemma 19} in the case where \(y={\mathscr{G}}\) is a locally free sheaf.
In this case, \(g^!(y)={\mathscr{G}}\otimes_{{\mathscr{O}}_Y}{\mathscr{O}}_{Y'}\) is locally free over \({\mathscr{O}}_Y\), and \(g^!(y)\cdot\lambda_{-1}F^*\) is the alternating sum of the
\[
  {\mathscr{G}} \otimes_{{\mathscr{O}}_Y} {\mathscr{O}}_{Y'} {\mathscr{O}}_{Y'}(\lambda^i F^*)
  = {\mathscr{G}} \otimes_{{\mathscr{O}}_Y} {\mathscr{O}}_{Y'}(\lambda^i F^*).
\]
Also, \(f^!i_!(y)\) is the alternating sum of the \(\operatorname{Tor}_i^{{\mathscr{O}}_X}({\mathscr{G}},{\mathscr{O}}_{X'})\);
it thus suffices to prove that
\[
  \operatorname{Tor}_i^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'})
  = \lambda^i\operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'})
  \qquad\quad\text{(for }i\geqslant 1\text{)}
\tag{2}
\]
\[
  \operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'})
  = {\mathscr{O}}_{Y'}(F^*)
\tag{3}
\]
\[
  \operatorname{Tor}_j^{{\mathscr{O}}_X}({\mathscr{G}},{\mathscr{O}}_{X'})
  = {\mathscr{G}}\otimes_{{\mathscr{O}}_Y}\operatorname{Tor}_j^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'})
  \quad\text{(for }j\geqslant 1\text{).}
\tag{4}
\]
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their proof will be analogous to that of \protect\hyperlink{proposition-12}{Proposition 12} (\protect\hyperlink{section-10}{§10}).
We will first prove (2), as well as the fact that the \(\operatorname{Tor}_i^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'})\) are annihilated by \({\mathscr{J}}'\), and can thus be identified with sheaves on \(Y'\).

It is clear that the two sides of (2) are zero on an open subset that does not meet \(Y'\).
To prove (2) in the neighbourhood of a point \(b'\in Y'\), we reuse the notation from \protect\hyperlink{section-10.c}{§10.3} and \protect\hyperlink{section-12.b}{§12.2}.
So we need to calculate the homology of the complex
\[
  0 \to \mathfrak{M}_p\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_{X'} \to \ldots \to {\mathscr{O}}_{X'}
\]
which can also be written as
\[
  0 \to {\mathscr{O}}_{X'}\otimes_k\bigwedge\nolimits^p V \to \ldots \to {\mathscr{O}}_{X'}.
\]
Suppose that \(b'\) is in the open subset \(U'_j\) where \(t_j\neq0\).
Then it is clear that this complex of sheaves is isomorphic to the complex
\[
  0 \to {\mathscr{O}}_{X'}\otimes_k\bigwedge\nolimits^p V' \to \ldots \to {\mathscr{O}}_{X'}
\]
where \(V'\) has a basis \((e'_i)\), and where the differential is characterised by
\[
  \begin{aligned}
    \operatorname{d}\!(1\otimes e'_j) &= f_j\otimes1
  \\\operatorname{d}\!(1\otimes e'_i) &= (f_i-t_if_j/t_j)\otimes1
  \end{aligned}
\]
and by the fact that it extends to a differential of algebras.
In this new complex, it is immediate that the cycles of exterior degree \(s\) form \({\mathscr{O}}_{X'}\otimes_k\bigwedge\nolimits^s(e'_1,\ldots,\widehat{e'_j},\ldots,e'_p)\) and that the boundaries of exterior degree \(s\) form the ideal
\[
  f_j\cdot{\mathscr{O}}_{X'}\otimes_k\bigwedge\nolimits^s(e'_1,\ldots,\widehat{e'_j},\ldots,e'_p).
\]
Consequently,
\[
  \operatorname{Tor}_i^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'})
  \cong
  {\mathscr{O}}_{Y'}\otimes_k\bigwedge\nolimits^i(e'_1,\ldots,\widehat{e'_j},\ldots,e'_p),
\]
which proves that the \(\operatorname{Tor}_i\) are sheaves on \(Y'\), and, taking the initial remark of \protect\hyperlink{section-10.d}{§10.4} into account, also gives (2).

\begin{proof}
\emph{(of (3)).}
The exact sequence of \(\operatorname{Tor}\), applied to
\[
  0\to{\mathscr{J}}\to{\mathscr{O}}_X\to{\mathscr{O}}_Y\to0,
\]
gives the exact sequence
\[
  0 \to \operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'}) \to {\mathscr{J}}\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_{X'} \xrightarrow{g} {\mathscr{O}}_{X'}.
\]
It is clear that, if \(b=f(b')\), then \({\mathscr{J}}'_{b'}={\mathscr{J}}_b\cdot{\mathscr{O}}_{b',X'}\), and so the image of \(g\) is \({\mathscr{J}}'\), and we obtain the exact sequence

\[
  0 \to \operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'}) \to {\mathscr{J}}\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_{X'} \to {\mathscr{J}}' \to 0.
\tag{5}
\]
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Since \(\operatorname{Tor}_1({\mathscr{O}}_Y,{\mathscr{O}}_{X'})\) is a sheaf on \(Y'\), we can write
\[
  \operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'})\otimes_{{\mathscr{O}}_{X'}}{\mathscr{O}}_{Y'}
  = \operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'})\otimes_{{\mathscr{O}}_{Y'}}{\mathscr{O}}_{Y'}
  = \operatorname{Tor}_1({\mathscr{O}}_Y,{\mathscr{O}}_{X'}).
\]
Also, \({\mathscr{J}}'\) can be identified with \({\mathscr{O}}_{X'}([Y']^{-1})\), and is locally free, and so \(\operatorname{Tor}_1^{{\mathscr{O}}_{X'}}({\mathscr{J}}',{\mathscr{O}}_{Y'}) = 0\), and the exact sequence of \(\operatorname{Tor}\), applied to (5), gives the exact sequence

\[
  0 \to \operatorname{Tor}_1^{{\mathscr{O}}_X}({\mathscr{O}}_Y,{\mathscr{O}}_{X'}) \to {\mathscr{J}}\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_{Y'} \xrightarrow{g} {\mathscr{J}}'\otimes_{{\mathscr{O}}_{X'}}{\mathscr{O}}_{Y'} \to 0.
\tag{6}
\]

It is immediate that the canonical image of \({\mathscr{J}}^2\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_{Y'}\) (resp. \({\mathscr{J}}'^2\otimes_{{\mathscr{O}}_{X'}}{\mathscr{O}}_{Y'}\)) in \({\mathscr{J}}\otimes_{{\mathscr{O}}_X}\otimes{\mathscr{O}}_{Y'}\) (resp. \({\mathscr{J}}'\otimes_{{\mathscr{O}}_{X'}}{\mathscr{O}}_{Y'}\)) is zero, whence we have canonical isomorphisms
\[
  \begin{gathered}
    {\mathscr{J}}\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_{Y'}
    = {\mathscr{J}}/{\mathscr{J}}^2\otimes_{{\mathscr{O}}_X}{\mathscr{O}}_{Y'}
    = {\mathscr{J}}/{\mathscr{J}}^2\otimes_{{\mathscr{O}}_Y}{\mathscr{O}}_{Y'}
  \\{\mathscr{J}}'\otimes_{{\mathscr{O}}_{X'}}{\mathscr{O}}_{Y'}
    = {\mathscr{J}}'/{\mathscr{J}}'^2\otimes_{{\mathscr{O}}_{X'}}{\mathscr{O}}_{Y'}
    = {\mathscr{J}}'/{\mathscr{J}}'^2
  \end{gathered}
\]
which send \(g\) to the homomorphism \(\mu\) from the sequence (1).
The equality (2) then follows from (1) and (6).

The equality (4) then follows from an associativity formula of \(\operatorname{Tor}\) (see {[}\protect\hyperlink{ref-3}{3}{]}).
We consider \(T({\mathscr{G}},{\mathscr{O}}_{X'}) = {\mathscr{G}}\otimes_{{\mathscr{O}}_Y}{\mathscr{O}}_Y\otimes{\mathscr{O}}_{X'}\) as a functor in \({\mathscr{G}}\) and \({\mathscr{O}}_{X'}\).
To calculate its left-derived functors \(\mathrm{L}_iT\), we have two spectral sequences, with respective \(E_2\) pages
\[
  \begin{aligned}
    E_2^{ij} &= \operatorname{Tor}_i^{{\mathscr{O}}_Y}(\operatorname{Tor}_j^{{\mathscr{O}}_X}({\mathscr{O}}_{X'},{\mathscr{O}}_Y),{\mathscr{G}})
  \\E'^{ij}_2 &= \operatorname{Tor}_j^{{\mathscr{O}}_X}(\operatorname{Tor}_i^{{\mathscr{O}}_Y}({\mathscr{G}},{\mathscr{O}}_Y),{\mathscr{O}}_{X'}).
  \end{aligned}
\]
From this, it evidently follows that \(E_2^{ij}=E'^{ji}_2=0\) if \(i>0\), and thus that
\[
  E_2^{0j} = E'^{j0}_2 = \mathrm{L}_jT({\mathscr{G}},{\mathscr{O}}_{X'})[]
\]
since \(E_2^{0j}\) and \(E'^{j0}_2\) are equal to the right- and left-hand sides (respectively) of (4), this proves the equality.
\end{proof}

\hypertarget{section-16}{%
\section{Proof of part (d) of Lemma 19}\label{section-16}}

\leavevmode\hypertarget{lemma-20}{}%
\begin{itenv}{Lemma 20}
Let \(G\) be an ample vector bundle of rank \((q+k)\) on \(Y\) (\(q=\dim Y\); \(k\geqslant 0\)).
Then \(G\) contains a trivial subbundle of rank \(k\).

\end{itenv}

\begin{proof}
The fact that \(G\) is ample implies that, at each point \(y\), the fibre \(G_y\) is generated by its sections.
So there exists a finite-dimensional \(k\)-vector space \(V\) of sections, such that the map \(r_y\colon V\to G_y\), that sends each section to its value at \(y\), is surjective for all \(y\in Y\).
(If \(Y\) is not complete, take a cover by affine open subsets that are complete, and then extract a finite subcover by ``quasi-compactness.'')
We thus have an exact sequence
\[
  0 \to N_y \to V \to E_y \to 0
\]
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for all \(y\in Y\), where \(\operatorname{codim}_V N_y=q+k\).
The \(N_y\) form a vector subbundle \(N'\) of the trivial bundle \(V\times Y\), by \protect\hyperlink{lemma-8}{Lemma 8} (\protect\hyperlink{section-4}{§4}).
The injection of the \(N_y\) into \(V\) thus defines a morphism \(u\colon N\to V\).
Since \(\dim V=q+\dim N_y\), the closure of \(\operatorname{Im}u\) is of codimension \(\geqslant k\).
Since \(\operatorname{Im}u\) is a union of vector subspaces, \(\overline{\operatorname{Im}u}\) is an algebraic homogeneous space;
consequently, there exists a subspace \(W\) of dimension \(k\) whose intersection with \(\overline{\operatorname{Im}u}\) is \(\{0\}\).
Then \(W\cap N_y=(0)\) for all \(y\in Y\), and so \(W\) defines the required subbundle.
(For this proof, see {[}\protect\hyperlink{ref-1}{1}{]}.)
\end{proof}

\leavevmode\hypertarget{lemma-21}{}%
\begin{itenv}{Lemma 21}
Let \(G\) be a vector bundle of rank \(p=q+k\) on \(Y\) (\(q=\dim Y\)).
Then \(\lambda^s(G- k)=0\) for all \(s\geqslant q+1\).

\end{itenv}

\begin{proof}
Let \(h\) be the bundle associated to a hyperplane section of \(Y\).
Then (by \protect\hyperlink{proposition-11-corollary}{the Corollary of Proposition 11})
\[
  (1-h)^{q+1} = 0
\]
and so \(h=1+u\), with \(u^{q+1}=0\), whence
\[
  h^n = \sum_{0\leqslant i\leqslant q}\binom{n}{i}u^i.
\]
It follows that
\[
  \lambda_t(Gh^n- k) = \prod_{i=1}^q \lambda_t(Gu^i)^{\binom{n}{i}}\cdot(1-t)^{-k}
\]
and the reader can, from this, deduce that \(\lambda^s(Gh^n- k)\) is of the form
\[
  \lambda^s(Gh^n- k) = \sum_{i=1}^{m_s} B_{s,i}P_{s,i}(n)
\]
where \(B_{s,i}\in K(Y)\), and where \(P_{s,i}(n)\) is a polynomial with rational coefficients that, for all \(n>0\) large enough, takes integer values.
We then know (Hilbert) that \(P_{s,i}\) is a \(\mathbb{Z}\)-linear combination of the polynomials
\[
  \binom{X}{j} = X(X-1)\ldots(X-j+1)/j!
\]
and so, finally,
\[
  \lambda^s(Gh^n- k) = \sum_{i=0}^{n_s} A_{s,i}\binom{n}{i}
  \qquad\text{(for }A_{s,i}\in K(Y)\text{).}
\tag{1}
\]

For \(n>n_0\), the bundle \(Gh^n\) is ample ({[}\protect\hyperlink{ref-12}{12}{]}), and so (\protect\hyperlink{lemma-20}{Lemma 20}) contains a trivial bundle of rank \(k\)\textless{} and \(Gh^n- k\) can be identified with a bundle of rank \(q\);
its \(s\)th exterior power is then evidently zero for all \(s\geqslant q+1\).
Given (1), it
suffices to show that, if the polynomial
\oldpage{134}
\[
  P(n) = \sum_{i=0}^m A_i\binom{n}{i}
  \qquad\text{(for }A_i\in K(Y)\text{)}
\]
is zero for \(n>n_0\), then all the \(A_i\) are zero.
For this, we proceed by induction on \(m\), and consider the first difference
\[\begin{aligned}
  \Delta P(n)
  &= P(n+1) - P(n)
\\&= \sum_{i=1}^m A_i\binom{n}{i-1}
\\&= \sum_{j=0}^{m-1} A_{j-1}\binom{n}{j}.
\end{aligned}\]
Since \(\Delta P(n)=0\) for \(n>n_0\), the \(A_i\) (\(1\leqslant i\leqslant m\)) are zero by the induction hypothesis, whence clearly \(A_0=0\) as well.
\end{proof}

\leavevmode\hypertarget{lemma-22}{}%
\begin{itenv}{Lemma 22}
Let \(G\) and \(L\) be vector bundles on \(Y\), with respective ranks \(p\) and \(1\).
Then

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  \(\lambda^p(G-1) = (-1)^p\lambda_{-1}(G)\);
\item
  \(\lambda_t G(1- L) \equiv 1\mod(1-L)\);
\end{enumerate}

and so, if \(G_1\equiv G_2\mod(1-L)\) {[}\(G_1,G_2\in K(Y)\){]}, then \(\lambda^iG_1\equiv\lambda^iG_2\mod(1-L)\) for all \(i\geqslant 1\).

\end{itenv}

\begin{proof}

---

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\item
  We have that
  \[
     \begin{aligned}
       \lambda_t(G-1)
       &= \lambda_t(G)/\lambda_t(1)
       = \lambda_t(G)\cdot(1+t)^{-1}
     \\&= \lambda_t(G)(1-t+t^2-t^3+\ldots)
     \end{aligned}
   \]
  and it suffices to compare the coefficients of \(t^p\).
\item
  We have that
  \[
     \lambda^i(G\cdot L)
     = L^i\cdot\lambda^i G
     \equiv \lambda^i(G)\mod(1-L)
   \]
  or, again, \(\lambda_t(GL)\equiv\lambda_t(G)\mod(1-L)\), which gives (b).
\end{enumerate}

\end{proof}

\begin{proof}
\emph{(of part (d) of \protect\hyperlink{lemma-19}{Lemma 19}).}
By \protect\hyperlink{lemma-22}{Lemma 22}, we have that
\[
  (-1)^{p-1}\lambda_{-1}F^* = \lambda^{p-1}(F^*-1).
\]
But \(E'^*/F^*=L^*\), so \(F^*-1\equiv E'^*-2\mod(1-L^*)\), whence (\protect\hyperlink{lemma-22}{Lemma 22})
\[
  \lambda_{-1}F^* \equiv \lambda^{p-1}(E'^*-2) \mod(1-L^*),
\]
which can also be written as
\[
  \lambda_{-1}F^* \equiv g^!(\lambda^{p-1}(E'^*-2)) \mod(1-L^*).
\]
\oldpage{135}
It thus suffices to show that \(\lambda^{p-1}(E^*-2) = 0\) if \(p\geqslant\dim Y+2\), which follows from \protect\hyperlink{lemma-21}{Lemma 21}.
\end{proof}

\hypertarget{section-17}{%
\section{An application of R--R}\label{section-17}}

The following application (pointed out by Hirzebruch) is about ``integration on the fibre'' in an algebraic bundle.
We place ourselves in the classical case, i.e.~\(k=\mathbb{C}\).

\leavevmode\hypertarget{proposition-16}{}%
\begin{itenv}{Proposition 16}
Let \((E,B,F,g)\) be an algebraic bundle, where \(E\), \(B\), and \(F\) are projective, irreducible, and non-singular, and let \(\xi\) be the tangent bundle along the fibres.
Then
\[
  g_*(T(\xi)) = \operatorname{To}(F)\cdot1.
\]

\end{itenv}

{[}Here \(\operatorname{To}(X)\) denotes the Todd genus of \(X\).{]}

\begin{proof}
The tangent bundle to \(E\) is an extension of \(\xi\) by the fibre induced by the tangent bundle to \(B\), so
\[
  T(X) = g^*(T(B))\cdot T(\xi),
\]
whence
\[
  g_*(T(X)) = T(B)\cdot g_*(T(\xi)).
\]
We apply \protect\hyperlink{theorem-riemann-roch}{R--R} to \(g\) and the bundle \(1\) on \(X\), which gives us that
\[
  g_*(T(X)) = \operatorname{ch}g_!(1)\cdot T(B),
\]
and so, given the above,
\[
  g_*(T(\xi)) = \operatorname{ch}g_!(1).
\]
We need to calculate \(g_!(1)\).
Let \(U\) be an affine open subset of \(B\) over which the bundle is trivial.
By Künneth (see the proof of \protect\hyperlink{lemma-16}{Lemma 16}), we have that
\[
  \mathrm{H}^q(U\times F,{\mathscr{O}}_X)
  = \sum_{i+j=q} \mathrm{H}^i(U,{\mathscr{O}}_U)\otimes\mathrm{H}^j(F,{\mathscr{O}}_F).
\]
Since \(U\) is affine, \(\mathrm{H}^i(U,{\mathscr{O}}_U)=0\) for \(i>0\), and \(\mathrm{H}^0\) can be identified with regular functions on \(U\).
But, in an algebraic bundle, the structure group \(G\) is connected (by hypothesis), and so acts trivially on \(\mathrm{H}^j(F,{\mathscr{O}}_F)\), which is the type-\((0,j)\) component of \(\mathrm{H}^j(F,\mathbb{C})\).\footnote{We do not know if the fact that \(G\) acts trivially on the \(\mathrm{H}^j(F,{\mathscr{O}}_F)\) remains true in characteristic \(p>0\). This is why we had to assume that \(k=\mathbb{C}\).}
It thus follows that
\[
  g_!(1)
  = {\mathscr{O}}_B \otimes \left(
    \sum_q (-1)^q \mathrm{H}^q(F,{\mathscr{O}}_F)
  \right).
\]
Then \(g_!(1)\) is the alternating sum of trivial bundles, and so \(g_!(1)\) has exactly one component, which is in degree \(0\), and which is the alternating sum of the \(\dim\mathrm{H}^q(F,{\mathscr{O}}_F)\), which proves the proposition.
\end{proof}
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\begin{rmenv}{Remark}
This proposition implies that the multiplicative sequence that defines the Todd class is ``strictly multiplicative'' for algebraic fibres, in the terminology of Borel-Hirzebruch {[}\protect\hyperlink{ref-2}{2}{]}.
In particular, it thus follows that \(\operatorname{To}(E)=\operatorname{To}(B)\cdot\operatorname{To}(F)\).
In {[}\protect\hyperlink{ref-2}{2}{]}, this property, of strict multiplicativity, is proven in the differentiable, almost-complex case, and where also the fibre is some \(G/T\) or associated space.

\end{rmenv}
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