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Introduction

This article is the first part of a work on the notion of structured categories and of
species of structured structures. The main results are summarised in a series in Notes
a l’Académie des Sciences [3e].

Section I begins with a short reminder on the notions of species of structures and
categories of homomorphisms. Let (€, p, #,S) be a category of homomorphisms over
‘6 such that § contains the groupoid of invertible elements of the category #, and
such that 6 is further endowed with the structure of an inductive category. We define
the substructures of a structure of #. This notion makes precise that of a sub-object
of an arbitrary category, using the fact that # is a category of homomorphisms and
% an inductive category;?''!l it leads to endowing # with the structure of an ordered
category, which is the subject of the main results of this section.

Let (Ml,p,7.,T") be a category of homomorphisms with finite products, over a cat-
egory Jl of maps; we define, at the start of Section II, #-structured categories (or,
more precisely, # (%', %" )-structured categories). 12l We then give a certain number
of examples: topological categories and differential categories [3b]; double categories
that arise, in particular, in the theory of natural transformations between functors [3d];
order-structured categories, in particular inductive categories and inductive groupoids
[3cl, etc. These examples, which I was led to consider in the study of fibred spaces,
foliated spaces, extensions of differential varieties, and local structures in general, are
the origin of this work. The end of Section II contains a series of general theorems:

o F-structured functors form a category of homomorphisms over a category of
functors, and over J(; it has finite products and is right solving.

e Let (B°,s) be an #-structured category; if B isa subcategory of 6°, and 5 a
substructure of s such that p(s) = @, then (6", 5) is an #-structured category.

o If (B, s) is an #-structured category, then the categories of trios and of quartets
of 6° are #-structured categories.

All of these theorems use the additional hypothesis that (Ml,p, #,T) is a right-
solving category of homomorphisms (that is, # contains “enough” substructures). 221!
The second part of this article (to appear soon) will contain the theory of species
of structured structures;?>?! we will show how the complete enlargement procedure of

[21.1] This notion of substructure is simplified in subsequent papers ([E61, E66, E6I]), where it is
freed from any order on €.

[21.2] Structured categories are, in a more modern language, categories internal to a concrete category
7 such that the “internal” source, target, and composition can be applied on those of a usual category by
the concrete functor p: # — Set (cf. Comment 55.2).

[22.1] A faithful set-valued functor is right solving if and only if it creates canonical equalisers (cf.
Comment 221.2 on [(E100]).

[22.2] This second part has not been developed, but only sketched in four notes: [E89, 90, (95,
E96].
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an inductive groupoid can be generalised to species of structured structures. We will
then give some applications of all these concepts to more specific problems.

I Categories of homomorphisms and substructures

I.1 Conventions

A category will be in general represented by the symbol denoted the underlying class
(or support) of the category along with the symbol for the composition law that makes
this class a category as a superscript. For example: 6+, i, @ (resp. 6°, 67,
%.), ...denote the categories obtained by endowing the class €, 6y, @, ...with the
composition law L (resp. ). The class of units of a category will be denoted by
the symbol representing the category along with a 0 as a subscript. For example: 63,
(61)o, %(J{ , .... If a class of objects is naturally associated to the category (for example,
the classes in a category of maps from one class to another), then we will tacitly identify
the units with the corresponding objects.?*4

Let 61 be a category. The source and target maps that send an element f € €=+
to its right and left units will be denoted o and 3 (respectively). The class of pairs
(g, f) such that the composite g | f is defined (that is, such that a*(g) = 8(f)) will
be denoted by the symbol 61 x €1;

(g, /)—g L f where (g, f € ®* *CGJ‘)

will be denoted by the symbol x.

To simplify notation, if no confusion is possible, we will represent a category by
the same symbol as its underlying class; in this case, it is to be understood that the
composition law is denoted by e; we thus write 6 instead of ‘€°. Similarly, we will also
write Gy, ¢, and (3 instead of 63, a®, and 3° (respectively).

L
Let C* and 6~ be two categories; the word “functor” will always mean a contravari-

ant functor. A functor from 6 to @ will be denoted either by a triple (@L, F, 6%,
where F' is the corresponding map, or by just the letter . The restriction of F' to the

class 63", considered as a map from G5 to @é, will be denoted Fjp.

I.2 Reminder on species of structures

Since the notion of species of structures [3a] is essential in this article, we will recall
the definition and main properties.

Definition 1. We say that a category @ is a category of operators on a class ¥ if we have
defined a composition law (f,z) — fz for certain pairs (f,z) € € x X( such that
fz € ¥p and such that the following axioms are satisfied:

(1) Associativity. If one of g(fz) or (ge f)z is defined, then both of them are defined,
and

9(fz) = (g* f)z
(2) If g o f and fz are defined, then g(fz) is defined;

(3) Let e € Gy; if ez is defined, then ez = z;

(4) (a) For all z € ¥, there exists at least one f € 6 such that fz is defined;
(b) For all f € 6, there exists at least one z € Xy such that fz is defined.

[22.4] This identification must be considered as an abbreviation, not as a formal operation (cf. Com-
ment 211.1 on [(E100]).
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These axioms imply that, for all z € X, there exists exactly one e € € such that
ez is defined; we thus obtain a map pg: z — e from X to Gy; we say that z is a structure
on po(2).

Definition 2. Let 3 be a class, and 6 a category; we say that X is a species of structures
over 6 if we have a subcategory 6; of ‘6 that is a category of operators on ¥g; let pg
be the corresponding map from 3, to 6p; we also say that (6,pg, Xo) is a species of
structures. If, further, €, = 6, then we say that [8, pg, Xo| is a species of structures on 6.

Let (6, po, Xo) be a species of structures. Let X be the class of pairs (f, z) € € x g
such that fz is defined, i.e. such that a(f) = po(z).

[23.1] This “i.e.” is not correct: if fz exists, then a(f) = po(z); but the converse
is not true. For instance, if ‘6; is the groupoid of isomorphisms of 6, then the
assertion is valid only if the acting category is € itself. Hence the notion of a
strong species of structures: a species of structures in which the acting subcategory
contains each f whose source is in it; equivalently, the composite fz exists if and
only if a(f) = po(2).

Strong species of structures are characterised by axioms (1), (2), (3), and (4a)
— but not (4b) — of Definition 1 for an acting category (cf. Remark 2 in §1.3).
The corresponding functor p: ¥ — 6 from the hypermorphisms category satisfies
the condition that the diagram

Y« %

SO

C@O ‘T C@
is a pullback (which is somewhat stronger than condition (E) below); in more
modern language, this means that p is a discrete opfibration. Conversely, each
discrete opfibration determines a strong species of structures.

Endowed with the composition law
(f,2')e(f,2)=(f ef z) ifandonlyif 2’ = fz,
Y is a category, called the associated category of hypermorphisms of the species of structures

(6,p0,2X0). The class of units of ¥ can be identified with ¥ by associating (e, z) with
z. The map pg extends to a functor (€, p, X) satisfying the following property:

(E) Forallh € ¥ and all z € Xy such that
po(2) = po(a(h))

there exists exactly one h' € 3 such that

p(h')=p(h) and «(h') ==z

The species of structures (6, po, L) is also denoted by (6, p, X).

Conversely, let 6 and ¥ be two categories. Let (6, p, %) be a functor satisfying
condition (E); we say that X is a category over € with respect to p. We can show [3a] that
p(X) is a subcategory of €, and that the map

h — (p(h),a(h))

lets us identify > with the associated category of hypermorphisms of the species of
structures (6, pg, Xo) in which the composition law is defined by

(f;2) — B(h)
if and only if there exists h € ¥ such that
f=ph) and z=alh).
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I.3 Species of structures dominated by a category

We denote by Jly a class of classes such that if it contains X then it also contains all
the subsets of X.

[24.1] The set-theoretical assumptions here are not explicit (cf. also Comment 155.1
on [(E66] and Comment 211.2 on [(E100]). Charles was very conscious of the prob-
lem. For instance, he suggested such foundational questions as a thesis subject to
Houdebine [C55], pointing out Quine’s theory of types [C87]. Later on, he was
much interested by Lawvere’s category-based theory [C64].

In fact, Charles’ conception on this subject evolved from 1957 to 1967: in
[(E47] he wanted to speak about “the category $ of all sets”, whence the (not too
formal) distinction between classes and sets, as in Bernays—Go6del theory [C10]. In
[E55], as well as this 1963 paper, logical problems are avoided thanks to the use
of a “class [y of classes”; Charles thought of .o as a “large enough” variable set
(and the word “class” is used to indicate that no particular set theory is adopted),
on which conditions are added when necessary (for instance, Jl, is closed under
products and subsets in §1I); in [(E66, (E100], #( must be closed under quotients
and countable coproducts. From [(E109] onwards, (o becomes a universe.

Note that the letter /{ was really chosen to stress the variability of the class
(in geometry, a variable point is often denoted by M...); but we thought of two
other interpretations of this letter: “Mengen” in German, and “maps” in English;
and the latter is well suited since later texts are written in English, and we liked
to name a category by its morphisms instead of its objects.

Then Jly can be identified with a class of units of the category 4 whose elements
are triples (M’, f, M) such that M, M’ € My and f is a surjection from M onto a
subclass of M’, and with the composition law defined by

(M", f', M) e (M, f,M)=(M",f'f,M) ifand onlyif M; =M’
where f’f denotes the surjection
z— f'(f()).

If f = (M, f, M), then we also write f(x) to mean f(z).
Let (8,p,Y) be a species of structures such that p~!(e) belongs to Jly for all e €
po(Xo). Let f € p(¥) and set

e =a(f),
e’ = B(f).

Set

f(z)=fz for all z such that p(z) = e;

then F(e) can be identified with p—!(e). If f is an invertible element of p(X), then the
map f is a bijection from F(e) to F(e’). The map F: f — F(f) for f € p(¥) is a
functor from «a(F) = p(X) to M satisfying the axiom

(A) Lete,e € a(F)y; then
Fle) # &;
further, ife # €' then
Fle)nF(e) = 2.
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Furthermore, the pair (€, F) entirely determines (6, p, X).

Conversely, let (6, F') be a pair such that F' is a functor from a subcategory a(F)
of € to Jl satisfying condition (A). We can show [3a] that the class Xy, given by the
union of the classes F'(e) over all e € a(F)o, is a species of structures over 6, in which
the composition law is defined by

(f,2) — F(f)(z) ifandonlyif ze€ F(a(f)).

We say that (6, ') is a a pair defining a species of structures, namely the species of struc-
tures > constructed above.

Remarks. —

(1) Let 6 be a category, a(F) a subcategory, and (M, F, a(F)) a functor. Let F' be
the functor that sends f € a(F) to the map

(a(f),2) — (B(f), F(f)(2))  where z € F(a(f)).

The pair (6, F) defines the species of structures (6, pg, X ), where ¥ is the class
of pairs (e, z) such that e € «(F)o, z € F(e), and

po(e, z) = e.

(2) Let (6, F) be a pair defining a species of structures (6, p, X) such that «(F)
contains f € € whenever a(f) € a(F); this is equivalent to saying that we are
given a composition law between the category € and the class ¥ that satisfies
axioms (1), (2), (3), and (4a) of Definition 1. We can extend F' to a functor
(M, F',6) given by

F(f)=F(f) for all f € a(F);
F(e) for all e € By and e & a(F)o;
E(f") = (F(B(f)),2,9) for all f* ¢ a(F).
(3) Let B° be a category; the triple (€°,3,6) is a species of structures for the

composition law e; if ¢ € 3 then the triple (6°,4,a~!(e)) is a sub-species of
structures [3a] of (6°, 3,6).2%%

[25.1] Motivations for (internal) actions.

Charles first met (topological or differentiable) actions of categories (more
precisely, of groupoids) in his theory of fibre bundles: in [E28] in 1950, he shows
that, if £ is a fibre bundle, then the groupoid S of isomorphisms from fibre to fibre,
equipped with its canonical topology, acts (continuously) on the total space of F,
and the fibre bundles associated to E are those spaces on which S acts. So ([E50])
the category of fibre bundles is equivalent to the category of actions of “locally
trivial groupoids”, which are some concrete internal groupoids in the category of
topological spaces. The category of principal fibre bundles is equivalent to the
category of locally trivial groupoids.

Almost simultaneously ([E39]), he came upon “local species of structures”
(i.e. internal species of structures in the category of local classes) in his attempt
to unify the treatment of structures defined by a “gluing together” process.

In 1957, these examples led him to introduce acting categories and species of
structures ([(E47]). He chose the latter term in reference to Bourbaki’s species
of structures, whose “transport by isomorphism of structures” is so axiomatised;
indeed, at that time, Charles was most preoccupied by “good” definitions of struc-
tures.

[25.2] The set-valued functor associated to (€°,8,a"!(e)) is the partial Hom functor
Hom(e, —): € — Set.



In [(E47], he proves equivalences between three notions: species of struc-
tures, hypermorphisms functors, and set-valued functors satisfying condition (A)
above. He also gives the enlargement theorem for species of structures (cf. Com-
ment 29.2) which is equivalent to the Kan extension theorem ([C58], published the
year after) for set-valued functors, except that the problem is looked at “upside-
down”, with the set-valued functor being replaced by the associated hypermor-
phisms functor (and this led to the more general theorems on extension of func-
tors in [(E77, (E122]). He uses this enlargement theorem as the first step in his
construction of the important “complete enlargement” of a local species of struc-
tures, the structures of which are defined by atlases; the second step consists of
a generalisation of the associated sheaf theorem to presheaves over a local class,
thanks to an original method (extended in [(E110] to local functors). Locally ho-
mogeneous spaces, differentiable or analytic or foliated manifolds, fibre bundles,
...are obtained as particular cases.

In [E55], Charles explicitly says that the category of species of structures with
covariant maps is:

* equivalent to the category of functors satisfying condition (E) above, with
square of functors as morphisms;

* isomorphic to the category of pairs defining a species of structures, with a
morphism (P, ¢): (€, F) — (8, F') being defined by

TN

B < - 6

where ¢: ' — F'®, is a natural transformation;

* equivalent to the category of pairs (6, F'), where F' is a set-valued functor
whose domain is a sub-category of 6.

These equivalences restrict (Remarks 1 and 2, and Comment 23.1) to equiva-
lences between the categories of strong species of structures, of discrete opfibra-
tions, and of set-valued functors.

Topological, differentiable, and local species of structures are instances of
structured (or “concrete internal”) species of structures, which are defined in
[E59, ®E60] by “lifting” the action along the forgetful functor of a concrete cat-
egory; enlargement theorems for them are given in [(E89, (E90, (E95, (EI6]. In
fact, sketches in the sense of [(E106] are easily drawn, the set models of which are
species of structures and discrete opfibrations [(E117]; the models in a category #
are internal species of structures and internal discrete opfibrations (also called internal
diagrams or internal presheaves, cf. Johnstone [C56]). Thanks to the equivalences
indicated above, this provides an “internalisation” of the “external” notion of set-
valued functor, by looking at it “upside-down”; Charles already stressed this fact
in his lectures in the early sixties. This probably did inspire Bénabou, who was one
of the first categorists to apply it (in his definition of internal distributors [C7]).
The development of topos theory led other categorists to adopt (or rediscover)
this point of view some ten years later (cf. MacLane’s analysis of Johnstone’s book
[C75]).

Let (6°, F.) be the pair defining the species of structures (6°, 3,a~*(e)), and F,

. 354



the functor associated to F, by Remark 2 above. A functor (JMl,G,86*) is said to be
representable [2] if there exists some e € 6§ such that G and F. are induced from
one another by a natural equivalence. To every pair (6, F') that defines a species of
structures (6, p, ), we can associated a representable functor F in the following way:

Let a be an arbitrary element that does not belong to 6. Let €] be the class of
pairs (z,a), where z € Xy. Let 6’ be the class given by the union of €, {a}, and 6;.
This class is a category for the composition law

(V1) ey
if and only if one of the following conditions is satisfied:
(1) v,v' € 6 and a(y') = B(7); then v’ e 7 is the composition of 7/ and v in G;
(2) v/ €6,v=1(z,a),and z € F(a(y')); then
v ev=(y2a0)
(3) v/ = (z,a) and v = a; then
v ey =(z,a).

Remark 2 then allows us to extend F' to a functor (L, F,6’); this functor F, which is
identical to (M, F,,,6’), is representable.?6-1!

Definition 3. Let € be a category, and (Jl,y, &) a functor. We define a species of
structures dominated by (v, ) to be a pair (8, F) such that (¥, F,«(F)) is a functor

and (6, vyF) defines a species of structures; the species of structures defined by (6, ~vF)

is called the species of structures under (6, F).

[26.2] Enriched species of structures.

Analysis problems prompted us to introduce y-dominated species of structures
(in [C28]).

If 6 is a category, and if the species of structures defined by the Hom functor is
dominated by (v, &), then €6 is called a y-dominated category [(E77]. A refinement
of this notion, namely that of a strongly y-dominated category from [(E104, (E109], is
equivalent to the notion of a H-category (cf. [C31]) when X is a concrete cartesian
category.

A fine study of dominated categories is due to Foltz [C33].

More generally, let V be a monoidal category. Then a V-species of structures
may be defined by the following data:

¢ a V-category C,
« for each object e of C, an object F'(e) of V,

+ for each pair (¢’,e) of objects of C, a morphism k;, ,: C(¢/,e) ® F(e) —
F(e') satisfying the identity and associativity axioms, which are given by
asking for the diagrams

’

Fle) —= v C(e,e) @ F(e)

d %(e)

I® F(e)

[26.1] Regarding €', Bénabou gives the following criterion: F': € — § is representable if and only if
® — 6’ has a left adjoint [C5].



k',
F(e") « - C(e",e) ® F(e)

’

C(e",¢')® F(e) kerr o1 c®F(e)

C(e”,e'm

C(e",¢)® (C(e’, e)® F(e)LS%C(C(e”, e ® C(e, e)) ® F(e)

to commute, where [ is the unit of ®, and where ¢(_) and k_ _ _) are the
identity and associativity morphisms (respectively).

Suppose that V is a cartesian category with commuting coproducts, and that
I is connected (in the sense of Penon [C83]). In [(E120, Appendix], we proved that
the category of V-categories (with small enough classes of objects) is equivalent to
the category of internal category whose object of objects is a coproduct of copies
of I. Similarly:

Proposition A. The category of V-species of structures is equivalent to the category of
pseudo-discrete internal species of structures in V (where pseudo-district means that the
object of structures is the coproduct of the fibres).

Now let (8, F) be a species of structures dominated by (V,~), where v =
Hom(I, —). If v admits a left adjoint that preserve products, then there exists a
free V-category C generated by 6, and the F'(e) determine a “free” V-species of
structures over C. Hence:

Proposition B. The category of species of structures that are dominated by (V,~) is
equivalent to the category of free V -species of structures over a free V -category.

So, in this case, the notion of internal species of structures encompasses the
notions of enriched and dominated species of structures.

We will later return to the notion of a species of structures dominated by a category
(Sections III and IV). For now, we will only consider particular cases.

Let F be the category of all functors (S°,G,8°) such that (S,G,8) € Jl; let
(M, pg, F) be the functor defined by

ps: (S°,G,8%) — (S,G,S).

Definition 4. A species of structures dominated by (pg, F) is called a species of mor-
phisms.

[26.3] Species of morphisms are called “category of categories” in [C28]. They
are studied in [E70, (E77, (E122], alongside the associated opfibrations with a
cleavage (constructed by adapting the construction of the cross product of group
A and an A-module), with a view to applications in non-abelian cohomology.

General fibrations were introduced by Grothendieck in [C43] and studied by
Gray in [C38]. Their present theory has been developed by looking at a fibration
as a family of categories (by Lawvere [C65], Bénabou-Celeyrette [C8, C19], and
Paré-Schumacher [C82] who call them “indexed categories”).

Let (8, p, X) be a species of structures. Consider the following conditions:

(a) (6,p,X) is the species of structures under a species of morphisms (€, F').
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(b) (b1) For all e € p(Xy), the class p~*(e) is endowed with the structure of a cate-
gory (p~!(e))*, which we denote by F'(e);

(by) Let f € p(X), e = a(f), and ¢’ = B(f'); then (F(¢'), f, F(e)) is a functor
E(f).

(¢) (c1) (o)t is a category;
(co) If (2/,2) € (B0)* % (Zg)* and (f, 2" L 2) € ¥ then
(f,2),(f,2") €2 and f(z' Lz)=f2" L fz
(c3) If z9 € (X0)g and (f, 20) € ¥, then

fz0 € (Z0)g-

Proposition 1. Conditions (a), (b), and (c) above are equivalent (where condition (a) is inter-
preted independently from the choice of F).

Proof. Conditions (a) and (b) are equivalent by definition. If they are satisfied, then
the category (Xo)! given by the sum of the categories F(e) for e € p(¥) satisfies
condition (c). Conversely, suppose that condition (c) is satisfied. Let 2,2’ € Xo. If
z' 1 z is defined, then p(z’ L z) is defined and, by (cy), we have

p(z' L 2) = p(¢) = p(2);
in particular,
pla™(2)) = p(B+(2)) = p(2);
thus p~1(e) is a subcategory of (X¢)* for all e € p(X). Let f € p(X) be such that

a(f) = e; conditions (cz) and (c3) imply that the map fis a functor from p~!(e) to
p~Y(B(f)). Thus (b) is satisfied. L

Corollary . If we suppose conditions (c;) and (cz) to be satisfied, and if p(X) (resp. X ) is a
groupoid, then condition (c3) is also satisfied.

Proof If (f,20) € ¥ and 2y € (X¢)g then
fZO = f(ZO 1 Zo) = fZQ 1 fZQ.

If (Xo)* is a groupoid, then it follows that fzy € (Xo)3. Suppose that p(¥) is a
groupoid; from the sequence of equalities

FN(f20) = f 1 (f20 L o (f20))
=(f"efzo L f (e (f2))
=" a"(f2))

we deduce that
fz0=a(fz0) € (So)y
and so (c3) is satisfied. O]

Let A be a class endowed with an order relation <; the class of pairs (2/, z) with
z < 7' is a category under the composition law given by

(2",21) L (2',2) = (2",2) ifand onlyif z]=2".

Conversely, if G is a category such that any two elements f, f’ € 6 that have the same
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set of units in ‘6 are identical, then the data of ‘€ defines on ‘6 the order relation given
by

z <z if and only if there exists f € 6 such that

z=o(f) and 2" =p(f).

We then say that the category 6 defines an order on 6.

Let Qg be the class of ordered classes (A, <), where A € Mo; let Q be the category
of triples ((A4’, <), h, (4, <)), where (4, <), (A, <) € Qy and where h is a map from A
to A’ that is compatible with the orders on A and A’. Let w be the map

((4,<),h, (A, <)) — (A" h, A);

then (l,w, Q) is a functor.

Definition 5. If a species of structures (6, F) is dominated by (w, §2), then we call
it an ordered species of structures; if € further defines an order on 6y, then we say that
(6, F) is a bi-ordered species of structures.

Let ((A, <), h, (4,<)) gﬁ; let of (resp. o) be the category of pairs defining the
order of A (resp. of A); let i be the map

—~

2 z) — (h(2'),h(z))  where (2/,2) € d;

then (s, h, o) is a functor, and the map
n: ((4,<), 7, (A, <)) = (s, b, o)

is an equivalence from Q to a full subcategory Q of F whose units are the categories §
that define an order on §y. The map

(8, F) — (6,(F,n,QF),

where (8, F) is an ordered species of structures, is a bijection from the class of ordered
species of structures to the class of species of morphisms (6, F') such that

I.4 Reminder on categories of homomorphisms

Definition 6. Let € and % be two categories; we say [3a] that (6,p, %, S) is a category
of homomorphisms if the following conditions are satisfied:

(1) (8,p, %) is a functor;
(2) 8§ is a subcategory of # that contains #p;
(3) (8,p,8) is a species of structures, where p’ denotes the restriction of p to S;

(4) If h, ' € ¥, then the relations

a(h) = a(l),
B(h) =B,
p(h) = p(h'),

imply that h = A/.
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Let (8,p,#,8) be a category of homomorphisms. An element A € # can be
identified, by condition (4) of Definition 6, with a triple (S, £, .S), where

S = Oz(h) S %0,
S" = B(h) € %o,
f=np(h) €€

We usually represent an element of # by such a triplet. Note that we thus identify
# with a subcategory of the induced category p{(€) whose elements are the triples
(S’ f,S) such that S, 5" € #,, f € B, and

a(f)=p(S) and B(f) =p(S").

Since an element of § is entirely determined by the data of a(h) and p(h), we write
such elements either in the form (8(h), p(h), a(h)) or in the form (p(h), a(h)). If S is
the groupoid of invertible elements of #, then % is a species of structures over § x §
with the composition law

((?7?) h) '—>?l0h0f_1 if and only if

a(f) =a(h) and off)=B(h)

where h € # and f,?/ es.

Let (8,p, %, S) be a category of homomorphisms; let S, and 6, be the groupoids
of invertible elements of § and € (respectively). If p(S,) is a saturated [3a] subgroupoid
of G, i.e. if

[fe®, and a(f) €p(S,)] = f€nS,),

then we say that # is saturated over 6.

[29.2] Enlargement Theorem.

(B,p,%,8) is a category of homomorphisms if and only if p: # — € is
a faithful (condition (3)) functor (condition (1)) whose restriction 8§ — p(8) is
(condition (2)) a discrete opfibration.

We say that a functor is amnestic if any isomorphism that is sent to an identity
is itself an identity, i.e. if its restriction to isomorphisms is well-faithful in the sense
of [(E77, (E122]. Then # is saturated over € if p is a faithful amnestic functor
that creates isomorphisms.

If # is a category of homomorphisms with § the groupoid of isomorphisms
of 7, then % is equivalent to a saturated category of homomorphisms. Indeed,
more generally:

Theorem. Letp: #H — 6 be any functor. There exists a smallest isomorphism-creating
functor q: H — 6 extending p, and ¥ is equivalent to I .

We call such ¢ the (maximal) enlargement of p. It is constructed as follows. Let
< be the category given by the quadruples (k, f’, f,h), with h € #, f and f’
isomorphisms in €, and ke f = f’ e p(h) in 6; composition is given by
(k' " f W)k, ', £.h) = (K & k. f", f.h' & h)
ifandonlyif  [f'=f and a(h')=p(h)].

12



'y A
K p(h") h’
o
k p(h) h
<f7

(This subcategory of the comma category € | p is used in [(E100, Section 1]).
Then 7 is the strict quotient of & by the equivalence

(k. f', f.h) ~ (k. f' o plg), f o plg), g’ @l e g)
for any isomorphisms g, g’ € # such that g " e heg exists.

Then ¢ sends (k, f', f, h) to k, and the embedding
(h: s —s") = (p(h),p(s"),p(5), h)

identifies # with a subcategory of % that is equivalent to x.

Furthermore, ¢ is faithful (resp. amnestic) whenever p is, whence the enlarge-
ment theorems for species of structures over groupoids and for categories of homo-
morphisms already obtained in [(E47]. In fact, p may be replaced by g whenever
categorical properties (i.e. those preserved by isomorphisms) are considered: the
constructions are made in %, and then transported by isomorphism in % .

The above construction is generalised in [E77, (E122] to obtain extension
theorems for functors. It is “internalised” in [(E89, (E90, (E95, (EI6], giving an
“internal version” of the Kan extension Theorem (see Comment 25.1).

In particular, let (M, p, #,S) be a category of homomorphisms such that . is the
category defined in § 1.2.293 Let h € %; the element p(h) is, by definition, a map
(p(B(h)),g,p(a(h))), where g is a surjection. Since the data of a(h), 8(h), and g all
together entirely determine p(h), we simply represent h by the triple (8(h), g, a(h))
instead of by (5(h),p(h), a(h)). If h is such that

p(a(h)) C p(B(h))

and if p(h) is the canonical injection from p(a(h)) to p(B(h)), then we write h as
(B(h),t,a(h)), i.e. ¢ denotes the identity map on p(a(h)).

Examples. —

(1) Let (ML, p, F) be the functor defined in §1.2; let %, be the groupoid of invertible
elements of F (equivalences of functors); then (M, ps,F,F,) is a category of
homomorphisms.

(2) Let 9) be the class of topologies (or “metatopologies”, in the terminology of [3b])

on the classes M € [ly; let J be the category of continuous maps (5’, f, S) from
S to S’, where S is a topology on the class M, and S’ a topology on M’. Let 0
be the functor

(8", £, 8) — (M', f, M).

[29.3] If (ML, p, %, S) is a category of homomorphisms with § the groupoid of all isomorphisms of %,
then 7 is also called a concrete category, and p: H — J a concrete functor (and we’ll often use these terms).
In fact, some authors define a concrete functor as any set-valued amnestic faithful functor (without any
“transport of structures” property); most of the following results remain valid in this case.
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Let I be the groupoid of invertible elements of T (homeomorphisms); then
(e, 0,5 97) is a category of homomorphisms.

(3) Let (Ml,w Q) be the functor defined in §1.2; let 2 be the groupoid of invertible
elements of € (isomorphisms between ordered classes); then (Jl,w,Q,Q) is a
category of homomorphisms.

(4) Let 6 be any category; then (6,Idg,6,8) is a category of homomorphisms,
where Id¢ denotes the identity functor on 6.

1.5 Substructures

Let (8,p, %, S) be a category of homomorphisms such that § contains the groupoid I'
of invertible elements of #.
On %), consider the relation p

sps ifand onlyif (s',p(s),s) € #.
This relation evidently implies that p(s) = p(s’).

Proposition 2. The relation p is an order relation on Ho, and (8, p,T') is the species of
structure under (€, F) such that*"!

Fle) = (0 (e)p.)  foralle € a(F),
where p. is the order relation induced by p on p~*(e).
Proof. If s p s’ and s’ p s” then

(s",p(s"),s") o (s',p(s), 8) = (s",p(s),5) € #
whence s p s”. Suppose that s p s’ and s’ p s; then

(s,p(s'),s") @ (5", p(s), 8) = (5,p(s),8) = s
and

(s',p(s),s) ® (s,p(s), s") = &'
thus

(s',p(s),s) €T.

Since (6, p,T") is a species of structures, from the equalities

afs',p(s),s) =s and p(s',p(s),s) = p(s)

we deduce that (s',p(s),s) = s; thus s’ = s and p is an order relation; the category of
pairs that defines p can be identified with the subcategory %, consisting of elements
(s',p(s),s) by identifying (s, s) with (s',p(s),s). If (s',p(s),s) € %, and f € p(I'),
then the equality

a(f) = p(s)
guarantees the existence of (3, f,s), (3, f,s') € I; then
(5", f,8") o (s, p(5),5) 8 (s, [ 71,5) = (5, fep(s) ® f1,5) = (5, p(5),5) € .
[30.1] To be precise, one should read p¢ instead of p here. Indeed, in several instances, the restriction of

a functor is denoted by the same letter as the functor itself; when the source and target are clearly indicated,
this does not lead to any confusion, and so we shall not always mention it.
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Consequently, p(I") acts on #,, with the composition law

(f,(s",p(s),5)) — (5',p(5),s) ifand onlyif «(f)= p(s).

Then (p(I'), p, #,) is the species of structures under a species of morphisms, and the
proposition follows from the end of §1.2. O

From now on, suppose that € is an inductive category (in the sense of §1I.6, which
is slightly more general than that of [3c]). If g, f € €, then their pseudo-product in 6,
which is always defined (cf. §1I, Proposition 22), is denoted by gf.

[31.1] Up to (but not including) Definition 9, the text remains valid without any
modification if the hypothesis that € is inductive is replaced by the hypothesis that 6
is a sub-inductive category (cf. [E69]), since all the pseudo-products used here still
exist. This remark is important: some results will be applied to the category F
of categories, which is sub-inductive for the order “is a subcategory of”, but not
inductive (two subcategories of a category admit a meet, while two categories may
not admit a larger common subcategory).

Consider on % the relation
spS if and only if
[p(s) <p(S) and (S,p(S)p(s),s) € #];

the relations induced by p and p on p~!(e) are identical, for all e € p(#,). The relation
p(s) < p(S) implies that

a(p(S)p(s)) = p(s);
if, further, (S, p(S)p(s), s) € #, then we also have that
Bp(S)p(s)) = p(S).

Proposition 3. The relation p is an order relation on Fo; if s p S, then s is a sub-object [5]
of S in¥.

Proof. Suppose that s p S. If, further, S p s, then
p(S) = p(s)

whence s p S and S p s, i.e. s = S, by Proposition 2. Suppose that s’ p s; from the
relations

k= (p(S)p(s)) ® (p(s)p(s")) < p(S)p(s"),
a(k) =p(s') and B(k) = p(9),

it follows that
k=p(S)p(s') and (S,p(S)p(s),s") € X

thus s’ p S. Letg = (s,g,5") and g’ = (s,4’,5’) be such that p. 360
(S,p(S)p(s),s) ¢ g = (S, p(S),p(s),s) ® 7.

From the relations

(p(S)p(s)) @ g = (p(S)p(s)) e ¢,
g < (p(S)p(s))eg and g" < (p(S)p(s))eyd
a(g) =alg’) and B(g) = B(d),

we deduce that ¢ = ¢’. Thus § = §’, which implies that s is a sub-object of S in #. O

15



The notion of substructure that we will now define makes precise the notion of sub-
object of a category.

Definition 7. Let S € %#,; we say that s € #, is a substructure of S in (6,p,%,S), and
we write s o, S, if the following conditions are satisfied:

1) p(s) < p(S) and (S, p(S)p(s), s) € ;5
(2) If (S, g,8") € # is such that

a(p(s)g) = a(g) and B(p(s)g) = p(s)

(s,p(s)g,8") € %.

If s x;, S, then we also write
(S, p(S)p(s),8) = S 0p
and we say that S 0, s is a p-injection. We write H,, to mean the class of p-injections.

If there is no risk of confusion, then we simply say that s is a substructure of S in
#, and we write s oc S and S x s instead of s o, S and § 0, s (respectively).

[32.1] Substructures (in the definition of which § is not used) were introduced
for obtaining a good definition of structured categories. Most of the following
propositions were devised for use in §1I.

This definition seems to depend on the order of €. In fact, Proposition 4
suggested a more general notion of a (', p)-injection ([(E69, (E66]), free from
any use of an order on 6. The p-injections defined here are exactly the (€', p)-
injections in the case where

®' ={Fe|e< Ein %}

Almost all of the results of this part (§I) generalise to this setting; cf. [(E66] and
[E69], where both notions are compared.

Proposition 4. Let 5,5 € Hy; then s o<, S if and only if the following conditions are
satisfied:

1) spSin(6,p%*,S);
2) If (S, (p(S)p(s)) e g¢',S") € % then (s,¢',5") € %.

Proof. Suppose that s o, S; condition (1) of Definition 7 implies that s p S in
(6,p,%,8). Let

(S;p(S)p(s) e g'. ") € %.

We will show that the elements ¢’ and g} = p(s)(p(S)p(s) e g’) are equal. We have that
p(s) < p(S)p(s), so

/ /

g =p(s)eg < (p(S)p(s))g
whence

g =p(s)eg <p(s)(p(S)p(s)g);

16



but also

a(gy) < alg’) and B(gy) < p(s) = B(g")

o
=
S
ol
=

Il

Q
—
S
-

Il
=

;2
N

imply that ¢’ = g. It then follows from condition (2) of Definition 7 that (s, ¢’, S") € %,
and so condition (2') is satisfied. Conversely, suppose that conditions (1') and (2') are
satisfied; let (.9, ¢g,5’) € # be such that

a(p(s)g) = a(g) and B(p(s)g)

we see that g = (p(S)p(s)) e (p(s)g). From condition (2') we thus deduce that
(s,p(s)g,5") €

ie soc S. O

Examples. —

(1) The sub-structures of S in (JL, 6, 97‘, J') are the topologies induced by S on the
subclasses of 6(.5). Let F,, be the subcategory of T consisting of open continuous
maps from one topological space to another; let 6, be the restriction of 0 to J;
then (JL, 0., S}u, T) is a category of homomorphisms. The sub-structures of .S in
(AL, 0, Tus ) are the topologies induced by .S on an open of 3, i.e. the elements
that are smaller than S in the order relation considered in [3c] on g.

(2) The sub-structures of €=+ in (M, pg,F,F,) are the subcategories of B (see
Proposition 9 in §1I).

(3) The sub-structures of (A, <) in (M, w, Q, Q) are the subclasses of A endowed with
the order induced by <.

(4) In (6,1dg, 8,8), we have
sx S if and only if [s<Sin® and pB(Ss)=5]

If the relations s < .S and s o< S are equivalent, then 6 is a completely right regular
category. In this case, the condition s < «(f) implies that 5(fs) = 8(f).

(5) If s x,, S, then p(s) x p(S) in (€,1dg, €, B).
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Theorem 1. The relation s c,, S is a relation order in #y. Let s,s',S € o, the conditions
s o¢p S
s o, S (resp. s p S);
p(s') o< p(s) in (6,1dg, B, 6)
together imply that
s' o<y s (resp. s’ P s)

Proof- Since p is an order relation, if s oc S'and S s, then s = S. Suppose that s; x s
and s o< S; then s; 7 S. We will show that the pair (5, s1) satisfies condition (2') of
Proposition 4. Let

g=(S,p(S)p(s1) g, 5") € %.

The elements p(S)p(s1) and (p(S)p(s)) @ (p(s)p(s1)) are equal, since they are both
bounded above by p(S) and have the same source and same target (p(s1) and p(S),
respectively); thus

9= (S, (p(S)p(s)) ® (p(s)p(s1) ® g'), ') €
and, since s x S,
g = (s.(p(s)p(s1)) @ g', ) € %;
since s; s, it thus follows that
(s1,4',9") e H
i.e. s; o< S. Suppose that s x S, ' 5.5, and p(s’) x p(s) in (6,1dg, 6,6). Then
j=(S:p(S)p(s),s') € #:
from the relations
p(s") <p(s) and B(p(s)p(s)) = p(s)

we deduce that the elements p(S)p(s’) and (p(S)p(s)) e (p(s)p(s’)) are equal, since
they are both bounded above by p(.S) and have the same source and same target (p(s’)
and p(S), respectively). Consequently,

3= (S, (p(S)p(s)) ® (p(s)p(s")), s")
and, by Proposition 4,
(s,p(s)p(s'), ") € %
whence s’ 5 s. Suppose further that s’ o S; let
g = (s,p(s)p(s') e g, S") € .
We see that
g=(S,p(S)p(s),s) o7

(S, (p(S)p(s)) ® (p(s)p(s)) ¢, 5")
(S, (p(S)p(s")) » g, S") € %.

Proposition 4 then implies that

(s,9,S)€#H and s xS. O
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Corollary 1. Ifs x, S, s’ x, S, and p(s) = p(s’), then s = s’
Proof. Indeed, by Theorem 1, these conditions imply that
sxs and s s
whence s = ¢'. O

Corollary 2. Let s o<, S; then s is the largest element (with respect to the relation p) of the
class of structures s’ such that

s'pS and p(s') =p(s).

Definition 8. Let £, W e #; we say that 7 isa sub-homomorphism of h in (6,p,%,S),
and we write 7 o¢p h or 7' o h, if the following conditions are satisfied:

~

=

) o< a(h),
) o B(R),
") < p(h).

- =
Proposition 5. In #, the relation h < h is an order relation that satisfies the following
conditions:

1) IR « h, and a(R') = a(h) and B(K) = B(R), thenh = 1 ;

o
B(
(

>
S

(2) Ifﬁl o h then p(ﬁl) o p(h) in (8,1dg, 6, B); if, further, p(h) = p(ﬁl), thenh =T;
3) If(hi, h), (R, B) € % « % and k' o h and iy o hy, then by o B o hy @ b;
(4) Ifﬁl ocp By n' ocp hy ana’p(ﬁ//) x p(ﬁl) in (6,1dg,6,8), then n’ Xp 7.

Proof. Conditions (1) and (3) imply that (%, o) is an ordered category (see §1I, Defini-
tion 18). Condition (2) implies that p belongs to Q' (see §IL.6), i.e. (§IV) that (#, x)
is an ordered category over (6, <).1351 O

[35.2] The following corollary is not correct: (#, ) is a sub-inductive category,
but not an inductive category. Indeed, a family of objects bounded by s and s’
may have two different joins in the set of elements less than both s and s'.

Corollary. If 6 is completely right regular, and if, for all s € Ho, the class of elements
p(s'), where s’ o, s, is an inductive subclass of @y, then (%, x) is an inductive category over
(6, <).

Proposition 6. Suppose that h, B oer, a(ﬁl) o, a(h), and (p(ﬁl) < p(h); then also
ﬁ(ﬁl) o, B(R), and, consequently, 7 o, h.

Proof. Let
h=(S1,h,8) €Tl
7 = (s1,h,s) €T
be such that i/ < h and j = (S, p(S)p(s),s) € #; then

p(heje/ ™) =he(p(S)p(s)) e W'~ < p(S1)p(s1),
alp(hejeh ) =p(s1) and B(p(hejeh ")) =p(Si)

[35.1] Charles never published §IV, but the results that he intended to put in it are scattered across
several papers, e.g. ordered categories over an ordered category are considered in [(E75].
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[36.1] The above inequality (as well as several following ones) relies on the asser-
tion [/ < h = h'~' < h™1], which has to be proved.

Suppose that ' < h, where h: E — F and I/: e — é. Then there exists a
pseudo-product h~1é =h"le (E‘é): é — I since

(h='¢)eh':e—+FE and (h '¢)eh < (h 'e)h<h 'h=FE,
we have that (h=1¢) e b/ = ¢E. It thus follows that

W leh=c<eE=(h"¢)eh
and, composing with W', we see that

Wl <hle<ht

as desired.

whence

p(hejeh") =p(Si)p(s) and (Si,p(S1)p(s1),51) € .
Suppose, further, that s oc S let

g=(S1,(p(S1)p(s1)) e g'.S") € %.

The elements h~' e (p(S1)p(s1)) and (p(S)p(s)) @ h'~! are equal, since they are both
bounded above by h~! and have the same source and same target (p(s;) and p(S),
respectively). Thus

W eg=(S.(p(S)p(s)) o (W eg).S) €
and it follows from Proposition 4 that

7 =(s,h/ " eg 8)ecH;
consequently,
E/og':(sl,g',S')e% and s; x S5. O
Proposition 7. Let

h=(s1,h,s) €H
such that s' o, s and s o<, s1. If there exists h' € € such that

h < h,
a(h’) =p(s') and B(h') =p(s})

— —

W= (s,0,s)eH and N x,h.

If, further, h and ' are invertible, then R er.
Proof. We have that

he(socps') = (s1,he (p(s)p(s)), s') € %;
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the elements he (p(s)p(s’)) and p(s1)p(s}) @k’ are equal, since they are bounded above
by h and have the same source and same target (p(s’) and p(s;), respectively); thus

he(soqs') = (s1,(p(s1)p(s1)) o ', s') € %

and, by Proposition 4, we see that

!

h o= (s},n,s) e .
If, further, h € T and // is invertible, then also (s’,h'~1,s}) € %, whence Rer. O

Let (06 be the longitudinal category of quartets of € (see §11.5), i.e. the class of
quadruples (g1, f1, f, g) € 6% such that g; ¢ f = f; g, endowed with the multiplication

(g/laf{aflag/>m(glvflafvg) = (giaf{ .flaf/.fag) if and Onl}’ if gl =41-

[37.1] A quartet of € is (less poetically) called a (commutative) square, and the
longitudinal and lateral compositions are more geometrically called the korizontal
and vertical compositions (following Gray).

e
I

The category (0B is also called the category of arrows of € (i.e. by the name of
its objects), and denoted by FI6 or Ar6.

Proposition 8. Let h,h' € €, and let

alh)=s, ah)=s
B(h) =51, B(R')=s

Then the following conditions are equivalent:
(1) W x hin(6,1dg,6,86);
(2) W < hinG, and B(ss') = s and B(s15)) = s1;
(3) s’ < s, 8| < s1,and (h,s15],s8',h') €e O6.

Proof Indeed, conditions (1) and (2) are equivalent by the above. If (2) is satisfied,
then the elements h @ ss’ and s;s] @ b’ are equal, since they are both bounded above
by h, and have the same source and same target (s’ and s, respectively); thus (3) is
satisfied. If condition (3) is satisfied, then

s'ocs and s} o s
since $(ss’) = s and SB(s1s]) = s1. Further,
!/ ! /
51 <5187 and ss' <s
whence

B < sis)eh’ =hess <h. O
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If M’ « hin (€,1dg, 6,€6), then we denote by h & A’ the quartet
(h, B(R)B(R), a(h)a(R'), ).

The class U of quartets h [¥ /' is a subcategory of (6. Let U’ be the subcategory of
U given by the quartets & [¥ A’ such that 4’ and h are invertible.
Let D% be the longitudinal category of quartets of 7, and [1p the functor

(91, f1, [, 9) = (p(91), p(f1), p(f), p(9))

from [M% to 6. Then (06, 0p,M%, f/) is a category of homomorphisms, where T
is the groupoid of invertible elements of M% .12 For a quadruple G = (g, f1, f,9) to
belong to %, it is necessary and sufficient that

a(f) =a(g), B(f)=ag),
a(fy) =a(g), B(f1)=a(g)

and that O p(G) is a quartet; indeed, the elements g, - f and f; - g are then equal, since
they have the same image under p, and have the same source and same target. . 366
Let U be the subcategory of (0% consisting of the quartets

H=(h,s1 o, 8,5, s’,ﬁl)
such that s’ , s and s} o, s;. Let %' be the subcategory of U consisting of the
quartets in U such that h, B e,
Proposition 9. We have 7 o hin (B,p, #,S) if and only if there exists

H = (R, 8(R) o, BR), a(B) o, a(R),B) € U
in this case, Jp(H) € U.
Proof. 1If 7 o h, then

p(') < p(h),

a(h) x, a(h) and B(R') o, A(R)

and thus Op(H is a quartet and H € U. Conversely, if H € U, then we find that

Op(H) € U by condition (3) of Proposition 8; it thus follows that p(ﬁl) < p(h), and so
I «Tin (6,p,%,3S). O

If7 «hin (8,p,%,S), then the corresponding quartet H will be denoted h [ .
In # (resp. in 6), we say that a triple (g1, f1, f) is included in a quartet if there exists
a quartet (g1, f1, f, g). Proposition 7 is equivalent to:

Proposition 7 bis. For a triplet
T = (h, s1 o 87,8 0 8'),

where h € ¥, to be included in a quartet H, it is necessary and sufficient that
s=a(h) ands, = B(h)

and that
p*(T) = (p(h), p(s1)p(s1), p(s)p(s"))

be included in a quartet H; in this case, we have that H € U and H € U. If; further, H € U’
andh €T, thenH € %/.
[37.2] This is easy to prove (cf. [(E122, Chapter II]).
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If T = (h,s1 x, s},5 x, s') is included in a quartet, then the quartets H and H in
which T and p?(T) are included are unique; consequently, we have that

H=p(h) @ and H=hE, 7,

where 7/ and %' are determined by T. The element 7' can be thought of as the | p. 367
composite of h with (s}, s"); this composite will be denoted h I, (s}, s’) and called the
p-restriction of h to (s},s’).

Note that the composite T’ is also determined by the data of the triple (h, (p(s}), p(s))).
In particular,

s if ) = B(h) and s’  a(h), then there exists a prestriction h I, (s}, s’) and
hip (s1,8") = he(soqps)
s if si = B(h) and s’ = a(h), then there exists a prestriction h I, (s}, s’) if and
only if
a(p(sh)p(h)) = p(s)
B(p(s1)p(h)) = p(s)-
In this case,

hit, (sh,8) = (s’l,p(si)p(ﬁ),s’).

Let #’ be a subcategory of # that contains #y; let p’ be the restriction of p to #’.
Suppose that (6,p', %', %’ NT) is a category of homomorphisms.

Proposition 10. The following conditions are equivalent:
(0) soxp S in(B,p,%,S) implies that s <,y S in (B,p , %', %' NT);
(1) H' by (FHo x Ho) € K, ie. ifﬁl € H', then every p-restriction ofﬁl belongs to #'.

Proof. If (o) is satisfied, then the category of p’-injections contains #H,, and (o1) is
satisfied. Conversely, suppose that (o1) is satisfied, and let s < S in (6,p, #,S). The
relations S € #’ and s ,, S imply that

Sty (S,s) = (S,p(S)p(s),s) €%’
Let (S,p,S’) € #’ be such that
a(p(s)g) = alg) and B(p(s)g) = p(s);

then the composite (S, g,5") F, (s,5") = (s,p(s)g,5"), being defined, belongs to .
Thus s o,y S'in (6,p', %', %' NT). O

We will later see (§1I, Theorem 16) that (06 is an inductive category for the order
relation

(gimf{af/ag/) < (gl7f17f7g)
if and only if p. 368

g <g, 91<g1,
fi<fi, f<tf

In the following theorem, we set

[B] = (h, B(h), a(h), h) € [MF)o
for all h € ¥, and

[1] = (h, B(R), a(h), h) € ([@B)o
for all h € 6.
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Theorem 2. The following conditions are equivalent:
(1) [B) <oy (] and [B(R)] iy, [B(R)] in (@€, 0p, @9, T');
(2) 7 isa sub-homomorphism of h in (€,p, #,S).
Proof. Let
ho=(s1,h,s) €% and & = (s} W, s) %K.
Suppose that 7 o, h; by Proposition 5, it follows that &’ o h in (6, Idg, 6, 6), whence
(h,B(h)B(R'),a(h)a(h'), h') € U

furthermore, this quartet is the pseudo-product [h][A/] in M. Since the quadruple
[

]
(h, s1 ocp 81,8 0 8, 7 ) is a quartet of # and admlts Rh][I'] as its image under O p, we

thus deduce that [E/] p [h] in (D€, Op,m%, T ). Let G = (h, f1, f, k) € O% be such
that

It thus follows that

—/ J— —
F=(s"sp(s"\p(F)a(f)) €%
and, similarly,

T = (s, p(s)p(Fy), a(Fy)) € %

LetG = (E/, ?/1 , ?/, k); since the projection under O p of G is the quartet [p(ﬁl)} Op(G),
we have that G' € O%. Thus [E/} 0, [h]. Furthermore, s} o, s; similarly implies
that [s]] &, [s1], and so condition (1) is satisfied.

Conversely, suppose that [E/] o [h] in (6, Dp,l]]%,f/). Then
W <h and [B][A]= (h,B(h)B(N'),a(h)a(h'), )
and we thus deduce that p. 369
(s,p(s)p(s),s") € # and (s1,p(s1)p(s}),st) € %.

Let
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and

Op(G) = (h,heg,g,p(S"))
= [n][n'] o (B, 1" e g',g",p(S"));

it thus follows that
(7.7 eg.g.8) el
i.e. that g’ = (s',¢’,5") € %. This proves that s’ is a substructure of s in (6,p, %, S).

If, further, [s}] g, [s1], then we similarly have that s} o, si, and so 7 o R in
(6,p,%,8). O

Corollary 1. Let h, 7 eT. Then® o h if and only z'f[E/] xp [h]-

Proof. Indeed, if [E/] o[, [h] then the proof of Theorem 2 shows that we have a(ﬁl) xXp
a(h), and it follows from Proposition 6 that n o, h. O

Corollary 2. U is a subcategory of the category of O p-injections.

Definition 9. We say that (6, p, #,S) is a right-solving category of homomorphisms if the
following axiom is satisfied:

(R) Let h,h’ € ¥ be such that
a(h) = a(') and B(h) = B(R).
Then there exists s oc, (h) such that
p(s) = a(p(h) Np(h)).
The substructure s of «(h) is called the p-kernel of (h,h').

We similarly define the notion of a lefi-solving category of homomorphisms (6, p, %, S)
by replacing a with 3 in the definition above.

[41.2] This definition, given for inductive @€, is also valid as soon as any two
parallel morphisms (i.e. morphisms with the same source and same target) have
a meet in B; for instance, such is the case when € is the category of categories
(though this condition may not be satisfied in some sub-inductive categories).

In usual cases (in particular, if 6 is the category of sets), p(s) is an equaliser of
(p(h),p(h')); then, since p is faithful, s is a p-kernel of (h, h’) if and only if it is an
equaliser of (h,h’) in # (cf. [E109, Proposition 3.1]); so axiom (R) of Definition 9
means that p creates equalisers defined by meets (cf. Comment 221.2 on [(E100]).
This justifies the name “p-kernel” (an equaliser is also called a difference kernel, or
even just a kernel).

Examples. —
(1) (M, px,F,F,) is right solving.

(2) If, foralle, E € G such that e < E, we have that §(Fe) = E, then (€,1dg, 6,6)
is left and right solving.

(3) If, for all S € %, and all e < p(S5), there exists s , S such that p(s) = e,
then (6,p, #,S) is right and left solving. This is also the case in particular for

(M, w,,Q) and (M,0,T,T).
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(4) (Jt,0, Ju, 9) is not right solving.

Proposition11. If(6,p, #,S) is a right-solving category of homomorphisms, and if 3(Fe) =
E forall e < E in By, then the conditions

h,h €%,

a(h) =a(h') and B(h)=B(R)
imply that

h‘ '_P (ﬁ(h)75) = h‘/ l_P (ﬁ(h’)ﬂg)a
where s is the p-kernel of (h, h').
Proof Set

p(h) Np(h') = f,

e=pB(f) and E=p(p(h)).
Then

Ece f <p(h) and FEee f <p(h)
whence

p(h)Np(h') = f < Eee f <p(h)np(h).
It thus follows that f = Eee f and E = e. The elements f and

p(h)p(s) = p(h)p(a(h) x0p )

are equal, since they are bounded above by p(h) and have the same source and same
target (p(s) and E, respectively). Thus f = p(h)p(s). Similarly, f = p(h’)p(s). Since

htp (B(h), s) = (B(h), p(h)p(s),s) = (B(R), [, s)

and

h |—p (ﬂ(h),s) = (6(h)7f75)

we have that

hty, (B(R),s) =k, (B(Rh),s).
O

In what follows, we further suppose that # is endowed with an order relation <
such that (%, <) is an inductive category, and such that p is a strict inductive map
from (%, <) to (8, <), i.e. such that (#, <) is an inductive category over (€, <) with
respect to p (see §11.3).1421]

Theorem 3. The following conditions are equivalent:
(c) (B,p,%,S) is right solved, and ' x,, h in (8,p,%,S) if and only if V' < h in ¥ .
(c') Let s, s’ € Hy; then s’ x, s in (6,p,%,8) if and only if s’ < s in K, in this case,
B(ss') = s. Furthermore, the conditions
hh e
a(h) =a(h') and p(h)=p(h)
imply that
p(hNh') = p(h) Np(h').

[42.1] This notion (of an inductive category over (€, <) with respect to p) is considered in [(E53]. The
definition of a strict inductive map is given in §1L.6.
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Proof. Suppose that condition (c) is satisfied; then
s’ o sin (6,p,%,S) ifandonlyif s <s;
in this case, (s,p(s)p(s'), s’) is a sub-homomorphism of s, and so
(s,p(s)p(s'),s") = s, s =ss’ and PB(ss) =s.
We thus deduce that the following conditions are equivalent:
(a) M <hin¥;
(b) a(k) < a(h), () < B(h), and p(h) < p(h');
(c) W o hin (%,Idg, 7, %).
Let h, h/ € # be such that
a(h) =a(h') and B(h) = B(K);

since the category of homomorphisms (%, Idg, #, %) is right solved, and since a(h N
h’) is the Idgkernel of (h,h’), we have that

BN h') = B(h)
by Proposition 11; consequently, we also have that
Bp(h) N p(h)) = p(B(R)).

Let s be the pkernel of (h, h'); the elements p(h) Np(h’) and p(h)p(s) are equal, since
they are both bounded above by p(h) and have the same source and same target (p(s)
and S(p(h)), respectively); similarly,

p(h) N p(R") = p(h")p(s).

Then

and
htp (B(h),s) <hN K.

The relations

pla(hn k') = alp(h) Np(h')) = p(s),
a(hnh') <a(h) and s < alh)

imply that!*31

a(hNh') < s.
Thus

s=ahnh’) and hNh =ht, (B(h),s)
and so

p(h ') = p(h) Np(h').
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Conversely, suppose that condition (¢’) is satisfied; if 2’ < h then
p() < p(h),

a(h')yoca(h) and B(R') o< B(h)
whence /' o, h. Let h and 1’ be such that

a(h) =a(k) and B(k) = B(H);
since

a(hnh') < a(h)
and

p(a(hNh')) = a(p(hN1')) = a(p(h) Np(h')),
the category of homomorphisms (€, p, %, S) is right solved. Suppose that i’ , h; set

alh)=s, ah)=4
B(h) =s1, B(N') = s.

Since s’ x s and s} s, the elements
hs' =hess’ and s1h' =s1s]eh

have the same source and same target (s’ and sy, respectively). We will show that they
are equal; indeed,

p(hs') = p(h) e p(ss’) and p(sih’) = p(s1s)) @ p(h')

are bounded above by p(h), and have the same source and same target (p(s’) and p(sy),
respectively), and so p(h's) = p(s1h’). We thus deduce that hs’ = s1h’, whence

h' =5 eh < (s15))eh’ =hs <h.
Thus condition (c) is satisfied. O

Remark. Theorem 3 still holds true (without any modifications to the proof) if we
replace the hypothesis “(%, <) is an inductive category” by the hypothesis “(%, <) is
an ordered category in which any two elements have an intersection” (§11.6).1441]

Example. Let (8,p, #,S) be a right-solved category of homomorphisms such that %
is an inductive class [3a] for the relation o; if we endow # with the relation o, then #
becomes an inductive category, and condition (c) of Theorem 3 is then satisfied.

[44.2] We have to suppose that either 6 is completely right regular, or that py from
Ho to By preserves joins.

Indeed, let h;: s; — s; be morphisms in # such that h; < h; then there exist
joins s = Js; and ¢’ = (s} in (%, x); the above hypothesis implies that, if & is
the pseudo-product p(s’)(p(h)p(s)), then there exists a commutative square in @
of the form

p(S') <55 p(S)

[43.1] Since p is strict, we have immediately that s = a(h N h').
[44.1] It suffices that any two parallel morphisms admit a meet (this remark allows us to apply the result
when 6 is the category F).
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hence h has a sub-morphism #': s — ¢/, and b’/ = J h;.

It is also the case for the categories of homomorphisms (M, ps, F, %, ) and (M, 8., T, T)
when & and 7, are endowed with their usual order relations.

[44.3] This assertion is not correct: F satisfies condition (c), but (%o, ) is not an
inductive class; 7, is not right solving.

However, (JL, 0, 9}, ) does not satisfy condition (c).

Let (%,p,%,S) be a category of homomorphisms such that S contains the groupoid
T of invertible elements of %, and such that (%,p,S) is a species of superstructures
[3a] over (€,p,S). These conditions imply that (6, pp, 7, S) is a category of homo- | p. 373
morphisms. An element h of # will be denoted either by the triple (3(h),p(h), a(h))

or by the triple (8(h),pp(h), a(h)).
Note that the conditions

5,8,€#o and s oy S
imply that B(s) p p(S) in (B,p, #,S), but, in general, they do not imply that p(s) o,
p(S).
Proposition 12. Let s, S € # . The conditions
5 0Cp S,
p(s) <B(S) and B(p(S)p(s)) =B(S)
imply that s o S.

Proof Let
j = (S,pp(S)pB(s), ) € %;
then
pp(5) = p(B(S)B(s)) = pB(S)pD(s),

and

Let
g=(S.p(S)p(s) e g, 5") €T
where ¢’ € #. We have that

((S), p(p(S)p(s)) @ ("), B(S"))

p(g) =
= (p(S), (Wp(S)pp(s)) ® p(g'),B(S"))
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whence

g = (S, pp(S)pp(s) e ply'), 5").
From the condition that s o< S, and by Proposition 4, it follows that

g =(s,p(g),5) €X.
Since ¢’ = (p(s),p(g’),p(S")), we thus deduce that

p@) =g and g =(s9,5) e
Thus s o« S, by Proposition 4. O
Corollary 1. The conditions

h,h €%,
W o by B(W) < B(h),

B(@(a(h)a(n))) =p(a(h)) and B(E(B(R)A(R))) =D(B(R))
imply that b/ o h.
Corollary 2. Suppose that p further satisfies the condition

p(hs) = p(h)p(s)
whenever s < a(h). Then the conditions

sopp S and D(s) < p(S)
imply that s o S.

Proof Indeed, from these conditions it follows that

P
o(pp(S)pp
B(pp(S)pp(s)

whence

B(B()p(s)) <B(S) and p(B(B(S)B(s))) = pB(S)-
We are thus reduced to the hypotheses of Proposition 12. O

From now on, we will further suppose that the conditions

he#, se#,
s < B(h)

imply that p(sh) = p(s)p(h).

Proposition 13. Let 5,5 € Ho. Then the relation s o S in (¥,p,%,S) imply that
s o (S) in (6,pp, %, S).
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Proof- Set j = (S,p(S)p(s), s) € #; we have that
7 = (S, pp(S)pp(s), 5)

since we obtain the equality pp(j) = pp(S)pp(s) by using the relations

Letg = (S,g,5") € H, where g € 6, be such that
a(pp(s)g) = alg) and B(pp(s)9) = B(9)-

We will show that
(s.pp(s)g,5") € H.

Indeed, since p(s) < p(5(7)), we have that
p(B(s)D()) = pB(s)pP(9) = PD(s)g;

from the relations

a(p(s)p(g)) < p(S"),
B(p(s)p(9)) < B(s),
p(a(®()p())) = p(B(S")),
p(B(p(s)P(9))) = p(B(s)),

it follows that

a(@(s)p(g)) =p(S") and  B(p(s)p(9)) = B(s)-
Since s o S in (%,7,%,S), we thus deduce that

(5. 5()p(9), 5") = (s,pp(s5)g,5') € %.

This proves that we have s &,; S in (6,pp, %, S).
Corollary 1. The conditions h,h' € % and h' o h imply that b’ o< h.

Corollary 2. If, forall s, S € #y such that s < S, we have 3(Ss) = S, then s < S implies

that s < S in (8,p, %, S).

Proof. These conditions imply that we have s o< S in (%, Idg, #, %), and the Corollary

then follows from the Proposition.

Corollary 3. If (#,p,%,S) is right solving, and if the following condition is satisfied:

For h,h' € ¥ such that
a(h) =a(h') and B(h)=p(h)
we have that

p(h N 1) = p(h) N p(l)

then (6, pp, # ,S) is right solving.
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Proof: Let T,k € F be such that a(h) = (7/) and B(h) = B(E ); let s be the p-kernel
of (h,h h ); by the Proposition, we have that s oc S in (6, pp, %, S). The relations

imply that pp(s) = a(pp(h) N pﬁ(ﬁ/)), and so (h, E/) admits s as a ppkernel, and
(6,pp, #,S) is right solving. O

Corollary 4. Suppose that s p S in (6,p,#,S) implies both that s < S in #o and that

B(Ss) = S; then the statement that s x,; S in (8,pp,%,S) is equivalent to's 5 S in
(%.5, %, S).

Proof. Indeed, 5 o S implies that 5 o,; S by Proposition 13. Suppose that 5 o,; S;
since

J=(S,pp(S)pp(s),5) €
we have that

(7 p(S)pp(5).p(5)) € %

p(3) = (p(9)
3 S),

’U\ Sl
—~

pp(
whence p(3) p p(S). Then p(3) < p(S) in #, and

B(E(S)D(3)) =
Proposition 12 then implies that 5 o S. O

Proposition 14. Suppose that (6,p, %, S) satisfies Condition (c) of Theorem 3, and that
spSin(6,p,%,S) implies that s < S in ¥ then (¥ ,D, %, S) is right solving if and only
if (8,pp, #,S) is right solving.

Proof- If (%,p,%,S) is right solving, then (6, pp, %, S) is right solving, by Corollary 3
of Proposition 13. Conversely, suppose that (6, pp, #, S) is right solving; let &, n e
be such that

/

a(h) = a(R') and A(R) = B(R);
let 5 be the pp-kernel of (h, E/). By axiom (c), s < S in # implies that s o< .S in
(8,p,%,8), and so 3(Ss = S); by Corollary 4 of Proposition 13, it follows that 5 oz
a(h). Furthermore, the relations

B(3) < a(p(h) NB(R))
p(p(R) Np(R") = pp(R) N pp(R)
. _ — S =

pb(3) = a(pp(h) ﬁpp(h )) p(a(B(h) NB(h)))
imply that p(3) = a(p(h) N ﬁ(ﬁl)). Thus 5 is the pkernel of (A, E/), and (%,p,%,S) is
right solving. O
Theorem 4. Suppose that the following conditions are satisfied:

(1) (B, <) is a completely right regular (F,F', F")-structured category (see §11.6), and that
the groupoid 6., of invertible elements of 6 is an inductive groupoid (§11.6).

(2) (%, <) is completely right regular.
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(3) F is saturated over G, and, for h,h' € T, the conditions
a(h'y < a(h) and p(h') < p(h)
imply that h' < h.

p. 377
Then there exists a subcategory 7, of % containing ' such that s' < s in #, if and only

if s’ <, s in (B, py, Hu,T'), where p,, is the restriction of p to %,
Proof. Let #,, be the class of all elements h € # that satisfy the following condition:

Let s € %y with s < a(h); let p(h)” e p(s) be the class of all elements g € 6
such that g < p(h) and a(g) = p(s). Set

p(h)lp(s) =) (p(h)> o p(s)).
Then there exists h|s € F such that**1!

hls < h,
a(hls) = s,
p(hls) = p(h)Ip(s).

We will show that %, contains I'. Indeed, suppose that h € T" and s < «(h). Let
g € B, be the invertible element induced by p(h) € 6, over p(s), whose existence is
ensured by the fact that 6, is an inductive groupoid. We will show that g = p(h)|p(s).
We have

p(h)|p(s) < g.

Let ¢’ € p(h)> e p(s) be such that ¢’ < g. Since g’ # g~! < B(g), and since 6 is
completely right regular, we have

(B(9)B(g") ® (g 09~ ") = Blg),
(g o971 (B(g9)B(g) = Blg),

whence g'eg~! € €6,. Since 6, is an inductive groupoid, it thus follows that g’eg~! €
Gy, i.e. that

taking into account the relations ¢’ < g and a(g) = a(g’), we find that g = ¢'.

[49.2] The proof is not complete; it remains to show that g is less than any f in
p(h)~ e p(s). Indeed, the relations

fng<ph),
a(fNng)=a(f)Nalg) =s

mean that f N g is in p(h)~ e p(s). Since f N g < g, the given proof implies that
fNg=g, whence

g<f and g <p(h)p(s).

Finally, g = p(h)|p(s).

[49.1] 1t is useful to notice that h|s is unique. Indeed, its target is the unique s’ such that s’ < B(h)
and p(s’) = B(p(h)|p(s)) (because p is strict), and its source s and image p(h)|p(s) are given.
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Thus p(h)|p(s) = g and, by condition (3), there exists
(s1,9,8) €T suchthat (s1,9,8) < h.
Thus
hls = (s1,9,s) €# and h € %,.
Now we show that 7, is a subcategory of #. Let h, hy € %, be such that
a(h1) = B(h).
Let s < a(h) and s; = S(h|s); we will prove the equality
(hy @ h)[s = (ha]s1) @ (h]s);
indeed, if £ < p(h; @ h) and a(k) = p(s), then we have that
k=gieg

where g7 < p(h1) and ¢’ < p(h),
p(s), we have that p(h)|p(s) < ¢’, whence

p(s1) < algy);
consequently,
p(h)lp(s1) < g1 o (a(g1)p(s1)
and
(p(h1)lp(s1)) @ (p(R)Ip(s)) < k
which proves that
(p(h1)lp(s1)) @ (p(R)[p(s)) =) (p(h1 @ h)™ @ p(s)).
We thus deduce that
(h1 @ h)|s = (h1|s1) ® (h|s)
and, finally, that
hiehc,.
Furthermore, %, is saturated under induction in #, since the relations

he#,
h' <h, and s <a(h)

imply that

s'<a(h) and p(hls’) <p(h' e (a(h')s")),
ie.

hls" < h' e (a(h')s") < K
whence

hls'=1'|s" and h' € %,.
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[50.1] The proof has to be completed as follows. Now, p(h|s’) € p(h')” e p(s’) implies
that p(h'|s") < p(h|s’). Conversely, p(h')” e p(s’') C p(h)” e p(s’) implies that
p(h|s’) < p(h'|s"); hence p(h|s’) = p(h'|s’). From the unicity of h'|s’ (cf. Com-
ment 49.1), we deduce that h|s’ = h/|s’, since both have the same image under p
and the same source s’.

It thus follows that, if h € #,, and s} < B(h), then s{h € %, and so

pu(s1h) = p(s1h) = pu(sy)pu(h).

Then we can apply Corollary 2 of Proposition 13, and we have that s’ < s in %, implies
that s" o, s in (€, py, #y, ).
Conversely, let us show that if 5" ,, s then s’ < s in #,. Set

j=(s.p(s)p(s), s") € Hu;

we have that p(s’) € p(j)~ e p(s); let g € p(j)~ e p(s’) be such that
g <p(s).

By using the relations

alg) = p(s'),
(p(s)B(g)) @ g = p(s"),
ge (p(s)B(9)) = Blg),

we obtain that g = (p(s’)3(g)) ' and, since 6, is an inductive groupoid, g = p(s’).

[50.2] The proof has to be completed as follows. To conclude that p(s’) = p(j)|p(s’),
we have to prove that p(s’) < f for each f € p(j)~ e p(s’). Indeed, the relations

fnp(s) ep(i)” ep(s’) and fnp(s) <p(s)

imply that p(s’) = f N p(s’), whence p(s’) < f.

Consequently, p(s’) = p(j)|p(s’) and there exists
jls" = (s1,p(s"), s") € %

such that
s1<s and p(s1)=p(s).

By the above, we thus have that s; o, s, and so s’ = s; < s by Corollary 1 of
Theorem 1. O

[50.3] The results of this Part I may be strengthened by replacing the hypotheses

“$® is inductive” or “F is inductive” as follows:
¢ In Proposition 11: 6 is sub-inductive and
(*)% Any two parallel morphisms admit a meet in G;

¢ In Theorem 3, Corollary 3 (of Proposition 13), and Proposition 13 and
Proposition 14: Conditions (*)¢ and (*)g;

¢ In Proposition 13 and Proposition 12 and their Corollaries: € and # are
sub-inductive.

35



Finally, in Theorem 4, “(8, <) is (¥, ', F")-structured” could be replaced by
“(8,<) is (F°, 3", F")-structured”, where .¥° is the category of sub-inductive
maps, and .¥”* and . its intersections with €’ and Q" (respectively) ([E69]).

Definition 10. With the notation of Theorem 4, an element of %, is called a p-open
homomorphism.

Examples. 1. In the category of homomorphisms (J(, 6, T, ), a f-open homomor-
phism is an open continuous map.

2. In (M, ps, F,F), a functor F is pg-open if and only if F(8) is a subcategory of
B(F) for every subcategory 6 of a(F'). In particular, every functor F' such that
F} is an injection is pg-open. Using the canonical decomposition of a functor
(see [3a]), every functor is thus the composite of an open functor and a faithful
functor.

[51.1] This factorisation of F: A — Bis A % F3(B) 5 B, where

B «~——— F;(B)

w,all |

x By +—— Ap x
Bo X By g Ao % Ao

is a pullback.

Note that the subcategory %, of F satisfies condition (o) of Proposition 10.

Particular case. In what follows, more often than not, we concern ourselves with the
case of a category of homomorphisms (M, p, #,T"), where Jl is the category of maps
constructed in §1.5 and where I' is the groupoid of invertible elements of #. We suppose
J to be endowed with the order relation

(E',f,E) < (E1, f1, Ey) if and only if
E C Ey, E' C EY, and f is a restriction of fj.

Then J( is an inductive category such that 3(Ee) = Eforalle, E € JMly with e < E;
consequently, the relations

[6<Einmo] and [eocEin(J/LId/yh/ﬂuﬂ/L)}

are equivalent.

In (M,p,7,T), we have that s p S if and only if
p(s) Cp(S) and (S,i,8) € F.

For s to be a substructure of S in (JMl,p, % ,T), it is necessary and sufficient that
the following conditions be satisfied:

(1) p(s) C P(S) and (S,¢,s) € %,
(2) the conditions (S, g,5’) € # and g(p(S")) C p(S) imply that

(s,9,5) €.

Proposition 15. If % is saturated over M, then (p(T), pB, %) is a species of siructures,
where ¥, denotes the class of p-injections.
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Proof. Let s o< S and g € p(I") be such that

a(g) = p(5);
since p(T") is saturated in #, we have that ¢’ € p(T'), where ¢’ is the bijection induced
by g on p(s); the relations ¢’ < g and a(¢’, s) = s x (g, .S) imply that (¢, s) x (g,.5)
by Proposition 6, and so

Blg's5) o<p B(g, 9).
From the definitions, it follows that p(I") acts on %, with the composition law
(9,5 0p 5) — (B(g,85) 20p B(¢',s))w if and only if a(g) = p(S). O
Let
h=(S1,h,S) €% and K =(S,K,S) € %;

for a substructure s of S to be the pkernel of (h,h), it is necessary and sufficient that
p(s) be the class consisting of the x such that h(z) = b/ (x).

Proposition 16. If (M, p, % ,T") is right solving, then T acts on the class #,, of p-injections
S 20, s such that s is the p-kernel of a pair (h, 1), where a(h) = S.

Proof. Let (S1,9,5) =7 €T, and let s be the pkernel of (h, k'), where a(h) = S. By
axiom (R) of Definition 9, the pair (h e g~',h'  g~!) admits a p-kernel s; € S;; since
p(s1) = g(p(s)), it follows from Proposition 7 that we have
7 = (s1,gt,8) €T,
Thus I' acts on 7%, with the composition law
(G, S 0 s)— S1 0 s ifand onlyif S = a(g). O
We endow F with the order relation:
(G1,F,G*) < (éf,?, él) if and only if G (resp. Gi) is a sub-
category of G (resp. of éll) and F is a restriction of F.

Then & is an inductive category that is supraregular over J/ with respect to pg, in
the sense of [3c].

[52.2] F is only a subinductive category, but the previous results may still be
applied to it (cf. Comments 31.1 and 50.3).

Furthermore, (M, pg, F,F) satisfies condition (c) of Theorem 3. The three conditions
G+ ﬁé{ G+ océl, and Gt < éL
are equivalent (see §II, Proposition 9). Let (F,p,%,T) be a category of homomor-

phisms such that T is the groupoid of invertible elements of %. From Corollary 2 of
Proposition 12 and from Proposition 14, it follows that:

Proposition 17. The conditions s < S in (F,p,%,T) and s < S in (M,psp,F,T) are
equivalent; (F,p, ¥, T) is right solving if and only if (M, pgp, # ,T') is right solving.
Remark. Let (M, p, #,T') be a category of homomorphisms. For (5, ¢, s) to be a strict
monomorphism [2] of %, it suffices that s be a substructure of S and that there exist
a family of elements (S, h;,S), with ¢ € I, such that p(s) is the class of the x for
which h;(xz) = h;(x) for all 4,5 € I. Let h,h’ € #; if (h,h’) admits a pkernel s,
then s is a kernel of (h,h') in # [2]. If F is saturated over Jl, then, for every strict
monomorphism (S, ¢, S") in % such that g is injective, there exists a substructure s of
S such that (s,7,S’) € T’; but a kernel of a pair (h, ') is not always isomorphism to a
p-kernel of (h, h').[531]

[53.1] A kernel (or equaliser) k: e — €’ of (h,h’) is always a p-injection, since p is faithful; it is a
pkernel if p(k) is an equaliser in 6 of (p(h), p(h’)) (cf. Comment 41.2).
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II Structured categories

II.1 Categories of homomorphisms with finite products

Let Mg a class of classes such that if it contains X then it also contains all the subsets
of X, and such that if it contains X and Y then it contains their product X x Y. Let
J be the category of all maps from M to M’ in Jly.

Definition 1. We say that (Ml,p, #,I") is a category of homomorphisms with finite
products if (M, p,7,T) is a category of homomorphisms such that I" is the groupoid of
invertible elements of # and if, for every pair (s1, s2) € #y X #y, there exists a unit
51 X s of # that satisfies the following conditions:

(1) p(s1 x s2) = p(s1) x p(s2).
(2) Let p; be the canonical projection from p(s; x s2) to p(s;), for i = 1,2, i.e.
pi(z1,22) = 74
for all (z1,z2) € p(s1) x p(s2). Then

Pi = (8i,Di, 81 X 82) €EX.
(3) The relations (s;, h;, s) € # for i = 1,2 imply that
(s1 X $a,[h1, ha],s) € F,
where [h1, ha](2) = (h1(2), ha(2)) for all z € p(s).

These conditions imply that the pair (s1, s2) admits (s1 X $2,D1,D5) as a product
[4] in 7.

Proposition 1. The product s1 X so is completely determined by the conditions of Definition 1.

Proof. Indeed, if S is another product of (s1, s2) satisfying conditions (1), (2), and (3),
then

(S7p(81) X p(82)731 X 82) el
whence S = s1 X s9, since (6, p,T) is a species of structures. O

From now on, we take (M, p, #,T") to be a category of homomorphisms with finite
products.

Proposition 2. Let f;, = (s}, f;,si) € H, withi = 1,2. Then
(81 X 85, f1 X fa, 81 X 52) € H
where p. 382
(fi x f2)(z1 x @2) = (f1(21), fa(z2))
Jor all (x1,x2) € p(s1) X p(s2).
With the notation of Proposition 2, we set
Ji % fa= (81 X 85, f1 X fa,51 X 82).
Proposition 3. For s;, s, € #, the relations
sy ocsy and sh o so
imply that

s % sh o< 51 X 9.
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Proof. Indeed,
(51 X 82,1 X ,8] X 55) €H;

let (s1 X $2,9,S5) € # be such that g(p(S)) C p(s}) x p(sh). Since (s;,p;g,S) € % and
pig(p(S)) C p(s;), where i = 1,2, we also have that (s}, p;g,S) € %, whence

(51 % 85, [prg, pag], §) = (s1 % 53,9, 5) € X.
Thus
s X 84 o< 81 X Sa. O
Proposition 4. The maps
(f1: fa) = F1 x [
(f1:fa) = Fax fi
are equivalent as functors from #H x # to #. The maps
(f1s fau f3) — (F1 % f2) X f3
(f1:f2 fa) — f1x (fa % [3)
are equivalent as functors from # X FH X F to ¥ .

Proof- This follows from the properties of the functor-product [3d]

(f1, f2) V— 1 X f2

in JIC.

The first equivalence associates to (s1, s2) € #y X Hp the triple (s2 X s1,7, 51 X $2),
where v(z1, z2) = (22,21). The second equivalence associates to (s1, sz, 3) the triple
(s1 X (s2 X 83),7, (81 X s2) X s3), where ~'((z1,x2),23) = (21, (x2,23)) for z; €
p(si). O

[54.1] Definition 1 means that p creates canonical products; Proposition 1, Propo-
sition 2, and Proposition 4 are well-known properties of products; Proposition 3
is a particular commutation between initial lifts (since products and p-injections
are initial lifts, cf. Comment 146.1 on [(E66]).

Definition 2. We say that a subcategory #' of # is stable under products if, for all

f; € #', for i = 1,2, we have that
fixfae®.

Note that, even if I is contained in #’, this definition does not imply that (M, p, #’,T")
is a category of homomorphisms with finite products. p. 383

Example. I' is a subcategory of # that is stable under products, with the inverse of
f1 X fo, where fi1, fo € T, being (f; ' x f;1).

II.2 Definition of structured categories and groupoids

We again denote by (Jl, ps, F, F,) the category of homomorphisms (§1.3) in which F
is the category of functors (@L, F,8%) such that (C, F,6) € Jl, and pg is the functor

(@, F,6") — (B, F, ).

We denote by #’ and %" two subcategories of % that contain I'.

39



Definition 3. We define an % (#’', #")-structured category (resp. H((H',H'), %’
structured category) to be a pair (6°,s), where 6°* € Fy, s € #y, and p(s) =
that satisfies the following conditions:

)-
G,
(1) There exists so € #y such that p(sg) = 6, (s, ¢, S0) € #, and (s¢ X s0, [5, ], s) €

#' (resp. and (soa, 8), (S0, 3,5) € #').

(2) Let C*® xB* be the class of pairs (f’, f) € € x 6 such that f’ e f is defined, and
let x* be the map (f/, f) — f’ e f, where (f', f) € €° x €°®. Then there exists
s’ «p s X s such that p(s’) = 6° « 6° and

(X%, 8) € X"

In particular, we refer to an # (%, % )-structured category as an # -structured category.

[565.2] Structured categories and internal categories.

First remark that the notion given here is stricter than the one defined in [(E57],
and it motivated the introduction of substructures.

Let (6°,s) be an #-structured category (more precisely called a p-structured
category later on). Then s is a substructure of s x s mapped by p to the pullback
of (a, ), so that (cf. [(E109, Proposition 2.1]) we have the pullback

in 7. It follows that (6°,s) determines an internal category in # (in the usual
sense), with s as its objects of morphisms and sy as its object of objects:

B
a0

K
sg —> 5§ —— &

(e

Indeed, since 6° is a category and p is faithful, the identity and associativity
axioms are satisfied. Conversely, let

b

SOS»SLSQ
A S

a

vv vv

be an internal category in #; then it a p-structured category if and only if its
image under p is a usual category, i.e. if and only if p(k) is the composition of
a category on p(S) with p(a) and p(b) as its source and target; such an internal
category is called a concrete internal category.

Hence the category of p-structured categories may be identified with the cat-
egory of concrete internal categories in #; if p creates canonical pullbacks, it is
equivalent ([(E104]) to the category of all internal categories in 7.

Charles was motivated to introduce structured categories by the numerous ex-
amples (cf. Sections 5 to 6) he had already met: topological and differentiable cat-
egories or groupoids in [(E28, E50] in relation with differential geometry, ordered
and local categories at the base of local structures theory [(E47, (53, (E55]; double
categories such as the double category of quartets [(E55] and the 2-category of nat-
ural transformations [(E52]. General theorems on structured categories are given
here and in [(E66, (E100]; they are strengthened in [(E109] where the 2-category of
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structured categories is studied, as well as its enrichments. Completion theorems
for structured categories may be found in [(E102].

In 1966 (cf. [(E104, (E93]), Charles considered non-concrete internal cate-
gories, which he named generalised structured categories. He defines them as models
of the sketch of categories 0cat, which is the full subcategory of the opposite of its
simplicial category A with objects 0, 1, 2, 3:

V'
K

m

\/!/\/

equipped with the cones

DL <H
d b
467 41/7

to be transformed into pullbacks. In [(E113, (E115], the results of [109] on concrete
internal categories are adapted to the general case. In fact, this theory led Charles
to the notion of sketched structures developed from [(E106] onwards.

Bénabou used internal categories in the late sixties (unpublished) and certainly
helped to propagate them. Several theses and papers written near us are wholly
or partially devoted to structured or internal categories, e.g. Bourn [C13], Con-
duché [C22], Kempf [C60], Langbaum [C63], Lellahi [C69], and Vaugelade [C97]
(without mentioning those on examples).

However, internal categories, so universally used today, seem to be really of
interest to other schools only in the seventies (Gray [C39], Diaconescu [C26], ...).
Though Grothendieck mentions the simplicial object associated to a category in
[C42], he prefers to work with the associated fibration (called a category object) for
avoiding pullbacks.

Proposition 5. For (6°,s) to be an H(#H ,H"") structured category, it is necessary and
sufficient that (6°,s) be an T (7,7 ), H'")-structured category.

Proof. If (B*,s) is H((#, %), " )-structured, then
(so X so,[B,al,s) € F
by definition of the product in #. Conversely, the relation
(so X s0,[B,a],s) € H
implies that
(so,p1[B, ], 8) = (so,,8) € X and (so,B,8) €. O

An #(F', %" )-structured category (resp. F ((#', %K'), #"')-structured category) is
also an #-structured category.

Proposition 6. Let (6°,s) be an # (', %" )-structured category (resp. H ((H',F'), H")-
structured category). Then the element sq defined by condition (1) of Definition 3 is a substructure
of s; thus s is also unique.

Proof. Let sg be an element satisfying condition (1) of Definition 3, and let (s, g, 5) € #
be such that g(p(s)) C 63. Then

(So,OL,S) b (S,g,S) = (So,Oég,S) EH
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and also

for all z € p(S). Thus
(s0,9,5) € X and sg o s.

It follows from the Corollary of Theorem 1 (§I) that sg is unique. O]

Definition 4. We define an % (%', %" )-structured groupoid (vesp. F((H',H'),H")-
structured groupoid) to be a pair (G*, s) that satisfies the following conditions:

(1) G* is a groupoid.

(2) (G*,s)isan# (H', F")-structured category (resp. an # ((#', #'), %" )-structured
category).

(3) (s,7,5) €, where j(g) =g ' forallg € G.
From condition (3) above it follows that (s, j, s) € T'.

Definition 5. We define an # (%', #"')-structured functor (resp. F ((#', %"), #'')-structured
functor) to be a triple ((67,s1), F, (6°, s)) that satisfies the following conditions:

(1) (C*,s)and (67, s1) are # (#', " )-structured categories (resp. #H ((H', %), %")-
structured categories).

(2) (C},F,6%) €F and (s1,F,s) € ¥.

Let % (%', #")o be the class of all # (', %" )-structured categories, and €(%', %" )o
the class of all # (%', %" )-structured groupoids. Let # (%', %"') be the category of all
F(H', %" )-structured functors, whose class of units is identified with # (%', #"')o. We
denote by:

p the map ((67,s1), F, (8°,s)) — (67, F,6*) from F (#', ") to F;
Py the map ((67,51), F, (6°,5)) — (s1, F, s) from H (H',%") to ¥.

Let I be the groupoid of invertible elements of # (%', 7" ). We define G (%', #")
(resp. T'g) to be the full subcategory of (%', %") (resp. of I') that has €(%', %" ),
as its class of units.

We define in an analogous way (%', %'), #") (resp. G((¥',%’),%")) whose
groupoid of invertible elements is denoted by T (resp. f:g).

In particular, we write

F(F,9) = TC = (9,9, 9).

Remark. The two functors p and pg determine the induced category p*(%F, p% ), equiv-
alent to p% (%, p), whose elements (see [3a]) are the pairs (F,h) € F x ¥ such that
pg(F) = p(h). We can identify (%', %") with the full subcategory of p*(F, pz) that
has the 7 (%', #")-structured categories as its unite. We will show that is a subcat-
egory of homomorphisms of the category of homomorphisms p*(F, p) over . An
arbitrary element of p*(%, p#) might be referred to as a structured functor to #, in the
vague sense.
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Theorem 1. (F,p, % (#',%"),T) is a category of homomorphisms, of which (F,p,, €(#', "), T's)

is a subcategory of homomorphisms.
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[57.1] For internal categories in a category admitting pullbacks, the corresponding
result is:

Any isomorphism from the object of morphisms of an internal category extends
into an isomorphism of internal categories.

Proof- The only thing to prove is that the conditions
F=((6,51),F,(6%s) €l and (6°,5) €% (#' %" )

imply the existence of (6,5;) € #(#',#")o such that (5, F,5) € #. Since (M, p,T)
is a species of structures, there exists (51, F,5) € I'. We now show that (67,5;) €
F(F', 7" )o. Let sp o s and s} o s1 be such that p(sg) = 63 and p(s}) = (67)o. By
Proposition 6 in §1I, we have that

(55, Ft,80) €T and  (sh x 85, (F x F)t,80 x s0) € T.
It thus follows that there exists 5} € %, such that
p(55) = (B)o and (55, F1,3) €T

where 3y « 3 and p(3) = 63. Then (3} x 3, (F x F)t,39 X 39) € I and, by Proposi-
tion 6 in §1, E(lj o 51. Since #’ D T", we thus deduce that

(36 %30, [B,0],51) = (8§ x50, (F'x F)1, 50 x350) ® (50 X 50, [8,c],5) 8 (5, F',51) € #'.
Let s’ o s x s be such that p(s’) = €°* x 6°, and s] x s1 x $1 be such that p(s}) =
67 « 67; by Proposition 7 in §1, we have that

(), (F x F)i,s8") eT.
Let 5’ o< 5 X 5 be such that p(3') = p(s’); there exists
(5),(Fx F),,s)eT
such that
p(51) = p(sh)
and, by Proposition 6 in §1, s} « 51 X 5;. Since #" contains T,
(31,x},5)) = (51, F,5) o (3,x°,5) o (5), (F x F),,5) L e %",
Thus

(61,51) € (', %")o and ((C},51),F,(6°,5)) €T. O
. 386

Theorem 2. (F,p, % (', %), #"),I") is a category of homomorphisms.
Proof. The proof is analogous to that of Theorem 1. O

Theorem 3. If# issaturated over M, then (F,p, % ((H', %), %"),T"), (M, psp, Z (F', %"),T),

and (#, Dy, H (F', %" ),T) are categories of homomorphisms.

Definition 6. We define an % (%', #"')-structured subcategory (vesp. H (#', %" )-structured
subgroupoid) of (6°,s) € #(H',#" ), to be a substructure of (€°, s) in (F,p, # (#', #"),T")
(resp. in (F,p, 6(#H',#"),T'g)). We similarly define an % (%', #"'), #"')-structured sub-
category (vesp. H ((H',F'), H"")-structured subgroupoid).

Before studying the properties of structured categories and structured groupoids,
we first give some examples.
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I1.3 First examples

Example I

Let (M,0,7,F) be the category of homomorphisms defined in §1.3.

Definition 7. A J-structured category (resp. J -structured groupoid) is called a zopo-
logical category (resp. topological groupoid).

This definition agrees with that of [3b]. Indeed, if (6°, s) is a topological category
in the sense of [3b], then condition (1) of the definition of a J-structured category is
satisfied by taking so to be the topology on 6; induced by the given topology on 6.
Furthermore, condition (2) is satisfied, with s’ the topology on €* x 6°* induced by
s x s. Thus the definition of a topological category can also be expressed as:

(1) The maps « and /3 are continuous maps from s to s.

(2) The map x* is a continuous map from s’ to s, where s’ is the topology on €*x6*
induced by s X s.

[58.1] Topological categories are formally introduced in [(E50], along with the more
refined locally trivial categories (cf. Comment 25.1); in particular, conditions
are given there which ensure that the groupoid of all morphisms be open. Their
general theory is developed in [(E92]; microtransitive categories (those where the map
f = (B(f),a(f)) is open) are characterised and equipped with a quasi-uniform
structure (generalising the uniformities of a topological group); prolongations of
topological and quasi-topological categories are also considered.

Germs of topological categories and species of structures are studied in [C29]
and in Bednarz [C3], with a view to applications in control theory.

We will later see that the definition of an #-structured category can always be thus
simplified in the case where (M, p, #,T") is right solving.

Example II
Let €" (resp. “67) be the category of r-differentiable maps (resp. of r-differentiable

maps of locally constant rank) between r-differentiable manifolds; @ will be thought

of as a category of homomorphisms over JL. p. 387
Definition 8. A €"((6},6T), 6")-structured category (resp. 6" ((B1,67), 6" )-structured
groupoid) is called an r-differentiable category (resp. r-differentiable groupoid).

This definition agrees with that of [3b].

[59.2] Differentiable categories are formally defined in [(E50], where the groupoid of
all isomorphisms is proved to be open.

In a series of short (alas!) papers, Charles outlined modern foundations for
differential geometry, based on differentiable categories and, in particular, on the
differentiable category of jets and on its actions [(E46, (78, (£101, (E103, (E105,
(E116]. Prolongations of manifolds and of differentiable actions, higher-order con-
nections and their curvature and torsion, geometrical objects, Lie derivatives (cf.
also the theory of Lie for differentiable groupoids done by Pradines [C85a, C85b,
C85c¢, C85d]) are easily described in this elegant setting.

It is not possible to mention here all the papers written on this subject (cf.
Volume I-2 of the collected works, in the same series as [(E]).

Recently, synthetic differential geometry has thrown a new light on Charles’
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conceptions, since they are well suited for generalisations to topoi (cf. Kock [C61],
where jets become "maps”). For instance, the requirement on the source and target
of a differentiable category to be submersions finds it justification: it means that
the category "is" an internal category in the Dubuc topos [C27].

Note that o and 3 were asked to be submersions in order to ensure the existence
of their pullback (and examples proved this condition to be meaningful). Ngo
Van Qué gave a more general definition [C80], which amounts to replacing the
category of differentiable maps by its pullback completion over the category of
sets; I mention it here since one of the motivations for [(E107] came from thinking
over his definition.

Example III

Let @ be the class of semigroups D+ (i.e. D is a class that we suppose to belong to .o,
endowed with an associative composition ). Let < be the class of homomorphisms
(Di, f, D) between semigroups, i.e. where f is a map from D to D; such that

J(Zz' Lz2)=f(z) L f(z) forallz 2z € D.

Then 9 is a category of homomorphisms over J( with the projection (Df, 1 DL) —
(D17 f7 D)

Note that (D, ¢, D) € 9 if and only if D+ is a sub-semigroup of Di- endowed
with the composition law induced by L.

Proposition 7. For (6°, L) to be a D-structured category it is necessary and sufficient that
L be an everywhere-defined associated composition law on B, and that the map

(9. f)—gLf
(where g, f € B) be a functor from B°* x B to B°.

Proof. Let (6°, L) be a D-structured category; by the previous remark, 63 is a sub-
semigroup of 6+, and so

ele e
for e, ¢’ € GJ. By the same remark, the conditions (g, f), (¢/, f') € €°* x 6€* imply that
(¢ Lo f L= f)L(gf)eB 6%

furthermore, since x*® is 2 homomorphism from the semigroup (6°* x €*)* to €+, we
have that

(¢ Lg)e(f Lf)=(def)L(gef)

and the conditions of the proposition are satisfied. Conversely, suppose that the con-
ditions are satisfied; since (g, f) — g L f is a functor, we have that

alg L f)=alg) La(f) and S(g L f)=p5(g9) L B(f);
the conditions (g, f), (¢, f') € €° x 6* imply that

(g of)Ligef)=(g Lg)e(f L))
Thus (6°, L) is P-structured. O
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Example IV

In Example III, we can replace & by the subcategory @’ (resp. @”) consisting of
triples (Di, f, DY) such that D+ and Di are semigroups that admit a unit 1 (resp.
that admit an element O such that z 1. 0 =0 L z = 0 for all z € D), and such that we
have f(1) =1 (resp. f(0) = 0).

For (6°, L) to be &'-structured (resp. @"-structured), it is necessary and sufficient
that (6°, L) be a @-structured category and that 1 € B3 (resp. 0 € 6;)).

A '-structured category is a category with strictly associative multiplication, in
the sense of Bénabou [C1]

[60.1] A &'-structured category is also called a strictly monoidal category: the main
example is the simplicial category, equipped with the ordinal sum. Monoidal cate-
gories (MacLane [C71], Eilenberg—MacLane [C32]) or multiplicative categories (Bén-
abou [C4]) are obtained by a "laxification" process: more precisely, they corre-
spond to lax functors from the sketch of monoids

ix1 kx1
=Tt
1x17 1xk

considered as a discrete 2-category to the 2-category of categories (cf. [(E117]).
Similar "laxifications” lead from 2-categories to bicategories, and from double cat-
egories to non-associative double categories (Bénabou [C6], Chamaillard [C20],
Moreau [C78]).

Example V

Let G be a semigroup. Let [G] be the category defined in the following way.[6*-2!

A unit of [G] is a pair (Z,x), where Z € Ml and x is a map from G x Z to Z,
i.e. an external composition law on Z, with the composite (v, z), where v € G and
z € Z, being denoted yxz. We suppose that the following axiom is satisfied:

1) (vv)xz =" x(vxz), where 7,7 € G and z € Z.

A morphism of [G] is a triple (Z',X), T, (Z, x)), where (Z,x), (Z',x’) € [G]o and
(Z',T,Z) € M, and

YXT'(2) = T(vx=)

forall z € Z and g € G.
Then [G] is a category of homomorphisms over J{ with the projection

((Z/’ X/)7 T7 (Z’ X)) — (Z/7 T’ Z)

Let [G, 0] be the full subcategory of [G] whose units are the pairs (Z, x) that further
satisfy the following axiom:

(2) There exists 0 € Z such that yx0 = 0 for all v € G.

If G admits a unit 1, let [G, 1] be the full subcategory of [G] whose units are the
pairs (Z, x) that satisfy the following axiom:

(2) Ixz=zforall z € Z.
[60.2] This [G] is the category of G-spaces.
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Proposition 8. VB! Let €° be a category. For (6°,x) to be a [G)-structured category (resp.
a |G, 0)-structured category, resp. a |G, 1]-structured category), it is necessary and sufficient that
the following conditions be satisfied:

(1) (C*,x) € [G]o (resp. (C*,x) € [G, 0], resp. (C*,x) € [G,1]o).
(2) (vxB3) C B3 forally € G.
(3) If(g, f) € B* 6", then

(vxg,7xf) € B° % 6*

forally € G, and

(vxg) ® (vxf) = vx(g ® f)-

Definition 9. A [G]-structured category is called a category with operator semigroup G.
If G is a group, a [G, 1]-structured category is called a category with operator group G.

Examples. (1) Let (8", x) be a category with operator semigroup G. If €% is an
abelian group and €* = G is commutative, then (€1, x) is a commutative ring.

(2) Let I be a topological space and G a group of operators on E such that, for all
v € G, the map

v:x—yx

(where x € E) is a homeomorphism of E. The category of local jets of continuous
maps from E to E is then a category with operator group G, with the composition

vix f being (727) (52 f)(527) ", where o’ = f(x).
II1.4 Double categories
Let (M, ps, F, F) be the category of homomorphisms defined in §I.
Definition 10. An F-structured category is called a double category.

Proposition 9. Let 6* be a category, and 6, a subclass of 6. The relation (6°,1,6;") € F
implies that Gi- is a subcategory of B°, endowed with the composition law induced by that of
€.

Proof. Let f, f' € @;; we have that a*(f) = a®(f) and, if f L f is defined, that
f' L f = f"e fsince s is a functor. Then, if f’ e f is defined, we have that

at(f)y=a(f)=B°(f") = B*(f)
whence f’ L f is defined, and
Flf=fefec.
0

Corollary F. or (6°,61) to be a double category. it is necessary and sufficient that the
Jollowing conditions be satisfied:

(1) B~ is a category of which €Y is a subcategory (63)*.
(2) a® and B* are functors from 6+ to (63)*.

[N.B.] This proposition was incorrectly numbered “Proposition 3” in the original.
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(3) B*xB* isa subcategory (B**B*)L of €+ x 6L, and x* is a functor from (€*x6*)~*
to 6.

Recall that the composition law in the product category €+ x €= is defined by

(g9, (f', 1) — (g LfgLf)

if and only if g | f and ¢’ L f’ are defined in €. In €1 x 61, we have
at(g',9) = (a"(¢),at(9)) and B(g'.9) = (B(d), 8 (9))-

Theorem 4. Let (8®,6~L) be a double category. Then (6+,6*) is also a double category.

Proof. Let 21,2/t € 63" be such that (2'*, 21) € B® x 6°. Since (2'*, 21) is a unit of
(B*«€°*)*, and since x* is a functor from (6*x€*)* to G+, we have that '~ ez €
@y . Since a® is a functor from €1 to (B3)", we have that a®(z1) € 6;; similarly,
B*(z1) € 6. Thus 7 is a subcategory (B3)® of 6°. Let (f', f) € €* x 6*; then
(at(f"),at(f)) € B*xB*, since €* x6* is a subcategory of 61 x €+ and, since x*
is a functor, we have that

at(f)eat(f)=

Suppose that (g, f), (¢, f') € €t «6L and (¢, g), (f', f) € €* *6°. By condition (3)
of the Corollary to Proposition 9, we have that

@ 9) L f)=@ Lf,gLf)eB*+x€6°
and
(g Lf)e(gLf)=(degL [ ef)

We thus deduce that €1 x 6~ is a subcategory of 6° x 6°, and that the map (g, f) —
g L f, where (g, f) € €+ x 6", is a functor from (61 x61)* to €°. This proves that
(6+,6°) is a double category. O

Proposition 10. If(6°,6") is a double category, then
65 N6y = (65)a = (65 ).
Proof. Let f € 6; since a® and 3° are functors from €~ to €, we have the equations

a*(at(f)) = at(@(f); a*(B(f)) = BH(a*(f));
Bt (f) = at(B°(): B(BH(f) = BH(B(f))-

Thus (63)s = (B5)S. If 2 € G5~ N6y, then we see that
z=a%(z) = ot (a*(2)) € (€3)g-
O

Definition 11. The class (6)y is called the class of vertices of the double category
(6°,61), and denoted by Boo.
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[62.3] 2-categories are those double categories (€°,6") for which the objects of
@+ are also the objects of 6°, so that g9 = B;-. They are alternatively defined as
categories enriched in the cartesian category of categories (by the general result
of [(E120, Appendix]). The main example is the 2-category of natural transfor
mations [(E52], from which all double categories may be constructed (cf. [E64,
Comment 105.1]).

. 391
From the above, if (8°,6") is a double category, then the following conditions are

satisfied:
(a) B° is a category.
(b) 61 is a category.

(c) a® and 3* (resp. a® and 1) are functors from €=+ to €+ (resp. from 6* to

B°).

(d) Axiom of permutability. If the composites (¢’ eg) L (f'e f)and (¢ L f')e(g L f)
are defined, then

(gog) L(ffef)=(s L f)e(gLf)

(e) BL xB' is a subcategory (61 x61)® of B* x 6°, and the map x is a functor
from (81 x61)* to B6°.

(f) 6°® *B* is a subcategory (6° *B°®)* of 61 x €+, and the map x*° is a functor
from (6°x6°*)"* to 6.

(g) 67 (resp. C65‘) is stable under L (resp. under ).
(h) If the composites g’ e g, f'® f, ¢’ L f’, and g L f are defined, then
(gog) L(f'of) and (9" L f)e(gLf)
are defined and are equal to one another.

(i) For all f € 6, we have

a*(at(f)) =a(a(f); a*(B(f) =
B at () =at(B°(f)); B (BH(f) =

|
=
—
—
Q
()
—~
-

Theorem 5. Let B be a class endowed with two compositions laws, ® and L; for (6°, CGJ‘)
to be a double category, it is necessary and sufficient that one of the three systems of above axioms

be satisfied:
1) (a), @), (c), (d).
2) (a), @), (¢), (f), (i).
Q) (@), @), (@), ), (i).

Proof. We first show that the system of axioms (1) implies that (€°, 6”erp) is a double
category. Let z*,2'® € G3; if 2/ L 2* is defined, then, since «*® is a functor,

a.(zl. J_ Z.) :O[.(Z/.) J_a.(z.)

=212 €86;
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since o~ and Bt are functors, we have that at(z*) € €3 and 3+ (z*) € 63; conse-
quently, B3 is a subcategory of 6. For all f € 6, we have that

a®(at(f) =t (e (f))

since o® is a functor; similarly, the other equations in axiom (i) are also consequences
of axiom (c). Let (f’, f) € 6° x 6*; from (i), it follows that

a®(at(f) = at(a®(f")
=at(B°(f))
B

and so
(@t (f'),a™(f)) € B* B%;

in a similar way, we find that
(B(f1),B(f)) € 6° 6"

Let (¢, g) € 6° » €* be such that (¢', f), (9, f) € B+ »6=; by (c),
a*(g' L f)=a’(g") La(f)

B*(g) L B°(f)
B*(g L f)

and so (¢’ L f',g L f) € 6°* x6°*. We thus deduce that B* x 6° is a subcategory of
|+ x €*. Also

i

at(geg)=at(d)ea

implies that (¢’ e g, f’ e f) € €1 %6~ and, by (d), that x* is a functor from (6°*x6*)*
to €1. Thus (6°,6"1) is a double category.
Now suppose that the system of axioms (2) is satisfied; if z* € 6 then
at(z®) = a®(a*(2%)) € 6g;

if 2/* € 63 and (2'*,2°%) € B+ x 61, then the functor x* sends the unit (2'*, 2*) of
(L xB1)* to (2/* L 2°) € 1 x6~; thus 6] is a subcategory of €. If 2+ € Gy,
then

a®(zh) = at(a®(zh)) € 65

Let (g, f) € €+ «6~; by (e), we have that (a*(g),a*(f)) € €+ x 6+, and

a®(g L f)=a"(x"(9,/))

=x"(a%(9),a*(f))
=a®(g) La*(f),

i.e. a® (and, for the same reason, 3°) is a functor from 6+ to (63)*. Taking (f) into
account, this shows that (6°, ") is a double category.

Finally, suppose that the system of axioms (3) is satisfied. Let (g, f) € €+ x 61;
as above, we can prove that (i) implies that (a®(g),a*(f)) € €+ x €*; by (h), the
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composite (g L f) e (a*(g) L a®(f)) is defined, and, since ] is stable under L, we
see that

a®(g) La*(f) =a(g L f).

We thus deduce that (c) is satisfied; furthermore, (h) implies (d); thus the system of
axioms (1) is satisfied, and (C@',C@L) is a double category, by the first part of this
proof. O
Remarks. —
(1) If all the elements of the form 2§ | 2% with 2? € B3 (resp. of the form 25 e z{-
with z} S C@OL) are regular [3a] in 6° (resp. in ®¥"1), then the axioms (a), (b),
(h), and (i) suffice to imply that (€*,6") is a double category. Indeed, from (h)
and (i) it follows that

(5 L2t)e (s Lag) =25 Lot
whence

a®(z3 L2}) =25 L 2} €6
which proves that (g) is satisfied.

(2) Even though the composition laws e and | have properties of symmetry, it is
simpler to suppose that the data of the double category (€°,6~) also includes
the order in which we consider the composition laws; thus (6°®, 6+) means that
®* is the category that is structured in F by 6.

A double subcategory of the double category (6°,61) is a subclass 6; of 6 that is a
subcategory of both €* and 6~; then (6,61 ) is a double category.

An F-structured functor is called a double functor. By definition, a double functor
F = ((6,%61), F, (6°*,61)) is defined by a map F from 6 to 6; such that (67, F, 6*)
and (Gi, F,6"1) are functors. By Theorem 1, double functors form a category of
homomorphisms (%, pz, F, F ), where

ZTJ(F) = (Cgl.vF’%.);
by Theorem 2, they also form a category of homomorphisms (¥, pz’, F, F.,), where
5 (F) = (p5)3(F) = (61, F,6").

Double categories of quadruples. — Let 61 and B2 be categories with the same class
A of units. Let (J(62,B;) be the class of quadruples (f3, f1, f1, f2), with f/, fi € €,,
such that

a(fi) = alf2), a(fi) = B(f2),
B(f1) = a(f3), B(f1) = B(f3).

On (B2, 6, ), we define two composition laws:
%ﬁ@hﬁﬂ%ﬂﬁﬁﬁﬁﬁb&h%ﬁ)Mmmﬁh=ﬁ
(fas f1, f1: f2) B(f2, [ fr, f2) = (f2 @ fo, f1, 1, fo @ f2) if and only if f) = f1.

Definition 12. The composition law [ on (62,61 ) defined above is called longitu-
dinal multiplication, and B is called lateral multiplication.

Proposition 11. (63, 6;), endowed with longitudinal and lateral multiplication, is a
double category.6>1]

[65.1] This category is already considered in [(E55, Appendix], but here again it is more intuitive to
speak of the horizontal and vertical compositions.
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The longitudinal category is denoted (B2, 61 ), and the lateral category B(B2, €1 );

the source and target maps for the longitudinal category are denoted o and ﬁm, and
for the lateral category o and (5, respectively. The class of vertices of the double
category [J(62, €1) can be identified with A.

Definition 13. Given double categories (6°, 6") and (67, 6i-), we say that (6}, 6;")
is a quotient double category of (6°,67) if there exists an equivalence relation p on @
such that B} (resp. 6i) is identified with the quotient!®!l category [3e] of 6€* (resp.
of €*) by p.

In particular, a theorem in [3a] implies the following. Let 7 be a double functor from
a double category (6°,61) to a double category (6}, 6i). Let p, be the equivalence
relation on 6 defined by

f~f ifand onlyif =(f)=m(f").

For (B}, 6i") to be identified with the quotient double category of (€°*,6") by p,
it is necessary and sufficient that 7 satisfy the following conditions:

(1) If g1 ® f; is defined in €7, then there exist g, f € € such that g e f is defined,
and g1 = w(g) and f; = 7 (f).

(2) If g1 L f; is defined in €i-, then there exist g, f € € such that g | f is defined,
and g1 = m(g) and f1 = 7(f).

Theorem 6. A double category (6°,61) admits a subcategory of the double category (6, 65 )

as a quotient, where 6 (resp. B;-) is endowed with its structure as a subcategory of 1 (resp.
B°).

Proof. The map
et fr= (BY(F). B () o™ (f), a*(f))
is a double functor from € to [J(B], 6;") that satisfies the conditions above. O

Definition 14. With the above notation, the element c¢(f) is called the square of f in
G.

Let 6 be a category. Recall [3a] that a quartet of 6 is a quadruple (f5, f1, f1, f2) €
0(6,6) such that

faofi=flef
Let %€ be the subclass of [J(€, 6) consisting of quartets of 6.

Proposition 12. (6 is a double subcategory of (6, 6).

Let F' = (61, F,6) € F; this functor extends to a double functor
OF = ((0%:,8%),0F, (0%,8%9))
where [J F' is the map defined by

OF(f3, f1, 1. f2) = (F(f3), F(f1), F(f1), F(f2)).

[66.1] In agreement with the theory of quotients [E66], “quotient category” should be replaced by
“strict quotient category”. Quotient double categories are constructed in [(E66, Corollary, Theorem 21-II],
and more general quasi-quotient double categories are described in [E100, Section 8].
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The map O: F +— OF is a functor from ¥ to F. We denote by B (resp. 1) the
functor from & to F given by
prel: F— (0%,,0F,M6) =0F
(resp. p7 oJ: F+— (B6,,0F,86)=8F)

where (61, F,8) € F. For all 6 € F, let ¢(B) be the isomorphism from M6 to B
defined by

(féa f{vflva) — (f{,févf% fl)
We denote by ¢ the map € — £(6).
Proposition 13. With the above notation, (85, ¢,) is an equivalence, natural in F.

In the above construction, we can replace [J 6 by the double category J(6, 6) and
Proposition 13 still holds true.

Let 67 be a category and (6°,6") a double category; let F(6*,6;) be the class
of functors from 67 to 6°.

Proposition 14. F(B*,6}) is a category for the composition law (D', D) — ' L D, where
(@ L ®)(f) =D (f) L ®(f), if and only if ' (f) L ®(f) is defined for all f € 6;.

This proposition follows from the Axiom of permutability (condition (2) of Theo-
rem 8); the right unit of @ is the functor a®, and its left unit is the functor A+ ®.

Remark. If ® is a double functor from (67, 6i") to (€°,6~), then a1 ® is no longer a
functor from 6;- to 6+, and so the class of double functors from (€}, i) to (€°,6+)
is not identified with a subcategory of %(6°, 6}), contrary to what was stated in a
corollary in [3e].

The definition of a natural transformation (¢’, 7, ¢) from a functor ¢ to a functor
¢’ immediately leads to the following theorem (for the notation, see [3d]).

Theorem 7. Let € and 6’ be categories; the longitudinal category N (€', 6) of natural
transformations between funciors from 6 to G’ can be identified with the category F(HE’,B),
by identifying the natural transformation (', 7, ) with the functor ® € F(BEC’',B6), where

Jorall f € B; conversely, ® € F(HG', Q) is identified with the natural transformation
(@', 7,0), where

o= oMo and o = ,BED(I)

and

forall e € 6.

This theorem shows that if (€°*,%6") is a double category, then a functor ® from
a category I' to 6° can be considered as a generalised natural transformation from
alt® to S+ P. We will later see (§III) another generalisation of the notion of natural
transformation, namely the notion of a quintet [3e].
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[68.1] Lax transformations.

This remark is very important. Indeed, it leads to a comprehensive study of lax
transformations (in the sense of Kelly-Street [C59], called pseudo-transformations
by Gray [C40] and catadeses by Bourn [C14]), which are found in this way when
(B°*,61) is the double category of squares of a 2-category (cf. [(E64, Com-
ment 105.1]).

Thanks to this approach (generalised to multiple categories, as stated in [(E117,
Remark 3, p. 399]), we obtained existence theorems for general lax limits in [(E119,
(E121]. These theorems are proved by a short structural proof, which encompasses
Bourn’s, Gray’s, and Street’s results on 2-functors [C14, C40, C92].

Note that Charles has already suggested this idea to S. Legrand, who began to
develop it in [C67], but she lacked this meaningful example to motivate her.

IL.5 n-fold categories

By Theorem 2, the category F of double functors is a category of homomorphisms
(M, psp7, F, ?7) over J(. We will see in §II.7 that this category of homomorphisms
is right solving and has finite products. Consequently, we can define F-structured
functors, and, more general, give the following definition:

Definition 15. Let ¥"~!l be the category of (n — 1)Hfold functors considered as a
category of homomorphisms over (. Then an F["~!l-structured category is called an
n-fold category, and an F!"~U-structured functor an n-fold functor. In particular, a 2-fold
category is a double category.

By Theorem 13 and Corollary 2 of Theorem 14, if #[*~! is a category of ho-
momorphisms with finite products, right solving over Jl, then so too is the category

Flnl = Fln—1] of FIn—lstructured functors, which justifies the inductive definition.

From Theorem 13, it also follows that, if (€-*);<, and (@Ti)ign are n-fold categories,
then the class € x €, endowed with the compositions laws (L;) x (T;) for i < n, is an
n-fold category.

Theorem 8. Let B be a class, and let L; (for i < n) be composition laws on € such that
®Li is a category. For (€11);<,, to be an n-fold category, it is necessary and sufficient that
the following conditions be satisfied:

(1) Let o' and B° be the source and target maps in €; then o' and B* are functors from
BLi to6LI foralli,j < n withi # j.

(2) If the composites (¢' L; g) L; (f' Li f) and (¢' L; f') L; (g L; f) are defined, then
(¢ Lig) L (f Lif)=(d"L; f) Li (g Li f)
Jori,j < n.

Proof Suppose that the theorem has been proven for m-fold categories, for all m < n—
1; we will prove it for an n-fold category. Let (811, (61¢)2<;<,) be an n-fold category.
By hypothesis, ! is a (n — 1)fold functor. Let ' € €;'; we have that o/(e!) € €5,
since €;' is by definition an (n — 1)fold subcategory of the (n — 1)fold category
(61)2<i<n. Suppose that g L, f is defined; since the class 61 x86~i of L;-composible
pairs is an (n — 1)-fold subcategory of the product category (617)aci<n X (611)2<i<n,
the composite (a’(g)) L; (a’(f)) is defined; from the fact that the map

X (g f)— gLl f

is an (n — 1)-fold functor, we deduce that

X (g), 0 () = xT (g, f)) = a'(g L1 f)
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whence

a'(g) L1 o' (f) = o'(g L1 f).

This proves that o' is a functor from Bl to Bl consequently, condition (1) of the
theorem is satisfied. Condition (2) follows from the fact that y'* is an (n — 1)-fold
functor.

Conversely, suppose that conditions (1) and (2) of the theorem are satisfied. Since
o' is a functor from 617 to €14, if j # i, we have that

a'(al(f)) = ol (a'(f))
where f € 6, and
061(61 J—i e/l) — 61 J—i ell

where €', ¢/t € €;'; thus € is an (n — 1)-fold subcategory of (€1 )acic,. We will
prove that (€11) x (811) is an (n — 1)fold subcategory of the product (n — 1)fold
category (611)acicn X (B17);<2<n. Suppose that (g, f) € (811) x (B11); since o is
a functor from 61 to €11, we have that

a'(g L1 f) =a'(g) L1 o' (f)

and so (a’(g),a’(f)) € (€11) x (611); similarly, (8'(g), (f)) € (€11) * (€1).
Suppose further that (¢/, f') € (811) x (811) such that ¢’ |; g and f' L; f are
defined for all 2 < 7 < n. We see that

al(g' Lig)=a'(g) Lia'(g)
= BH(f") Li B(S)
= BH(f" Li f);
consequently,
((¢' Li 9),(f Li f)) € () *(6)

for 2 < i < n, and (B11) x (€11) is thus a subcategory. It remains only to show that
X1t is an (n — 1)fold functor. We have that

X ) Li (9.0) = (¢ Lig) Ly (f' Li f);

since

a'(g' L f) = a'(g') L1 a'(f)
=B'(9) L1 B°(f)
=B'(g L1 ),
the composite (¢’ L1 f') L; (¢ L1 f) is defined; condition (2) implies that

X (g ) Li(g. 1) = (9" Lig) Lo (f Li f)
=(¢ L1 f) Li(g L1 f)
=X (g, f) Lix (g, )
This proves the theorem. O

Let (61);<, be an nfold category. Denote by A' ...\ the (n — p)fold endo-
functor of (%Lj)i17.._71‘p¢j<n such that, for all j < p, we have

1<ij<n, ij#dij#7,
and A9 € {a%, 3%},
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Such a functor is invariant under any permutation of the set (i1,...,7,) by the
Axiom of permutability (condition (2) of Theorem 8). The image of f € € by such a
functor is called the (n — p)-face of f. The O-faces are called the vertices of f; the class
of vertices of € is the class ﬂign C@é‘ The 1-faces are called the edges of 6.

Remarks. —

1)

(2)

Let (v1,- . .,7x) be a sequence of functors such that \; € {a?, ?,1d}, and \; # Id
for exactly p-many indices 7. For all f € 6, the family ((v1...7.)(f))(y1...9n) 18
called the (n — p)-frame of f, and denoted ¢,,—,(f). In particular, the (n — 1)-
frames form an n-fold category, with the composition law _L; for all ¢ < n being
defined by

en1(f) Licna(f) =cn1(f Li f) if and only if f’ L; f is defined.
This n-fold category is a quotient nfold category of (6);<,.

Let 6~ be a category. By induction, we can define an nfold category (%[”])f‘gn
in which every element is identified with its 1-frame:

(fg[l])l1 — gt
e = O ((C@[nﬂ])h7 (cg[nfl])ll);

by induction, we can show that, for all i < (n — 1), there exists a bijection &,
from €[ to O((€ 1)L, (Blr—1) L),

[70.5] To construct "1 by induction, one has to use the isomorphism
M (M(A, A),M(A, A)) — O ((A, A),1(4, A)) " = B(4, A)*
Q=(d"d,¢.9) — (7,0057)(@Q),8(a")(Q).q)

where ‘o™ and ’$F are the source and target functors (A, A) — A; this
isomorphism is well defined for any category A.

A simpler construction of the n-fold category €[] is done on p- 95. Cf. also
the definition in [(E120] of the functor

Squarenym: Cat,, — Cat,,

for n < m, where the n-fold category Square,,_, , @ —1 is the same as B[],

except for the fact that the first and last compositions are interchanged.

The composition law L; on on €[ is the inverse image under £, of the longitu-
dinal multiplication on &/, (€["). The composition law L, is defined by

(W& &R) L (WK K, h) =R BK,kKBK,kBkhBh)

if and only if 2 51/, k' Bk, k5k, and hEh are all defined in 5((@M—1)L1 (@n—1)L1),

The n-fold category (6[") fén admits as an n-fold subcategory the class @, de-
fined inductively by

¢l =¢ and <=0 ((6l=1)).
In particular,

€l = Dw.
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(3) Let €, = (817),<, be a pfold category, and G,, = (@Li)ign an n-fold category.

The class F(6,,,6,) of pfold functors from 6, to (@Li)igp is an (n — p)-fold
category for the composition laws L; (for p < j < n — 1) defined by

(@ L; @)(f) = (2'(f) L; ()

if and only if ®'(f) L; ®(f) is defined for all f € 6. In particular, if p = 1, then
the class of functors from €11 to @ " is an (n — 1)Hfold category. If p = (n — 1),

then the class of (n — 1)-fold functors from 6,,_; to (%li)ign,l is a category.
An element @ of this latter category can be considered as a generalised natural

transformation from the (n — 1)-fold functor o~ ® to the (n — 1)-fold functor 3 ®.

[71.1] Cf. Comment 68.1. We have proved:

« in [(E119], that F (6, ®,) defines the internal Hom on the category of
all multiple categories;

e in [(E120], that the closure functor of the cartesian category Cat,, sends
(Cpn,8,) the nfold category F(J,, 6., 6,,), where [J,, 6,, is the 2n-
fold category obtained from Square,, ,,, €,, (cf. Comment 70.5) by the
interchange of compositions

n,2n

(1,2,...,2n) —> (1,3,...,2n — 1,2,4, ..., 2n).

Proposition 15. For an n-fold category (€1, (€+i)acicn) to be an F"Ustructured
groupoid, it is necessary and sufficient that €' be a groupoid.

Proof The condition is evidently necessary; we will show that it is sufficient. For all
[ € 8, we denote by f~! the inverse of f in the groupoid 6. It suffices to prove that
the map f ~ f~!is an (n — 1)fold functor from (€1)2c;<p to (611)2<icn. Since
aLi is a functor from 6+ to €11, we have that

(27t = (oﬁi(zi)) = aLi((z"’)_l) S C@é‘i

for all 2 € ‘60li and 2 < 7 < n. Since XL’? is a functor from B+ x B! to B, we see
that

(6 Lif ) =xteh Y
=x"((e:.H7)
= (9. 0) "
=(gLi )%
thus the map f +— f~!isa functor from 6 to €1 for 2 < i < n, and (81, (1)acicn)
is an F"~structured groupoid O

Definition 16. We defined an n-fold groupoid to be an n-fold category (6-7);<, such
that €L is a groupoid for all ¢ < n.

In particular, it follows from Proposition 15 that, if (€*,6") is a double groupoid,
then (6°,61) and (8+,6*) are both F-structured groupoids.”>4
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I1.6 Order structures on a category
. 400
Definition 17. We say that an n-fold category (6);<,, defines an n-fold order* if each

of the categories €1 defines an order <; on the class of its units.

In this case, the class A of vertices of (6~);<,, is endowed with n orders, induced
by the <;. Note that the data of A and of the n induced orders does not determine
(8L )i<n. In particular, consider a class endowed with orders <; and <g; let AJ (resp.
Ap) be the category of pairs (F, e) where e <; E (resp. e <3 E); the double category
O(A$, Ap) is the largest double category that defines a double order that induces
on A the orders <; and <3; this implies that every double category that defines a
double order that induces on A the orders <; and <5 can be identified with a double
subcategory of [(J(AS, Ag-). This result can be generalised to the case where we give n
orders on the class A.

Proposition 16. Let (611);<,, be an n-fold category satisfying the following condition:
Any two elements of € that have the same set of vertices are identical.
Then (B11);<,, defines an n-fold order.

Proof. The class of vertices of f € @ is identical to the union of the classes of vertices
of ati f and B f; thus, if f and g have the same set of units in €1¢, then they also
have the same set of vertices, and so f = g. O

Let 2 be the category of homomorphisms between ordered classes!”>!, and (M, w, Q, 0)
the category of homomorphisms described in § I. Then (/(,w, Q, Q) is a category of
homomorphisms with finite products that is also right solving. The product of (4, <)
with (A4’, <) is the ordered class (A x A’, <), whose order is the product order of the
orders of A and of A’.

For (€°, <) to be an ()-structured category, it is necessary and sufficient that the
following conditions be satisfied:

(1) B° is a category, and (8, <) is an ordered class.

(2) If f' < f then o(f') < a(f) and B(f") < B(f).

B) ff'<fand g <g,andif ge f and ¢’ e f’ are defined, then g’ e f' < ge f.
For (6°, <) to be an Q-structured groupoid, it is further required that:

(4) If f' < f then f/~1 < f~1.

Proposition 17. For (6°,<) to be an Q-structured category, it is necessary and sufficient
that there exist a double category (S®,S*) that satisfies the following conditions: ’ p. 401

(1) B*° can be identified with (S5-)*;
(2) S defines the order < on 6°.

Proof: If there exists a double category (S '7SL) that satisfies conditions (1) and (2),
then set 6°* = (Si-)* and endow B* with the relation

[f' < f] ifand onlyif [there exists k € S such that f = (k) and f' = o™ (k)].

[71.2] They are also structured groupoids in the category of groupoids. Double groupoids are studied
by Brown—Spencer [C16] with a view to applications in homotopy theory; e.g. they prove that the category
of crossed modules is equivalent to a subcategory of the category of double groupoids.

IThe notion of an n-fold order is meant to evoke that of an n-fold ordered class of Cantor [6].

[72.1] A homomorphism between posets is just a monotone map.
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If /' < f then
a*(f)=pB4(a%(k) and o*(f)=a(a®(k)

whence a*(f") < a*(f); similarly, 8°(f’) < 8°(f). Let g € 6 be such that g e f is
defined; let ¢’ € € be such that g’ @ f’ is defined and such that there exists k; € S with

g=p"(k1) and g =a"(k);

since ST defines an order on (Sy ), the equalities
at(a® (k1)) = o (B* (k) = a*(g')
BH(a® (k1)) = B (B° (k) = a*(g)

imply that a® (k1) = 5°(k); thus k; e k is defined, and we see that
gef=p"(kiek) and g ef =a’(k ek)

and so g’ e f/ < g e f. This shows that (€°, <) is an ()-structured category.

Conversely, if (6°, <) is Q-structured, let G be the category of pairs (E, e), with
e, E € 6§, such that e < E. Then the class § of quadruples ((E1,e1), f, f/, (E,e)),
with f/ < f and

Oé(f/):(i, ﬂ(f/):ela
o(f)=E, B(f)=E,

forms a double subcategory of (J(0, 6*) that satisfies (1) and (2). O]

Let € be the subcategory of Q consisting of strict homomorphisms, i.e. triples
((A’, <), h, (A, <)) such that the relations 2’ < z and h(z’) = h(z) imply that z = 2.

Definition 18. An (€, Q)-structured category is called an ordered category; an QU ), Q)-
structured groupoid is called a strictly ordered groupoid.

For an Q-structured category (6°, <) to be an ordered category, it is necessary and
sufficient that the conditions

</
a(f)=a(f) and B(f)=B(f)

imply that f = f.

[73.1] This condition is essential in most applications; however, it implies that
there do not exist ordered categories that are also monoids; in particular, ordered
groups (in the usual sense) are not ordered categories (in this sense).

Ordered categories and, more specifically, inductive and local groupoids are
studied in a long series of papers, summarised in the "Guide" [(E86]. More special
problems are considered in the theses of Joubert [C57], S. Legrand [C68], and
Leblond [C66] (cf. [(E, Part II]).

B . 402
Proposition 18. An Q-structured groupoid (6°, <) is an ordered category.

Proof- Let g,9’ € 6 be such that

q <y,
a(g') =alg) and B(g') = B(g).
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We have that
Blg)=Bg)=geg ' <geg ' <geg =8y
alg)=a(d)=g ey <g leg<gleg=a(g).
‘We thus deduce that

geg '=p(g) and ¢ 'eg=a(g)
and thus that

/—

gt=9""

and g=¢. O
Proposition 19. Foran Q-structured groupoid (B°, <) to be a strictly ordered groupoid, it is
necessary and sufficient that the following condition be satisfied:

Forall f € € and all e < a(f), there exists at most one ' € € such that both

f'< fanda(f)=e.

Proof. For (€°,<) to be a strictly ordered groupoid, it is necessary and sufficient that
there exist a double category (S°*,81) satisfying conditions (1) and (2) of Proposi-
tion 17, that 6® be a groupoid, and that we have the following:

(3) For k,k' € S, the relations 3+ (k) = B*+(k') and a®(k) = a*(k’) imply that
k=K. O
Definition 19. We define a functorially ordered category (resp. functorially ordered groupoid),

to be a category (resp. groupoid) €°® endowed with an order relation that satisfies the
following condition:

(1) The map that sends f € € to the class of elements f' < f is a generalised
functor”*1 [3a] from € to 6.

By a proposition of [3a], a functorially ordered groupoid is also a strictly ordered

groupoid.

[74.2] More precisely, if (6°, <) is a functorially ordered groupoid, and if e <
a(f), then there exists exactly one g < f with a(g) = e. Indeed, since o(f) =
f~le f, there exist g < f and ¢’ < f~! such that e = ¢’ g, whence a(g) = e.
Now, that ¢ is unique: if f' < f and a(f’) = e, then

ge ft<fef Tt =5(f)

and so g e f/~! is also an identity, and g = f’.

Proposition 20. For (6°, <) to be a functorially ordered groupoid, it is necessary and suffi-
cient that 6° be a groupoid that there exist a double category (S®, S*) satisfying conditions (1)
and (2) of Proposition 17, as well as the following condition:

(3") Let f € Si and z € S be such that o*(f+) = B1(z). Then there exists exactly one
k € 8 such that

Br(k)=f and (k)= 2.

Proof. The conditions are necessary by virtue of the proposition of [3a] mentioned
above. Conversely, suppose that we have a double category (S$°,S1) that satisfies con-
ditions (1), (2), and (3’);

[74.1] This means that a morphism less than an identity is an identity, and that a morphism less than
a composite g @ f is of the form ¢’ @ f’ with ¢’ < g and f’ < f.
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[75.1] We need the stronger result, indicated in Comment 74.2.

then, by Proposition 18, (€*,<) is an ordered groupoid. Taking conditions (1) and
(2) into account, condition (3’) implies that, if f € 6 and e € 6] with e < a(f), then
there exists exactly one f’ € 6 such that both f’ < f and a(f’) = e. In particular, the
relations e € 63 and g < e imply that a(g) < e, whence g = a(g). Let d < g e f. By
hypothesis, there exist k, k' € S such that

a® (k) = (a(f), a(d)),
p(k) = f,
BH(E) = g,

a®(k') = p*(k)

It thus follows that
d= (at(K)) e (a(k)). O

Let € be the subcategory of Q) consisting of triples (4, <), h, (4, <)) such that h
satisfies the following condition:

If ¢’ < h(z), then there exists 2/ < z such that h(z') = €.

Proposition 21. For (6°, <) to be a functorially ordered groupoid, it is necessary and suffi-
cient that (8°,<) be a Q((QY' NQ", Q' NQ"), Q)-structured groupoid.

Proof. This follows from Proposition 20. O

Let Fp be the subclass of €y consisting of inductive classes [3a], i.e. of ordered
classes (A, <) such that every bounded-above subclass admits an upper bound, called
the aggregate. Let F be the subcategory of Q consisting of inductive maps between
inductive classes [3a], i.e. whose elements are the triples ((A’, <), h, (4, <)) such that
h satisfies the following conditions:

(1) If 2/ < z and 2” < z, then h(z N 2’) = h(z) N h(z'), where z N 2z’ denotes the
lower bound, or intersection, of z and 2’ in A.

(2) Let C be a bounded-above class in A, and let UC' be its aggregate in A; we have
that

h(UC) = UK(C).

Then (M,w,F,F N Q) is a category of homomorphisms with finite products that is
right solving. A substructure of (A, <) in .F is a weakly sub-inductive subset [3a] of
A.7531 Since every substructure in .¥ is a fortiori a substructure in Q, an J-structured
category is also Q-structured.

For (6°, <) to be an .F-structured category, it is necessary and sufficient that (€, <)
be an inductive class and that the following conditions be satisfied:

(I;) The relations f' < f and f” < f imply that
a(f/mf//) :Oé(f/)ﬂa(f//) and B(f/mf//) :B(f/)mﬁ(f//)

[75.3] A weakly sub-inductive subset A is closed under finite meets and arbitrary joins of families
bounded in A.
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(Is) The relations f; < f, for ¢ € I, imply that

a (U f,) = Ja(f;) and 8 (U fz-) =B

iel iel iel iel
forall7 € I.

(Is) The relations g; < g, f; < f, and (g;, fi) € B°* * B6°, for ¢ € I, with (g, f) €
6°* x 6°, imply that

(9iNg;) e (finfi)=(gi® fi)N(g;ef)
(U 97:) . (U fi) = U(gv o fi)

i€l iel iel

forall¢,j € 1.

Proposition 22. Let (6°, <) be an F -structured category; let g, f € B; let H be the class
of elements g’ o ' such that ¢’ < g and f' < f. Then the class H admits a largest element.

Proof- Let (g, f) be the class of pairs (¢’, /), with ¢, f’ € €6, such that
a(g’) = B(f")
g <g and f < f.

Let G be the class of the ¢’ such that there exists (¢, f') € (g, f); let F be the class
of the f’ such that there exists (¢, f’) € (g, f). The class a(G) is then equal to the
class B(F). By condition (2), the class G, bounded above by g, admits an aggregate
UG < g such that a(UG) = Ua(G); similarly, F' admits an aggregate UF' < f such that
B(UF) = UB(F). Then a(UG) = S(UF), and (UG)e(UF) is defined; since (UG)e(UF)
belongs to H, we see that UH = (UG) e (UF). O

Definition 20. With the conditions of Proposition 22, the largest element UH of H is
denoted gf, and called the pseudo-product of g and f.

Note that the composition law (g, f) — gf, which is everywhere defined, is not
necessarily associative.

Proposition 23. Let (8°, <) be an F ~structured category; the pseudo-product (g, f) — gf
satisfies the following conditions:

(1) Letg,q, f,f € 6 besuch that g’ < g and f' < f. Then g'f' < gf.
(2) Letg, f € 6. Then
Blgf) < B(g) and ofgf) <a(f).

(3) Lets € By and S € G§ be such that s < S. Then

p. 405

a(Ss) = s = p(s9).

Proof. Conditions (1) and (2) follow from the definition of the pseudo-product. Suppose
that s < S in 63. Then a(Ss) < s. Furthermore, s e s < S, so

s<a(Ss)<s and s=a(Ss).
Similarly
B(sS) = s.
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Using the subcategories €' and Q' defined above, we set
J'=9NQ and I =500

The elements of ¥’ are the strict inductive maps [3a]. The subcategory .¥’ of .¥
contains the groupoid of invertible elements of .¥ and satisfies condition (o) of Propo-
sition 10 (§I), since every restriction of a strict inductive map is a strict inductive
map. The subcategory J” of .¥ also contains .¥ N €2, but .¥” does not satisfy condi-
tion (o). The subcategories .¥' and F” of .F are stable under products (but they are
not categories of homomorphisms with finite products over J().

Definition 21. An ¥ (¥, .F)-structured category is called an inductive category; if (€°, <
) is an inductive category, then an element f’ such that f’ < f is said to be induced by

1.

Theorem 9. Let 6°) be a category and (6, <) an inductive class. For (8°,<) to be an
inductive category, it is necessary and sufficient that it satisfy axioms (I;1)) and (I,), as well as
the following axioms:

(I3) The conditions g’ < g, f' < f, (9, f), (g, ') € B* x6* imply that g’ @ f' < ge f.
(Iy) The conditions g’ < g, a(g') = a(g), and B(g") = B(g) imply that ¢’ = g.

Proof- The conditions are clearly necessary; we will show that they are sufficient, i.e.
that they imply axiom (I3), from which we take our notation. Since we have

a(gi Ng;) = algi) Nalg;) = B(fi) N B(f;),
the composite h = (g; N g;) ® (f; N f;) is defined and, by (I3), we have that
h <(gi® fi)N (g5 ef;)

Since g; ® f; < ge fand g; ® f; < ge f, by using (I;) we find that

a(fi) Na(f;)
a(fin f;)
a(h)

algie fing;e f;)

and

Blgie fing;e f;)=B(g:) NB(gj)

= B(9: N g;)
= B(h).

From axiom (I)y) we then deduce that

h=1(gi®fi)N(gjefj)
We can show, in an analogous manner, the second relation of axiom (I%). L]

Corollary 1. For (8°, <) to be an inductive category in the sense of [3c], it is necessary and
sufficient that (8°,<) be an F(F', F")-structured category.

Proof. Indeed, conditions (I;), (Io), (I5), and (I4) imply that (€°, <) satisfies all the
axioms of an inductive category in the sense of [3c], with the exception of the following
axiom:

(Is) If k < g o f, then there exist ¢’ < g and f’ < f such that k = ¢’ e f’; axiom (I})
is equivalent to the condition ((8, <), x*, (B* x6°*,<)) € J". O
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Corollary 2. In an inductive category (in the sense of [3c]), any two elements have a pseudo-
product, and the composition law (g, f) — gf is associative.

Remark. In what follows in this article, we will see that the # (%’, %" )-structured
categories such that #’ and #” satisfy condition (o) of Proposition 10 (§ I) enjoy
numerous properties. It is this reason that motivated the new terminology used here,
since the class of inductive categories in the sense of Definition 21 is more stable under
certain operations than the class of inductive categories in the sense of [3c].

Proposition 24. Let (6°) be an inductive category; let f, f' € B be such that f' < f; then
we have that

Fr=B0"(falf) = (BU ) Half).
Proof- Using Proposition 23, we find that
fr=1ealf) < falf),
Fr=80") e f < B (falf),
a (B (fal(f)) <a(falf)) < alf)
BB (Falf))) < B
Let /7 = B(f")(fa(f")); since f' < f”, we have that
a(f) <a(f’) and B(f) < B(f").
It thus follows that
a(f') =a(f") and B(f) = B(").
Since [, a] is a strict inductive map, the relations
f/ < f'l/
a(f') =a(f") and B(f)=B(f")
imply that f" = f”. We can similarly show the equality
Fr=BUNalf). U
Corollary. Let (8°, <) be an inductive category; the conditions
$,5€6; and s< S
imply that
s =5(Ss) = (s9)s.

Proposition 25. Let (8°, <) be an inductive category. For (8°,<) to be an F(IF', 5")-
structured category, it is necessary and sufficient that the pseudo-product (g, f) — gf be asso-
ciative.

Proof The condition is necessary by Theorem 9 and its corollary. If it is satisfied, let
k < g e f; by Proposition 24, we have that

k= B(k)(g e Na(k) = (B(k)g) (falk)),

using the associativity of the pseudo-product. From the definition of the pseudo-
product, it follows that

k= (UG) e (UF)
where G is a class bounded above by (5(k)g), and f is a class bounded above by
(fa(k)), and so UG < g and UF < f. This proves that axiom (I5) is satisfied. O
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Let (€°, <) be an F-structured category. Let 6! be the class of triples (5, £, 5),
with f € € and 5,5’ € €3, such that

alf)<S and B(f) < 9.

Endowed with the composition law
(8", f',81) e (S, f,5)=(S",f e f,5)
if and only if [a(f') =B(f) and S]=9"],

! is a category; the units of B! are the triples (S, e, S) where ¢ € 6} and e < S. The
map f — (B(f), f,a(f)) identifies € with a subcategory of 6'.

Proposition 26. With the above notation, (6!, <) is an .F -structured category, with the order
relation defined by

(Siaf1751)<(5/7fa5) if and only if [Si<51751<5,f1<f]

If (B*, <) is an inductive category (vesp. an F(F', F")-structured category), then (B!, <) is
an inductive category (resp. an F(F', F")-structured category).

’ 1. 408
Proof Suppose that

fi = (Sz{7fi75i) < 7: (Slyfa S)
for all 7 € I; we have that
U7 = (U S{,Ufi,USl) and finf; =(SiNS}, finf;,8N8S;),
icl icl  icl el
whence
«Q <U fi) = U a(f;) and a(f; m?j) =a(f;) ma(?j)v
icl iel

B <Ufz> = Uﬂ(?z) and B(f; ﬂ?j) = B(f:) ﬂﬁ(ij)-

icl el
So conditions (I;) and (Iy) are satisfied. Let
?i = (Sz{/vgiv S:) <g= (S//agv S/)

be such that g; e f;, and g e f are defined; since g; ® fi < g e f, we also have that
g, f; <ge f. From the relations

giefi=1(5,gie fi,S),
we deduce that
(o fi)N(g;ef;) = (S/NSy, (ging;)e(finf;),SiNS;)

and

U(?i ofi)= <U St U(Qi ® fi): U Si)
i€l i€l el i€l

(R
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Thus (6!, <) is an .F-structured category.
If (8°, <) is an inductive category, then the conditions

fi<r
a(f;) = a(f) and B(f;) = B(f)
imply that S; = 5, S; = S’, and f; = f, whence
?i = ?

And so axiom (I}) is also satisfied in (€', <).
Finally, if (8°, <) is an J(J', F")-structured category, let

h=(81,h,81) < (5",9,8) 8 (5, [, 9);
since
h=g ef
where ¢’ < g and f’ < f, we find that
h=(57.9",a(g) ® (e(g) [, S1);
thus (6!, <) is an J(.F', F")-structured category. O
Corollary. If(6°, <) is an .F -structured groupoid, then (€', <) is an J ~structured groupoid.
Proof Indeed, the condition (S} < f1,51) < (S, f,S) implies that f;* < f~', whence
(S1, frh,81) < (8, f71.8"). 0

Definition 22. With the above notation, the .f-structured category (resp. the .%-
structured groupoid) (6!, <) is called the category of local homomorphisms (resp. the
groupoid of local homomorphisms) associated to the .F-structured category (resp. to the
J-structured groupoid) (B°*, <).

Remark. The class 6/ can also be endowed with the composition law
(SY,f,S81) L (S, f,8)=(S",f'f,S) ifandonlyif S =S5

where f’f denotes the pseudo-product of f' and f in (6°,<). Let <, be the order
relation on €' defined by

(81, f1,51) <. (S, f,S) ifandonlyif [S'=5],5=5,f <[]

[81.1] The original contains the following false proposition:

Proposition 26 bis. If (6°, <) is an . -structured category, then ((8))*1, <) is an
S -structured category.

Indeed, note that (even if € = Jl)

(ng) (Uﬁ)z U oh % U

iel il (i,5)€IxI iel

Note that, even if (6°,<) is an inductive category, then ((C!)*,<,) is not an
J(J', F)-structured category.

Let B° be a groupoid. Recall (see [3a]) that (€°, <) is an inductive groupoid if
(6, <) is an inductive class and (6°, <) is a functorially ordered groupoid.
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Theorem 10. The following conditions are equivalent:
(1) (B°*,<) is an inductive groupoid.
2) (B, <)isan F((F' NF", I NIF"),F)-structured groupoid.
(3) (B*,<) isan F(F,F' NIF")=structured groupoid.

Proof. Conditions (1) and (2) are equivalent by Proposition 21.

[81.2] This proof is too short: if (6°, <) is an inductive groupoid, it is still nec-
essary to prove that (I;) and (Iy) are satisfied. Indeed, with the notation of (I;),
there exists a morphism g < f with source a(f’) Na(f"); since a(g) < a(f’) and
f' = fa(f’), it follows that g < f'; also g < f”, whence g < f' N f”. But the
relation

a(f' 0 ") <a(f) na(f’) = alg)

implies that f' N f” < g. So g = f'N f”, and (1) is satisfied. For (Iy), we can
similarly prove that Uf; is the unique morphism less than f with source Ua(f;).

We will show the equivalence between conditions (1) and (3). An inductive groupoid is
an inductive category in the sense of [3c]; from Corollary 1 of Theorem 9, it follows that
(8, <) is an .F(.F, F")-structured category; since f’ < f implies that f'~1 < f~1, we
see that (6°, <) is also an ¥ (.¥,.F")-structured groupoid. Furthermore, the relations

gef=gef
g <g and f' < f
imply that
a(f)=a(f) and B(g") = B(g),

and, by Proposition 20, we have that ¢’ = g and f’ = f. This proves that (6€°, <) is
an J (.9, ¥ N.J")-structured groupoid. Conversely, let (€°,<) be an .F(.F,F' N .F")-
structured groupoid. By Proposition 18 and Corollary 1 of Theorem 9, (€°, <) is an
inductive category in the sense of [3c]. It remains only to prove that the conditions
g < eand e € 67 imply that g € 63. Indeed, we have that

alg)<e and fB(g) <e
i.e., using condition (Iy),

(Blg)Ng) e (gnalg)) = (Blg)g) N (g alg))
=pB(g) e y;
since the map x* belongs to ¥/, it thus follows that g N a(g) = g, whence
g < alg).
From the relations
g leg=alg)ealyg) and g ' <al(g)

we also deduce, for the same reason, that

g=a(g) € 6. O
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Remarks. —

(1) Evenif (€°,<) is an inductive groupoid, the associated groupoid (6!, <) of local
isomorphisms is not an inductive groupoid; indeed, the conditions e, S € 6§ and
e < S imply that (e, e, S) < (9,5, 5), even though (e, e, S) is not a unit of 6.

(2) For an inductive category (€°, <) to be functorially ordered (Definition 19), it is
necessary and sufficient that (€°, <) be an .F(.¥',.F")-structured category, that
(65, <) be an inductive groupoid (where 6, is the groupoid of invertible elements
of 6°), and that 6, be closed under induction in 6. Example: the category of
surjection.

[82.2] Let us prove that, if (6°, <) is functorially ordered, then €6, is closed
under induction. Indeed, let g be an isomorphism and let ¢’ < g; since
a(g’) < a(g), there exists (Comment 74.2) an isomorphism f such that
f <ganda(f) = a(g’). Then g’ e f~! is an identity, because it is less than
the identity g  g~'; hence ¢’ = f.

I1.7 General theorems on structured categories

All throughout this section, we suppose that the category of homomorphisms (M, p, #,T)
with finite products is right solving.®23! %’ and %"’ denote subcategories of % that con-
tain T

Proposition 27. For (8°,s) to be an F -siructured category, it is necessary and sufficient
that the following conditions be satisfied:

(1) B* is a category, s € #Ho, and p(s) = 6.
2) (s,c,8),(s,B,s) €.
(3) The conditions (s X s,1,8') € H and p(s') = B® x B* imply that (s, x*,s') € ¥.

Proof. These conditions are necessary; indeed, if s’ « s x s and p(s’) = B* x B6°, let
s" € Hp be such that p(s”) = 6* x 6* and (s x s,t,5”) € #. By the definition of a
substructure, we also have that (s',¢,s”) € %, and so (s, x°*,s”) € #. We will now
show that the conditions are sufficient. By axiom (R) of Definition 9 (§I), the pair
((s,,8),(s,t,8)) admits a p-kernel sy x s such that p(sg) is the class of f € € for
which f = «a(f), i.e. p(sp) = Bg. Since

a(p(s)) =65 and B(p(s)) =6
we also have that
(so,,8) € # and (sp,83,s) €H

which proves that axiom (1) of #-structured categories is satisfied. Let p; and p2 be
the canonical projections from p(s) x p(s) to p(s); we have that

(s,ap1,s X 8) = (sa,s) e (s,p1,8 X 8) €H and (s,0p2,sx3) EH.

Axiom (R) in Definition 9 ensures that the pair ((s, ap1,s X s), (s, Sp2, s X s)) admits
a pkernel s’ o< s X s such that p(s’) = B°® x €°*. Thus (8*,s) is an #-structured
category. O

Proposition 28. Suppose that ' satisfies condition (o) of Proposition 70 (§1). For (€°,s)
to be an F(H', H")-structured category (resp. an ¥ (', F’), F"')-structured category), it is
necessary and sufficient that the following conditions be satisfied:

[82.3] So p: # — J is a concrete functor creating canonical finite products and equalisers.
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(1) B° is a category, s € #Hy, and p(s) = 6.
(2) (s xs,[8,0l,5) €H (resp. (s, 0, 5),(s,B,5) € H').
(3) Ifs' xx s x s and p(s’) = 6* xB®, then (s, x,s') € #".

Proof. Suppose that (€°,s) is an # (#’, #"')-structured category. By Proposition 5 and
Proposition 27, there exists sy oc s such that

p(so) =65 and (sg x so,[B,q],5) € #'.

By Proposition 3, we have that sy X s & s X s, and so, with the help of condition (o),
we find that sg X sg o< s X sin #’, and

(s x s,[B,a],s) € #'.

Thus conditions (1), (2), and (3) are necessary.
We now show that these conditions are sufficient. An analogous argument to that
in the proof of Proposition 27 shows that, in %, there exist

so x s such that p(sg) = 6]
s’ oc s x s suchthat p(s') =6*x6°.

Then axiom (2) of Definition 3 is satisfied. Furthermore, since sg X sg < s X s in #’,
we see, using condition (2), that

(s0 X so0,[B,0al,s) € #'.
The # ((#’',%'), %" )-structured case is dealt with in an analogous way. O

Corollary. If#' and " satisfy condition (o) then, for (6°,s) to be an H ((H', #'), %" )-
structured groupoid it is necessary and sufficient that it satisfy conditions (1) and (3) of Propo-
sition 28 as well as the following conditions:

2" (s,a,s) €%’
(4) B° is a groupoid, and (s, j, s) € ¥, where j denotes the map f — f~* for f € 6.
Proof. The conditions are evidently necessary. Conversely, if they are satisfied, then/®*!!
(s,8,5) = (s,,5) ®(s,4,8) € H'
and so condition (2) of Proposition 28 is also satisfied. O]

Proposition 29. If 7' is stable under products and satisfies condition (o) of Proposition 10 (§1),
then (', '), 7" is a full subcategory of (7', %").

Proof. Let s € #y. By axiom (R) of Definition 9 (§1), the pair ((s,p1, sX$), (8, p2, $X3)),
where p; and p, are the canonical projections from p(s) x p(s) to p(s), admits a p-
kernel s! s x s such that p(s!) is the diagonal A of p(s) x p(s). Suppose that
(B°*,5) € H((F', %), %" )o. The relations (s, , s), (s, 3,s) € #’ imply that

(sxs,fxa,sxs)eH.
Since #’ satisfies condition (o), we have that
(s x 8,1,8") € K’
whence
(s x s,[B,0],8") = (s x 5,8 xa,5 x 5) €H".

Thus (B, s) is an # (', #")-structured category, which proves the proposition, since
(s',[t,¢],s) €T (see Theorem 12). O

[84.1] This is true since (4) implies that (s, j,s) € ', and %’ contains I
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In the following, we use the notation of §II.2

Theorem 11. (%, Py, H (%', H"),T) and (¥ ,Dy, €(#',H"),T's) are categories of ho-
momorphisms, saturated over ¥ .

Proof. The only point to prove is that the conditions
(6*,s) €c#H(H',H") and (3,F,s)eTl

imply the existence of (8°,5) such that
((8",3),F,(8%,s)) eT.

Since F is saturated over J, there exists @° such that
(B, F,6%)cF,.

Let sp o< s be such that p(sg) = 63. Since s¢ is a p-kernel (see the proof of Proposi-
tion 28), by Proposition 16 (§1), there exists

S0 x5 such that (Sg, Ft,s0) € T;
we then have that p(5,) = @. Since #’ contains I, we find that
(§0 X 50, [Bva]ag) = (50 X80, F't X FL750 X 50).(50 X 80, [B,OZLS).(S,F717§) cH’

where @ and 3 denote the source and target maps in %B (respectively). Let s’ o< s X s
be such that p(s’) = 6° x €°. Using the relation

(x5 FxFsxs)el,
Proposition 16 (§1I) ensures the existence of 3’ « 5 x 5 such that
(5,(Fx F)i,s) el and p(s) =% +x6 .
Consequently,
(3,%%,5) = (5,F,s)e(s,x*,s) e (5, (Fx F),s) "L e#".
It thus follows that
(B",5) e (', %") and ((B",3),F, (€% s)) c#H (K X"
If, further, (6°®,s) € (¥, %")o, then
(5,7,35) = (5,F,s) 8 (s,7,5) 8 (s, F1,5) €T
where j and j denote the map f — f~' in €® and @° (respectively). Thus
((€°,3), F,(8%,s)) € G(H', %"). O

Corollary. (M,psp, # (%', #"),T) and (M, psp, €(H',H"),Tg) are categories of homo-

morphisms.

Proof Suppose that we have
((€°,5),F,(€°%,5)) €T and (€, s1) € H(H', %" )o.

Since (M, p,T) is a species of structures, there exists 51 € #, such that
(51,F,s1) €T,

and it follows from Theorem 11 that we then have that

((% ,31),F,(C6J',81)) Ef. OJ
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Theorem 12.
_ = —/ _ = =/
(%, Poe » %((%/7 %/)7 %H)» I') and (%, Dy, %((%/7 %/)7 %//)7 I'g)
are categories of homomorphisms, saturated over ¥ ;

(/ﬂ,pg:ﬁ, %((%/a %/)7 %H)a f/) and (./l/L,pgﬁ, ?((%17 %/)7 %H)v fi@)

p. 414

are categories of homomorphisms, and ¢ can be identified with a full subcategory of 7 (7', F¢"), F").

Proof. The first part of this theorem is proven in an analogous manner to Theorem 11.
Let s € # and set € = p(s). We endow 6 with the (trivial) composition law

(f',f)— f'ef=f ifandonlyif f'=f.

We have that (s,a,s) € T, since a(f) = f for all f € 6. By axiom (R) of Defini-
tion 9 (§I), there exists s’ &x s X s such that p(s’) = B* x 6° is equal to the diagonal
A of € x 6. The relations

(s X 8,[t,t],8) €H and [1,t](B) = A

imply that (s',[¢,¢],s) € #. Also, (s,pi1t,s’) € #, where p; is the projection from
p(s) x p(s) to p(s). From the equalities

(s [t,e],5) @ (s,p1e,8') = 5" and  (s,p1e,8") @ (s, [1,1],8) = s
it follows that
(s;x*,8") = (s,p1t,8') €T.
Thus (6°, s) is an # (T, '), T')-structured category. Finally, the map
(5.9.5) — ((p(5), %), 9. (p(5), 5))
is an isomorphism from % to a full subcategory of F (%', %), %").l80-3 O

Theorem 13. If#' and " are subcategories of ¥ that are stable under products, then the
categories of homomorphisms

(M, psp, % (%', %"),T) and (M,psPp,C(F',%"),Tg) and (M, psp, F((F' '), 7"),T")

are categories of homomorphisms with finite products.

Proof- Since F and % are categories of homomorphisms with finite limits over J/(, to

show that (M, pgp, # (7', %"),T) is a category of homomorphisms with finite prod-
ucts, the only point to prove is that the relations

(6*,5),(€",5) e H(H', %" )o
imply that
(€ x 6", sx35) e H(H',H"),.
By Proposition 3, we have that
S0 XxSgxsx3s and p(sp x3g) =(6° x %‘)0.

Since

[86.3] Let | - |: H((F',F"),%"") — % be the non-faithful functor mapping F(@’®,s’) — (€"*,s")
to its restriction Fp: sj — s{ to the objects; this functor admits a left adjoint, which maps s onto the discrete
structured category (8°,s).
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(s0 % 50, (B, 0], 5), (S0 x S0, 8,0, 5) € H'
we also have that

((so % s0) x (S0 x 50),[B,a] x [Bxal,sx5) ¥
By Proposition 4, there exists

((so % S0) x (so X 50),7, (80 X S0) X (S0 X 5)) € T
such that

WD T 1) = (7))
whence

((s0 % 50) % (s0 % 50),¥([8, 0] x [B,@]), s x 5))

=((s0 x 50) X (s0 X S0),[B x B, x @], x5)) € X"
There also exists s” o (s x 5) x (s x ) such that®71!
p(s") = (B* X B") % (€* xB").
From Proposition 4 and Proposition 7 it follows that
((sx35) X (sx35),7,(sxs)x(5x5) €l and (s",y,s x3)eT;
since #" is stable under products, from the relations
(s:x%s),(5,x°,5") e H"
we deduce that
(sx3,(x* xx*) () s") e,
Thus (8® x B°, s x 5) is an H (', " )-structured category. O

Remark. The proof of this theorem can easily be modified if we suppose # to be
saturated over J{ instead of supposing (M, p, #,T") to be right solving. Indeed, in this
case, Proposition 15 (§I) ensures the existence of s” « (s x 3) x (s X 3) such that

p(s") = (€* x 6 )% (B*x€") and (s, y,s x5)el.
The above remark allows us to state, using Theorem 3:

Theorem 13 bis. If % is saturated over M, and if #' and F" are stable under products,
then

— —

(ML, pzp, (', %").T) and (M, psD, H((F' %), %"),T")
are categories of homomorphisms with finite products, even if (M, p, % ,T') is not right solving.

Theorem 14. Suppose that ' and H" satisfy condition (o) of Proposition 10 (§ I). Let
(B°,5) be an H (H', K" )~structured category (resp. an F (H',H'"")-structured groupoid). Let
5 o s be such that p(3) is a subcategory (resp. a subgroupoid) C of 6*. Then (6" ,5) is an
FH (T, F")~structured subcategory (resp. an F(H', " )-structured subgroupoid) of (B, s).
Furthermore, we can replace # (%', H"") by H ((F', %'), #"') in this statement.

[87.1] Indeed, s” is the pkernel of (o x @), (B x B): s X 5 — s X 5.
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Proof. Using condition (o) and Proposition 3, the relations 5 o s and
(s x 5,[8,a]t,3) €H' and [B,a](B) C € x 6
imply that 5 X S oc s x s and

(5 x5,[8,a]t,5) = (5 x 5,[8,a],5) € #’

where @ and 3 denote the source and target maps in @ (respectively). Now, suppose
also that

s xsxs, F x3XSE,
p(s) =€ +«86°, p(E)=6 +6 .
By Proposition 3 and Theorem 1 (§I), we have that
5x5xsxs and § xs';
since
(5,X%,8) = (5,x",5) 0 (s,1,8) € and Xx°(p(3)) C €

we find that (5,%*,5') € %, where Y* is the restriction of x* to @* x @*. Thus (6", 3)
is an F (H’, F"")-structured category, and

((8%,5),1,(€",3)) cH (A", I").
From the relations

((8°,5),9,(8%,0)) €#H(H',#") and g(p(c)) C B,
we deduce that

(€*,9,8°) €F and (5,9,0) € #,
whence

((6°,5),9,(8°,0)) €H(#',%") and €",3) x5 (B°,s).

The same proof applies for # ((#', %', #""))-structured categories. O

Corollary 1. If %’ and " satisfy condition (o), then the following conditions are equivalent:

1) (€°,5) o (B, s) inF(H', H") (resp. in G(H',H"")) and there exists 5" o<, s such
that p(3) = 6.

(2) (B*,s) € H(H', K" )0, B is a subcategory (resp. a subgroupoid) of €°, and’s o, s in
H with p(s) = 6.

Proof. If condition (1) is satisfied, then

(€",5) o (€°,5) and (€,5") o5 (6, 9)
so

(8*,5)=(€",5') and s=35" O
Corollary 2. If#' and " satisfy condition (o), then the categories of homomorphisms

(5’77ﬁ7%(%/,%/l)7f)7 (gz>p7%((%/a%/)a%//)af/)a (g7ﬁ7§7f?)7
U

(M, psp, 7 (%', %"),T) and (M,psp, T (7' 7'),%"),T)

are right solving.
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Proof. This corollary follows from Theorem 14, Proposition 14 (§I), and the fact that
(M, px,F,F,) and (JM,p, 7 ,T') are right solving. O

Remarks. —

(1) In general, (%.,E) xz (6°,s) does not imply that § o, s. This is the case,
however, if (M, p, #,T) satisfies the following condition:

If (S,¢,s") € % then there exists s &< .S such that p(s) = p(s').
In particular, %, 9}, and .J satisfy this condition.

(2) In Theorem 14, the hypothesis that % and #"' satisfy condition (o) is necessary.
For example, let (€*,<) be an inductive groupoid; a subgroupoid of 6* that
is a weakly inductive subclass of (€, <) cannot be an inductive subgroupoid of
(B°,<). A substructure of (€°,<) in J(F,F") orin F((F' NF", 5" ' NIF"),F)
is a subgroupoid of " that satisfies the following conditions:

(a) 6 is a weakly sub-inductive subset of (6, <);
(b) If f € € and e € G with e < a(f), then fe € 6.

(3) By Proposition 14 (§I), for (6}, s1) to be an % (#’, 7"’ )-structured subcategory of
y rrop gory

(®°*, s), it is necessary and sufficient that (67, s1) o< (€°,s) in (M, pgp, H (H',H"),T).

For the rest of this section, we will suppose that #’ is a subcategory of % that
is stable under products and that satisfies condition (o) of Proposition 10 (§I). The

canonical projection from a product class e; X ey to e; will be denoted (or eventually
p}, to avoid confusion) for i = 1,2.

Let (6°, s) be an #-structured category. Using axiom (R) of Definition 9 (§I) along
with Proposition 4, we can construct the following elements:

(a) sq o S X s such that p(sy) is the class of pairs (a(f), f); we have that

Ya = (87p2L78a) = (57p2>30 X S) L (SO X S,L,Sa) S 4
Yo = (Sa,a X 1,8 X s) e (s X s,[t,t],s) €H

whence

Yo ®Ya=Sa and Yo @7y, =Ss
ie. v, €T

(b) s, x s X sg such that p(s,,) is the class of pairs (f, «(f)); we have that

7; = (SaplLas/a) el

(c) sp o sp X s (resp. s,'@ x § X ) such that p(sg) (resp. p(s’ﬁ)) is the class of pairs

(B(f), f) (resp. (f,B(f))); we have that

Y = (s,p2t,55) €T and 5 = (s, p1t,s5) € T

(d) Sga X So X (sg x s) such that p(sgs) is the class of pairs (B(f), (a(f), f)); we
have that

YBa = (Sap2p/2L75ﬁoz) el
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Proposition 30. Let s € #y, and let L be the composition law on p(s) x p(s) defined by
(2", 2)) L (2',2) = (2",2) ifand onlyif 2} =2
Then ((p(s) x p(s))*t, s x s) is an # (T, # )-structured groupoid.**!

Proof. Set p(s) = 6. The class of units of (€ x €)* can be identified with the diagonal
A of B x 6. Let 59 x s x s be such that p(sg) = A; we have that (see the proof of
Theorem 12)

(so,[tst],8) €T
whence

(50 X s0, [BL,at], s x 8) = (50 X S0, [t,¢] X [t,1],5 x s) €.
Let st o (s x 5) x (s x s) be such that

p(st) = (B x €))L (B x €))L
then

/J_)

(S X vaJ_a S = (3 X s, [plpllap2p/2]L75u_) EH

where p/ are the canonical projections from (s x s) X (s X s) to s x s, and p; the canonical
projections from s x s to s, for i = 1,2. So

(€ x6)*",sxs)e# ([, %).
Finally, it follows from Proposition 4 that
(s xs,j,sxs)eTl
where j(z/,x) = (x,2'). Thus (€ x8)"1, sxs) is an # ([, # )-structured groupoid. []

Theorem 15. Let (6°,s) and (€', 35) be H (', H)-structured categories such that 63 =
@6 and such that the conditions so x s and p(sp) = ?5 imply that sg < 's. Then there | p. 479
exists ((s,5) € Ho such that

(M(€*,€"),0(5,5)) and (B(8*,€"),0(s,3))
are F (H', %) -structured categories.

/

Proof. A quadruple belonging to [J(6°, %) can be identified with an element ((f/, f
(6 x 6) x (6 x B) such that

(.3, (B, a(h)) = (B(F

), (f, 1)) €

/ —

), 8(F), (al 1), a(F))

where o and § (resp. @ and B) denote the source and target maps in 6° (resp. in %.).
By Proposition 4, we have that

F=((Exs)x(5s%x38),7,(sx35) x (§xs)) el

Yo = ((so x s0) x (s0 X S0),70, (S0 X s0) X (so x s9)) €'

(T ) = ((F 0. ()

[90.1] This “indiscrete” structured groupoid is a cofree object generated by s with respect to the functor
|- |: # (', %) — % (cf. Comment 86.3).
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axiom (R) of Definition 9 (§I) ensures that the pair (E/,E), where

h = ((so x s0) x (so x s0), (B x@) x (Bxa),(sx3)x(5xs))
E/:((soxso)x(soxso),(gxﬁ)x(axa),(Exs)x(sx?))oﬁ,

admits a p-kernel (s, 5) such that p(C(s, 5)) = 0(6€*,€"). It follows from Theorem 13
that

S=((€xB) x (B x€),(sx5)x(sx5))

is an % (%', % )-structured category, where (€ x €)' is the category considered in
Proposition 30. By Proposition 4, we have that

!

¥ =((sxs)x(3x38),7,(sx5) x(5xs)) el

where
V() D) = ((F 0. ().

By Proposition 16 (§I), there exists S o (s x s) x (3 x 3) such that
(S,7't,0(s,5)) € T.

We see that 7'¢ is an isomorphism from [D(%’,%.) to a subcategory of (€ x 6) x
(@° x€"). By Theorem 14, (7/(M(€*,€")), S) is an % (%', % )-structured subcategory

of . Thus, by Theorem 12, (T(8°*,€"), (s, 5)) is an # (#', # )-structured category.
An analogous proof shows that we also have that

(B(€*, 6", 0(s,3)) € H(H',%)o. O

Theorem 16. Let (6°,s) be an H(H', F )-~structured category (resp. an H (H',7’), % )-
structured category). Then there exists Os € o such that (06*,0s) and (H6*,0s)
are #H (', T )-structured categories (resp. FH((H', '), T )-structured categories). If (6°,s)
belongs toG(H', % )o (resp. to G((H',H"), T ) o), then so too do (N6®, 0 s) and (HE*,0s).

[92.1] This theorem is also valid if p only creates pullbacks (cf. [(E109]). It implies
that the 2-category of structured categories is representable (in the sense of Gray [C39]),
and this result still holds for internal categories in a category admitting pullbacks
([E115, C39]).

Proof. Suppose that (6°,s) € #(#',#)o. A quartet (1, f', f, h) belonging to [16*
can be identified with an element ((7', '), (f, h)) of O(6°,6°*) such that h'e f = f'eh.
By Proposition 4, we have that

((s x 5) X (5% 8),7,(sxs) x (s xs5))
where
V(W 1), (£, m) = (0, ), (', W)
Let s’ o< s x s be such that p(s’) = 6* x 6°; by Proposition 3, we have that
s' x s oc (s x 8) X (8% 8);
furthermore, s’ x s’ is a p-kernel, and Proposition 16 (§1) ensures the existence of

(S/ X 5/37175) el
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where 1 < . By axiom (R) of Definition 9 (§I), the pair ((s, x*p171,.5), (s, X*P271,5))
admits a pkernel O s o< (s, s) (see Theorem 15) such that

p(Os)=0%6".
Consequently, it follows from Theorem 14 that
(M€6*,s) and (BE,s)

are # (#', % )-structured categories. If, further, (6°, s) € 6,122, then, again denoting
by j the map f +— f~! in @6, the relations

((sxs)x(sx8),72(exj)x(jxe)e,0s) €H and ~y2(txj)x(jx)(0€*%) Cc OB*,
where
72((hlv f/)’ (f7 h)) = (<h7 f/)7 (f7 h/))a

imply that (Os,j,0s) € ', where [ denotes the map k — E_l in M®¥°. This
proves that (16°,0s) € €p; we similarly have that (H€*,0s) € €.

Now suppose that (6°,s) € H ((#',#'), # )o; by the above, we have that (16°*,s) €

Fo. Let Msop o< s be such that p(Msg) = (I6°*). Let p be the map h —
((h, B(Rh)), (a(h), h)) from B to (1B*)o; the relations

f = (Mmso, 1, 8) = (Mso, [[t, B, [, t]], 5) € #
ﬁ/ = (SvﬂilvaO) = (sapllplbvm<90) eH

imply that
el =Msy and W el=s
whence 7 € T. We will show that (o, o, 0s) € %’. Let
a; = ((sxs)x(sx5),(Bxt)x(axu),(sxs)x(sxs)) ¥
Let 51 be the pkernel of the pairl®*!
((SU,Oép2p/1L, Sg X Sa), (S0, Bp2pst, sg X sa)).
Since p(a;)(d6*) C p(s1), we have, by Proposition 10 (§1I), that
ay=a by (s1,0s) €.
We also have that!%3?!

T2 = (5 X Sy Y8 X 1,88 X 8q) €T

a3 = (S0 X 8, X 1,8 X 84) EH’
whence @3 e Gy € #’. Since p(as ¢ a2)(p(s1)) C p(spa), we find that

ay = (as @ a2) Fp (Spa,s1) € H'.

[92.2] € = €(%, %) by definition.
[93.1] We have that p(s1) = {(B(f"), /', (h), h) | a(f') = B(h)}-

[93.2] Pointwise, we have

(W f, foh) s (W, B af, h) 2 (B af, h) 25 (ah/, af, h) 2% b
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Finally, we obtain that
(D so, o0 s)=n"'eFz, eahea) € .

We can similarly prove that ({0 so, BED7 Os) € #'. Thus3
(@e*,as) cF(H',H), %)

and, for the same reason,

(B8€*,0s) c (', %), %)o

Corollary. There exist functors[ and S from the category H(%', %) (vesp. H (%', #'), %),
M) that

resp. G(H', H), resp. G((F', %K'), %)) to itself, and a natural equivalence (B, ,
project under D to the natural equivalence (B, <,0).

Proof Let ((8°,3),g,(®*,s)) € %; by Theorem 13, we have that

((@",9)", (9% g) x (9 x 9), (€, 9)") €T
whence
((§X§) x (3x3),((g xg)x(gx g))L,DS) cT.
Since ¢*(06°*) = (Og)(0€*) Cc 0%€", it follows from the definition of (J5 that
(O0s5,09,0s) €%
i.e. that
(M®",03),09,(@®*,0s)) € #.
Since [ is a functor from F to %, the map

@: ((8°,3),9, (8%, 5)) — (0G",05),0g,(@E*,0s))

is a functor from % to %. Similarly, the map

B: ((€°,3),9, (8% 5) — (B8%",03),09,(3%€*,0s))

is a functor from ¥ to %.
Finally, by Proposition 4 (§1I) and Proposition 7 (§1), we find that

((sxs) x (sxs8),7,(sxs)x(sxs))eTr,

where

V(W f), (fo0) = ((f 1), (hy f))
e(s) = (ds,yt,08) €T

Then
2(€°%,s) = ((B€°,0s),v,([@8*,0s)) €T
and (5, ,) is a natural equivalence. Furthermore, we have that

p(E(6*,5)) = (6*).

[93.3] In the case #((#',%’), %), the proof is more complex because the indiscrete structured

O

O

groupoid on s (used in the proof of Theorem 15) is not # ((#’, %), )-structured. This remark also

applies to Theorem 17.
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Remark. With the hypotheses of Theorem 15, a proof analogous to that of the end of
the proof of Theorem 16 allows us to prove the following:

Theorem 15 bis. If (6°,s) and (€",5) are H ((H',H'), H )-structured categories, then so
too is (I(6*,6"),0(s,5)).

Examples. —
(1) If (8°, s) is a topological category, then (I1€*,s) is a topological category.

(2) If (8°,s) is an ordered category (resp. ordered groupoid), then (I6*,0s) is an
ordered category (resp. ordered groupoid). If (8°,s) is an inductive category,
then (I6*,0s) is an inductive category.

(3) If (€*,6") is a double category, then (1€°*, €7+~ H6*) is a triple category,
where 87 denotes the class [1€* endowed with its structure as a subcategory
of the product category (61)%. More generally, if (617),<,, is an n-fold category,
then (D6, (871)a<i<y) is an nfold category, and

(me*, (€74 )ocicn, BEH)

is an (n + 1)-fold category. In particular, let 6 be a category. By induction on n,
we construct the n-fold category

gl = (glt)

<n

defined by
6 = (M6,5%) and €= (m(6D), (627 B (D).

We obtain the formulas

gt = (mnfg, (OEre)” "B

1<p<n)
where

M€ =% and M6 =DM *%€);

the symbol (J(BP~14))7" " H denotes, in agreement with the conventions above,
the class (P! ) endowed with its structure as a subcategory of the product

category (B( ' 6))*"". The nfold category B[ is identical to the n-fold
category %[ constructed in the final remark of §IL5.

Recall that, if B° is a category, then we define the category of trios of €, denoted
6*, to be the class of triples ((f’, f),h) € (€ x 6) x 6 such that

a(f) =a(h) and a(f) = B(h),
endowed with the composition law T given by
((F D)2 2 D, = (F,f), e h) i and only it F = f"

Theorem 17. Let (6°,s) be an H(H', T )-structured category (resp. an H ((H', '), % )-
structured category). Then there exists Js € Ky such that (1B®,Ts) is an H(H',H')-
structured category (resp. an ¥ ((F', %', F)-structured category); if (€°,s) € G(H', % )o,
then we also have that (16®, 1s) € G(H', % )o.
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Proof. Using Proposition 4, we see that

g=(sxs,aps X B,(s xs) Xxs)EH

7 = (sxs,mlap; X a),(sx s) xs) €H

where 7(f1, f2) = (f2, f1). Since IG* is the class of elements ((f’, f), h) such that

p@)((f' f),h) = (a(f), B(h)) = p(@ ) ((f', f), ),

axiom (R) of Definition 9 (§ I) ensures the existence of Js o (s X s) x s with
p(3s) = 396°. Since 16° is a subcategory of (€ x 6)* x B*, it follows from Theo-
rem 14 and Proposition 30 that (J6°*, 0 s) is an # (#’, # )-structured category. If, fur-
ther, (8°,s) € €(#’',% )0, then, for the same reason, we also have that (16°, 35s) €

C(H',H)o. If (B°,s)isan H ((H', #'), ¥ )-structured category, then there exists 159
T s such that

p(Ts0) = (T6%)o.

We will show that (059, a~, Js) € #’. Using Proposition 4 §I and Proposition 7 (§1),
we find that

a1 =(s x (so X 8),7, (s x s0) % 8)
o((sx 50) X 8,7 xt,(s0 X 8) X 5)

o((so x s) x s, (ax 1) X, (sxs)xs)
wherel?01!

Y((f'se),h) = (f, (e, h))

Gy = (s X sp,L X, sXs)e(sx58,1Xy3,8Xsg) €EH'

]

3= ((sx8) x50, ([t,t] X L)e,8) Fp (Ts0,8,) €T

Axiom (R) allows us to construct s; o< s X sg such that p(s;) is the class of triples
(f,(B(h),h)) for which a(f) = a(h). From the relations

p(@)(36°%) cp(s1) and p(az)(p(s1)) o p(sy)
we deduce, with the help of Proposition 10 (§I), that
ay=a1tp (s1,0s) €X' and ah=ast, (s,,s1) €X',
It thus follows that
(Osg,a”,0s) =azeapea; €X' and (3G, Ts)cH((H' %K'), 7). O
Corollary. Let (6°,5s) be an # -structured category; we have that
7= ((2€6%,2s),7,(B%%,0s)) €%
where
(0 1), (£ 1) = ((F', £), ).
If (B°, 5) is an ¥ -structured groupoid, then 7 € T.
Proof By Proposition 4 (§I) and Proposition 7 (§I), we have that

(Ds,7,05) = ((s x 8) x 5,7 (p2 X 1), (s X ) X (s x8)) Fp (Ts,0s) €K
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where

Vl(f/’ (fv h)) = ((f/’f)a h)

We will show that, if further (6°,s) € €y, then we also have that (O s, 771, 30s) € #. | p 425
Indeed, by Proposition 4, we have that

(s xs,msxs)el
where 7(f,h) = (h, f). Let

/—1

by = (sx(sxs8),ux(txj),sx(sxs))e(sx(sxs),(txm)y " (sxs)xs)eT;

Proposition 16 (§I) ensures the existence of s; o s x (s X s) such that
5/1 =by b (s1,38) €.
By Theorem 1 (§1), we have that
S1 X § XS
where p(s’) = 6°* x 6°, whence
(s x s, (¢ x x*)t,81) € F;
since (v X x*)(p(s1)) C p(s’), we find that
by = (sx*,8") @ (s, (t X X*)t,51) €EH.
By Proposition 4, we have that
1= ((sxs)x (sx8),7,sx((sxs)xs)) el
where
n (W (). h) = (0, ), (f, 1))
It thus follows that!¥7:1]
by =7, (byeb; x Js)e(Jsx Ts,[1,4,Ts) € H
and
p(b3)(0€%) =7 1(0%*) cOe".
Thus

b3, (Os,3s) = (0s,77 ', Js) €# and (Js,7,0s) €T. O

[96.1] “Pointwise”, we get

((f', ) 1) ™55 (F, (B ) 25 (F,h) 25 (£, ), o).
[97.1] “Pointwise”, these maps are

((f's 1) h) GR (f's(h, f71Y) L2, fehe ol

and

(', D 1) 2 (f e he £71 ), (£, h).
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Remark. In general, if (6°,s) belongs to # (%', %" )¢, then the same is not true of
(M6*,0s) or (1B, Js). However, if #” is a subcategory of # that is stable under
products, that satisfies condition (o) of Proposition 10 (§I), and that contains #”’, then
we have the following:

Theorem 18. If (6°, s) belongs to T (H', K" )o, then so too do (DG*,0s), (HE*,0s),
and (16*,3s).

[97.2] Theorem 18 should read as follows:

If (6°, 5) belongs to T (H', H"")o (resp. to F((F', H'),F" )o), then so too
do (MB*,0s) and (BB*,0s) (resp. and also for (16*, I s)).

That is, (J96*, Js) may not be # (#’, #")-structured even when (6°, s) is (coun-
terexamples exist).

The proof is not evident. Suppose that (€°,s) is #(#', #")-structured. To
prove the claim for (M6*,0s), the idea is to lift the following composite in "
by a process similar to the one used in the preceding proof:

2
(W, g g W), (1, ', £ h)) 22 (hr g g B o, BH ol f, £, h)
S (0, (g, ad'), (9, a9), (BF, £, (B, ), 1)
. 1 \2 71N\2 .
X0a) xOn) (h",q' 9,1, f.h)

(h".g o f'.ge f.I)

LXx2 X
—

(we have omitted the canonical isomorphisms between products).

If (B%,s)is (', #'), " )-structured, then a similar proof only lifting the
sources in #’ C #" shows that (H6*,0s) and (36°,0s) are X ((K', %), " )-
structured.

Remark. (Added during the correction of proofs).

Let (6°,s) be an #-structured category and p an equivalence relation on 6 such
that there exists a quotient category €°/p of €°. If there exists a quotient structure
[3e] s/p of s by pin (M,p,7,T), then, in general, (6°/p, s/p) is not an F-structured
category. This is why more recently we have avoided defining the notion of a weakly
7€-structured category, stable under passing to the quotient (see [(E66]).
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