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0 Introduction ∣∣∣ p. 193
We revise the notions of algebraic theories, algebras, categories, and algebraic functors
introduced by F.W. Lawvere, in such a way that the essential theorems can be generalised
to apply to non-algebraic situations, such as that of fields, local rings, totally ordered sets,
metric spaces, normed vector spaces, pre-Hilbert spaces, etc.

A multialgebraic category is a category of functors that are multicontinuous for finite
multiproducts, defined over a small category with finite multiproducts with values in Ens.
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1 Multialgebraic theories and multialgebras

We show that multialgebraic categories have filtered colimits, connected limits, and cok-
ernels for coequalisable pairs of morphisms, and that their equivalence relations are effec-
tive, and their regular epimorphisms are universal, and that they have regular universal
factorisations. They are equipped with a structure-forgetful functor with values in Ens,
which admits a left multiadjoint, reflects isomorphisms, and preserves filtered colimits,
connected limits, and regular epimorphisms. We give two characterisations of multialge-
braic categories, and we show that they are equivalent to multimonadic categories of finite
rank over Ens. Proper morphisms of multialgebraic theories determine proper multialge-
braic functors. These functors possess a left adjoint. For example, the inclusion functors
of the category of commutative fields into the category of integral domains and into the
category of commutative local rings are both proper multialgebraic.

We use the notation and results of [2] and [3].
∣∣∣ p. 194

1 Multialgebraic theories and multialgebras

1.0 Definition [2]. A multiproduct of a small family (X i)i∈I of objects of a category A
is a small family (γi j : Y j → X i)(i, j)∈I×J of morphisms in A such that, for every family
( f i : Y → X i)i∈I of morphisms in A, there exists a unique pair ( j, f ) consisting of j ∈ J and
a morphism f : Y →Y j such that γi j f = f i for all i ∈ I.

We say that the Y j belong to the multiproduct of objects (X i)i∈I . The multiproduct is
said to be finite if I is finite. The category A is said to have finite multiproducts if every
finite family of objects of A has a multiproduct.

1.1 Definitions. A multialgebraic theory is a small category M with finite multiproducts,
endowed with a distinguished small family of objects (X g)g∈G such that every object of M
belongs to a finite multiproduct of objects of this family.

An M-multialgebra is a functor F : M→ Ens that is multicontinuous for finite multi-
products [2], i.e. for every finite sequence X1, . . . , Xn of objects ofM that has a multiproduct
(γi j : Y j → X i)(i, j)∈[1,n]×J , the map

〈(Fγi j)〉 :
∐
j∈J

FY j →
n∏

i=1
F X i

is bijective.
If F and H are M-multialgebras, then an M-homomorphism from F to H is a natural

transformation from F to H.
The category of M-multialgebras and M-homomorphisms is denoted by MulAlg(M).

1.2 Examples.

1.2.0. Algebraic theories and algebras in the sense of F.W. Lawvere [6], and those of I-
terms in the sense of J. Benabou [1].

1.2.1 The multialgebraic theory of integral domains. Let D0 be the category whose
objects are pairs (n, I) consisting of an integer n ∈N and a prime ideal I of Z[X1, . . . , Xn],
and whose morphisms (n, I) → (m, J) are the injective homomorphisms of unital rings
Z[X1, . . . , Xn]/I → Z[X1, . . . , Xm]/J. These are of the form 〈g1, . . . , gn〉, where g1, . . . , gn
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1 Multialgebraic theories and multialgebras

are polynomials in Z[X1, . . . , Xm] such that f ∈ I if and only if f (g1, . . . , gn) ∈ J for all
f ∈ Z[X1, . . . , Xn], and where 〈g1, . . . , gn〉 denotes the quotient homomorphism of the ho-
momorphism g1, . . . , gn : Z[X1, . . . , Xn] → Z[X1, . . . , Xm]. The composition of morphisms is
given by composing the ring homomorphisms. The category D0 has finite multisums, since
the family of objects (0, (p)), where p runs over all prime numbers, is initial in D0, and the
multisum of (n, I) and (m, J) exists, consisting of the objects (n+m,K), where K runs over
the prime ideals of Z[X1, . . . , Xn, Xn+1, . . . , Xn+m] such that

K ∩Z[X1, . . . , Xn]= I and K ∩Z[Xn+1, . . . , Xn+m]= J.

We can see that every object of D0 belongs to a finite multisum of objects of the form (1, I).
The opposite category Dop

0 in which we distinguish the objects of the form (1, I) is thus a
multialgebraic theory, which we denote by M.

∣∣∣ p. 195
Let A be an integral domain. For each (x1, . . . , xn) ∈ An, denote by

Ix1,...,xn = {
P(X1, . . . , Xn) ∈Z[X1, . . . , Xn] : P(x1, . . . , xn)= 0

}
the prime ideal of polynomial relations with coefficients in Z between the x1, . . . , xn. We
define a functor A( ) : M→ Ens by

A(n,I) = {(x1, . . . , xn) ∈ An : Ix1,...,xn = I}

and, for a morphism 〈g1, . . . , gn〉 : (n, I)→ (m, J) of D0, by

A〈g1,...,gn〉(x1, . . . , xm)= (
g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)

)
.

This functor is an M-multialgebra since we have∐
p

A(0,(p)) ∼= 1 and
∐
K

A(n+m,K) ∼= A(n,I) × A(m,J)

(where the first coproduct is over all primes p, and the second coproduct is over all K such
that K ∩Z[X1, . . . , Xn] = I and K ∩Z[Xn+1, . . . , Xn+m] = J). But we can prove that every
M-multialgebra is, up to isomorphism, of this form, and thus defines an integral domain.
This correspondence is functorial, i.e. if Dom denotes the category of integral domains and
injective homomorphisms, then we can define a functor V : Dom→MulAlg(M) by V A = A( )

and V f (x1, . . . , xn) = ( f (x1), . . . , f (xn)). We can, with difficulty, directly prove that V is an
equivalence of categories, but this result is also an immediate consequence of Theorem 3.2.

1.2.2 The multialgebraic theory of commutative local rings. Let L0 be the cate-
gory whose objects are pairs (n, I) consisting of an integer n ∈ N and a prime ideal I of
Z[X1, . . . , Xn], and whose morphisms (n, I)→ (m, J) are the homomorphisms of local rings
Z[X1, . . . , Xn]I →Z[X1, . . . , Xm]J that are localisations of polynomial rings at prime ideals.
These are of the form [g1, . . . , gn], where g1, . . . , gn are polynomials in Z[X1, . . . , Xn] such
that f ∈ I if and only if f (g1, . . . , gn) ∈ J for all f ∈Z[X1, . . . , Xn], and where [g1, . . . , gn] de-
notes the extension to fractions of the homomorphism g1, . . . , gn : Z[X1, . . . , Xn]→Z[X1, . . . , Xm].
The composition of morphisms is given by composing the ring homomorphisms. The cate-
gory L0 has finite multisums since the objects of the form (0, (p)) form an initial family of
objects, and the multisum of (n, I) and (m, J) exists, consisting of objects (n+m,K), where
K runs over the prime ideals of Z[X1, . . . , xn, Xn+1, . . . , Xn+m] such that

K ∩Z[X1, . . . , Xn]= I and K ∩Z[Xn+1, . . . , Xn+m]= J.
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1 Multialgebraic theories and multialgebras

We can see that every object of L0 belongs to a finite multisum of objects of the form
(1, I). The opposite category in which we distinguish the objects of the form (1, I) is thus a
multialgebraic theory, which we denote by M.

Let A be a commutative local ring. For every (x1, . . . , xn) ∈ An, denote by

Jx1,...,xn = {
P(X1, . . . , Xn) ∈Z[X1, . . . , Xn] : P(X1, . . . , xn) is not invertible

}
the prime ideal. We define a functor A[ ] : M→ Ens by

∣∣∣ p. 196

A[n,I] = {(x1, . . . , xn) ∈ An : Jx1,...,xn = I}

and, for a morphism [g1, . . . , gn] : (n, I)→ (m, J) of L0, by

A[g1,...,gn](x1, . . . , xm)= (
g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)

)
.

This functor is an M-multialgebra since we have∐
p

A[0,(p)] ∼= 1 and
∐
K

A[n+m,K] ∼= A[n,I] × A[m,J]

(where the first coproduct is over all primes p, and the second coproduct is over all K such
that K ∩Z[X1, . . . , Xn] = I and K ∩Z[Xn+1, . . . , Xn+m] = J). But we can prove that every
M-multialgebra is, up to isomorphism, of this form, and thus defines a commutative local
ring. This correspondence is functorial, i.e. if Locc denotes the category of commutative
local rings and local homomorphisms, then we can define a functor V : Locc →MulAlg(M)
by V A = A[ ] and V f (x1, . . . , xn) = ( f (x1), . . . , f (xn)). We can, with difficulty, directly prove
that V is an equivalence of categories, but this result is also an immediate consequence of
Theorem 3.2.

1.2.3 The multialgebraic theory of real pre-Hilbert spaces. A finite sequence of vec-
tors in a real pre-Hilbert space is said to be orthonormal if the vectors are all of norm 1 and
pairwise orthogonal. A real matrix with p rows and n columns is said to be orthonormal
if its columns form an orthonormal sequence in Rp. Let Orth be the category of orthonor-
mal matrices, whose objects are the natural numbers, and whose morphisms n → p are
the orthonormal matrices with p rows and n columns, with composition being given by
matrix multiplication. In particular, there is a unique morphism 0→ n, namely the empty
matrix. The category Orth is in fact equivalent to the category Euc of Euclidean spaces,
which is a full subcategory of the category PHilb of real pre-Hilbert spaces. It thus has
finite multisums, by [2, 1.1.3]. The opposite category Orthop in which we distinguish the
family of objects (Xρ)ρ∈R+ defined by X0 = 0 and Xρ = 1 for ρ > 0 is a multialgebraic theory,
which we denote by M.

If E is a real pre-Hilbert space, then we define a functor E( ) : M→ Ens by

E(n) = {
(x1, . . . , xn) ∈ En : x1, . . . , xn is orthonormal in E

}
and, for a morphism A = (a ji) : n → p, by

E(A)(x1, . . . , xp)= (a11x1 + . . .+ap1xp, . . . ,a1nx1 + . . .+apnxp).

We can show that this functor is anM-multialgebra, and, conversely, that everyM-multialgebra
is, up to isomorphism, of the above form, and thus defines a real pre-Hilbert space. We
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1 Multialgebraic theories and multialgebras

can thus establish an equivalence between the category PHilb of real pre-Hilbert spaces
and orthogonal linear maps and the category MulAlg(M). This result is an immediate
consequence of Theorem 3.2.

1.2.4 The multialgebraic theory of totally ordered sets. Let ∆st be the category
whose objects are the finite ordinals, and whose morphisms are the strictly increasing

∣∣∣ p. 197
maps. The object 0 is initial, and the category has finite multisums, with the multisum
of n and p being given by the set of pairs of morphisms ( f : n → q, g : p → q) that are
globally surjective. The opposite category ∆op

st in which we distinguish the object 1 is a
multialgebraic theory, which we denote by M.

A totally ordered set E determines an M-multialgebra E( ) : M→ Ens, defined by

E(n) = {
(x1, . . . , xn) ∈ En : x1 < x2 < . . .< xn

}
and, for f : n → p, by

E( f )(x1, . . . , xn)= (
x f (1), . . . , x f (n)

)
.

Conversely, every M-multialgebra is, up to isomorphism, of the above form, and thus de-
termines a totally ordered set. We thus establish a correspondence between the category
TotOrd of totally ordered sets and strictly increasing maps and the category MulAlg(M).

1.3 Proposition. MulAlg(M) is a multireflexive full subcategory of EnsM that is closed
under connected limits, filtered colimits, and cokernels of equivalence relations.

Proof. a) Let (Fk)k∈K be a connected diagram in MulAlg(M) whose limit in EnsM is F. For
every finite multiproduct (γi j : Y j → X i)(i, j)∈[1,n]×J in M, we have [2, 3.5.4.a]

∐
j∈J

FY j =
∐
j∈J

lim←−−
k∈K

FkY j ∼= lim←−−
k∈K

∐
j∈J

FkY j ∼= lim←−−
k∈K

n∏
i=1

Fk X i

∼=
n∏

i=1
lim←−−
k∈K

Fk X i =
n∏

i=1
F X i.

The functor F is thus an M-multialgebra, and so MulAlg(M) is a full subcategory of
EnsM that is closed under connected limits. To show that MulAlg(M) is a multireflexive
subcategory of EnsM it suffices, by [2, Theorem 3.6.1], to show that the solution-set
condition is satisfied.

b) Let G be an M-multialgebra, and f : F → G a morphism in EnsM. Since the category
EnsM is regular, f factors as f = gh, where h : F → H is a quotient functor, and g : H →
G is a sub-functor. For every object X of M, denote by H̄X the set of elements of G(X )
of the form Gω(y), where ω : Y → X runs over the set of morphisms in M whose source
is an object Y belonging to a finite multiproduct (γi j : Y j → X i)(i, j)∈[1,n]×J of objects of
the family (X g)g∈G , i.e. Y = Y j0 , and where y is an element of GY such that Gγi j0 ∈
HX i for all i ∈ [1,n]. It is immediate that this defines a sub-functor H̄ of G which
contains the sub-functor H. We will show that H̄ is an M-multialgebra. Let (δik : Zk →
X i)(i,k)∈[1,n]×K be a finite multiproduct in M. The map 〈(H̄δik)〉 :

∐
k∈K H̄Zk →∏n

i=1 H̄X i
induced by the bijection 〈(Gδik)〉 :

∐
k∈K GZk → ∏n

i=1 GX i is injective. To show that it
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1 Multialgebraic theories and multialgebras

is surjective, consider an element (xi) ∈∏n
i=1 H̄X i, which we will show that the unique

element z ∈GZk0 satisfying Gδik0 (z)= xi for all i ∈ [1,n] belongs to H̄Zk0 .
∣∣∣ p. 198

Tl0 Y1

Zk0 X1

Tl Y2

Zk X2

βil0

ω0

ω1

δik0

β2l
ω2

δ2k

For all i ∈ [1,n], the element xi belongs to H̄X i, and so there exists a morphism
ωi : Yi → X i and an element yi ∈ GYi satisfying the conditions stated above in the
definition of H̄. Let (βil : Tl → Yi)(i,l)∈[1,n]×L and t ∈ GTl0 be such that they satisfy
Gβil0 (t)= yi for all i ∈ [1,n]. The family of morphisms ωiβil0 : Tl0 → X i factors uniquely
through a family of morphisms (δik1 : Zk1 → X i)i∈I and a morphism ω0 : Tl0 → Zk1 . The
relations

(Gδik1 )(Gω0(t))= (Gωi)(Gβil0 (t))=Gωi(yi)= xi

imply that k1 = k0 and that Gω0(t) = z. We can then easily show that z ∈ H̄Zk0 . This
proves that H̄ is an M-multialgebra. We finally obtain a solution-set of morphisms
from F to MulAlg(M) by noting that, up to isomorphism, there exists a set of quotient
functors H of F, and thus a set of functors of the form H̄.

c) If (Fk)k∈K is a filtered diagram of MulAlg(M) that has F as its colimit in EnsM, then, for
every finite multiproduct (γi j : Y j → X i)(i, j)∈[1,n]×J in M, we have

∐
j∈J

FY j =
∐
j∈J

lim−−→
k∈K

FkY j ∼= lim−−→
k∈K

∐
j∈J

FkY j ∼= lim−−→
k∈K

n∏
i=1

Fk X i

∼=
n∏

i=1
lim−−→
k∈K

Fk X i =
n∏

i=1
F X i

and so F is an M-multialgebra. Thus MulAlg(M) is closed under filtered colimits.

d) Let (m,n) : R â F be an equivalence relation in MulAlg(M). Let g : F →G be its coker-
nel in EnsM. Then, for every object X of M, RX is an equivalence relation on F X whose
quotient is GX . For every finite multiproduct (γi j : Y j → X i)(i, j)∈[1,n]×J in M, we have

∐
j∈J

GY j ∼=
∐
j∈J

(FY j/RY j)∼=
∐
j∈J

FY j

/ ∐
j∈J

RY j ∼=
n∏

i=1
F X i

/ n∏
i=1

RX i

∼=
n∏

i=1
(F X i/RX i)∼=

n∏
i=1

GX i.

This proves that G is an M-multialgebra. Thus MulAlg(M) is closed in EnsM under
quotients of equivalence relations.
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2 Multialgebraic forgetful functors

∣∣∣ p. 199

1.4 Proposition. MulAlg(M) is a multicocomplete category, whose equivalence relations
are effective, and whose pairs of coequalisable morphisms have cokernels, and it has a
universal factorisation of morphisms into monomorphisms and regular epimorphisms.

Proof. Let (Fk) be a diagram in MulAlg(M). If (ιk : Fk → F)k∈K is its colimit in EnsM, and
if ( f j : F → G j) j∈J is a universal family of morphisms from F to MulAlg(M), then it is
immediate that ( f jιk : Fk → G j)( j,k)∈J×K is a multicolimit of (Fk)k∈K in MulAlg(M). Let
( f , g) : F â G be a pair of morphisms in MulAlg(M) that is coequalisable by a morphism
h : G → H in MulAlg(M). Denote by (ki : G → K i)i∈I a multicokernel of ( f , g) in MulAlg(M).
The set I is non-empty, and so the kernel pair (m,n) : R âG of the family (ki : G → K i)i∈I
exists. This is an equivalence relation. Let k : G → K be its cokernel. Every morphism ki is
of the form ki = hk i. Consequently, |I| = 1, and k ∼= ki is a cokernel of ( f , g). The inclusion
functor MulAlg(M) → EnsM preserves kernel pairs and fibre products. It preserves and
reflects regular epimorphisms since these are cokernels of their kernel pairs. Since the
category EnsM has universal regular factorisations, so too does the category MulAlg(M).

2 Multialgebraic forgetful functors
The structure-forgetful functor UM : MulAlg(M)→ Ens is defined by UMF =∐

g∈G F X g and,
for f : F → H in MulAlg(M), by UM f =∐

g∈G f X g.

2.0 Proposition. The functor UM : MulAlg(M) → Ens has a left multiadjoint; it is faith-
ful and reflects isomorphisms; it preserves connected limits, filtered colimits, and regular
epimorphisms.

Proof. If we denote by kM : MulAlg(M) → Ens the inclusion functor, by ϕ : G → M the
functor defined by ϕg = X g, by Ensϕ : EnsM → EnsG the functor associated to ϕ, and by
Σ : EnsG → Ens the disjoint sum of sets functor, then we have UM =ΣEnsϕkM. The functor
kM has a left multiadjoint (Proposition 1.3), and the functor Ensϕ has a left adjoint. The
functor Σ also has a left multiadjoint since, for any set E, and writing Part(E) to mean the
set of partitions of E indexed by G, the family of maps(

1E : E → ⋃
g∈G

Eg

)
(Eg)g∈G∈Part(E)

is a universal family of morphisms from E to Σ. We thus deduce that the composite functor
UM has a left multiadjoint.

Let f ,h : F â G be morphisms in MulAlg(M) such that U f = Uh. Then we have∐
g∈G fX g = ∐

g∈G hX g , and so fX g = hX g for all g ∈ G. If (X i)i∈[1,n] is a finite sequence
of objects of (X g)g∈G that has a multiproduct (γi j : Y j → X i)(i, j)∈[1,n]×J , then we have

n∏
i=1

fX i =
n∏

i=1
hX i
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and consequently ∐
j∈J

fY j =
∐
j∈J

hY j

and so fY j = hY j for all j ∈ J. But, since every object Y of M is of the above form Y j, we
have fY = hY . Thus f = h.

∣∣∣ p. 200
Let f : F →G be a morphism in MulAlg(M) such that UM f is bijective. Then

∐
g∈G fX g

is bijective, and so fX g is bijective for all g ∈G. If (X i)i∈[1,n] is a finite sequence of objects of
(X g)g∈G that has a multiproduct (γi j : Y j → X i)(i, j)∈[1,n]×J , then the map

∏n
i=1 fX i is bijec-

tive, and so
∐

j∈J fY j is bijective, and consequently fY j is bijective for all j ∈ J. Since every
object Y of M is of the above form Y j, we deduce that fY is bijective, and consequently that
f is an isomorphism.

The functor UM preserves connected limits since it has a left multiadjoint; it preserves
filtered colimits and regular epimorphisms since the functors Σ, Ensϕ, and kM all preserve
them.

2.1 Examples. It is immediate that the structure-forgetful functors UM : MulAlg(M) →
Ens for the multialgebraic theories M given in 1.2 are equivalent to the usual structure-
forgetful functors.

3 The multialgebraic theory generated by a functor
U : A→ Ens that has a left multiadjoint

Let U : A → Ens be a functor that has a left multiadjoint. For each set E, we choose
a universal family of morphisms from E to U , and consider only the morphisms that are
diagonally universal to U belonging to these families. We denote by L0 the full subcategory
of A whose objects are the targets of the diagonally universal morphisms to U whose
sources are the finite cardinals.

3.0 Lemma. The category L0 is small, has finite multisums, and each of its objects belongs
to a finite multisum of objects that are targets of diagonally universal morphisms whose
source is the cardinal 1.

Proof. Let (X i)i∈[1,n] be a finite sequence of objects of L0. For every i ∈ [1,n], let E i be
a finite cardinal, and g i : E i → U X i a diagonally universal morphism from E i to U . Set
(E, ι) = ∐n

i=1 E i, and denote by (h j : E →UY j) j∈J a universal family of morphisms form E
to U . Since the cardinal E is finite, the objects Y j belong to L0. Set

J′ = {
j ∈ J : h jιi factors through g i in the form h jιi = (Uγ ji)g i for all i ∈ [1,n]

}
.

We will show that (γ ji : X i → Y j)(i, j)∈[1,n]×J′ is a multisum of (X i)i∈[1,n]. Let ( f i : X i →
Z)i∈[1,n] be an inductive cone in A with base (X i)i∈[1,n]. Then there exists a unique mor-
phism g : E → UZ such that gιi = (U f i)g i for all i ∈ I. Denote by h j : E → UY j the di-
agonally universal morphism from E to U, and by f : Y j → Z the morphism in A that
satisfies (U f )h j = g. The relation (U f )h jιi = gιi = (U f i)g i implies the existence of a
morphism γ ji : X i → Y j such that (Uγ ji)g i = h jιi and f γ ji = f i for all i ∈ [1,n]. Then
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3 The multialgebraic theory generated by a functor U : A→ Ens that has a left multiadjoint

j ∈ J′ and the inductive cone ( f i : X i → Z)i∈[1,n] factor uniquely through the inductive cone
(γi j : X i →Y j)i∈[1,n]. This shows that L0 has finite multisums.

Let Y be an object of L0. Then there exists a finite cardinal E and a diagonally uni-
versal morphism h : E →UY . The cardinal E is the finite sum of models of the cardinal 1,
say (E, ι) = ∐n

i=1 E i, with E i = 1. For all i ∈ [1,n], the map hιi : E i → UY factors through
∣∣∣ p. 201

a diagonally universal morphism g i : E i → U X i. We then find ourselves in the situation
described above. We thus deduce that Y belongs to a multisum of (X i)i∈[1,n], with each of
the X i being the target of a diagonally universal morphism whose source is the cardinal
1.

3.1 Notation. The multialgebraic theory M generated by the functor U : A→ Ens is the
opposite category of the full subcategory L0 of A whose objects are the targets of the di-
agonally universal morphisms to U whose sources are the finite cardinals, endowed with
the distinguished family of the objects that are targets of diagonally universal morphisms
whose source is the cardinal 1. Writing J0 : L0 →A for the inclusion functor, the compari-
son functor V : A→MulAlg(M) is defined by

V ( · )=HomA(J0(−), · ).
It satisfies UMV ∼=U . If V is an equivalence, then the functor U is said to be a multialge-
braic forgetful functor.

3.2 Theorem. A functor U : A→ Ens is a multialgebraic forgetful functor if and only if

1) it has a left multiadjoint;

2) it reflects isomorphisms;

3) A has filtered colimits and kernel pairs, and its equivalence relations are effective; and

4) it preserves filtered colimits and regular epimorphisms.

Proof. Since the category A does not necessarily have products, we consider here the ker-
nel pairs of a set of morphisms with the same source. The conditions are necessary by
Propositions 1.3, 1.4, and 2.0.

Now consider a functor U satisfying the conditions.

a) We will show that U reflects regular epimorphisms. Let f : X → Y be a morphism in
A whose image U f is a surjective map. Denote by (m,n) : R â X the kernel pair of f ,
by g : X → Z the cokernel of (m,n), and by h : Z → Y the unique morphism such that
hg = f .

R X Y

Z

m

n

f

g h

UR U X UY

UZ

Um

Un

U f

U g Uh
∼

Git commit: 50c2259 9 of 18

https://github.com/thosgood/translations/commit/50c2259


3 The multialgebraic theory generated by a functor U : A→ Ens that has a left multiadjoint

Then (m,n) is the kernel pair of g. Consequently, (Um,Un) is the kernel pair of U f ,
and also of U g. Since U f and U g are surjective maps, they are both cokernels of
(Um,Un), and so Uh is bijective. Then h is an isomorphism, and f ∼= g is a regular
epimorphism.

∣∣∣ p. 202

b) We will show that the functor J0 : L0 → A is dense. We will in fact show that J0 is
dense by filtered colimits and J0-absolute cokernels [4]. The objects of L0 are of finite
presentation in A, since, if E is a finite cardinal, if (g i : E → U A i)i∈I is a universal
family of morphisms from E to U , and if A = lim−−→k∈K Ak is a filtered colimit in A, then
we have ∐

i∈I
HomA(A i, A)∼=HomEns(E,U A)∼= lim−−→

k∈K
HomEns(E,U Ak)

∼= lim−−→
k∈K

∐
i∈I

HomA(A i, Ak)∼=
∐
i∈I

lim−−→
k∈K

HomA(A i, Ak)

and so, for all i ∈ I, we have HomA(A i, A)∼= lim−−→k∈KHomA(A i, Ak). We thus deduce that
the filtered colimits of A are J0-absolute [4]. Let A be an object of A. Set K = {(A0, x0) :
A0 ∈ L0 and x0 : A0 → A}, and denote by P the set of finite subsets of K . Then P is a
filtered ordered set. For K0 ∈ P, consider a multisum of (A0)(A0,x0)∈K0 inMulAlg(M), and
denote by (ιA0,x0 : A0 → SK0 )(A0,x0)∈K0 the family of morphisms of this multisum, which
factors as the family of morphisms (x0 : A0 → A)(A0,x0)∈K0 and a morphism xK0 : SK0 →
A.

A0

SK0 A

S

A1

ιA0 ,x0

x0

ιK0

xK0

x

ιA1 ,x1

x1

The objects SK0 are in L0. For K0 ⊂ K1 ∈ P, we denote by ιK1K0 : SK0 → SK1 the canoni-
cal morphism. Let (ιK0 : SK0 → S)K0∈P be the filtered colimit of (SK0 )K0∈P , and x : S → A
the morphism defined by xιK0 = xK0 for all K0 ∈ P. For every object A0 ∈ L0, the map
HomA(A0, x) is surjective. Since the map Ux is equivalent to the sum

∐
A0 HomA(A0, x),

where A0 runs over the targets of the diagonally universal morphisms whose source
is 1, it is also surjective. Since the functor U reflects regular epimorphisms, we thus
deduce that x is a regular epimorphism. It is thus a J0-absolute regular epimorphism.
We denote by L the full subcategory of A whose objects are the filtered colimit of ob-
jects of L0. Every object of A is then the J0-absolute regular quotient of an object of
L. We thus deduce that every object of A is the J0-absolute cokernel of morphisms of
L [4, Lemma 5.6.1], and consequently J0 is dense by filtered colimit and J0-absolute
cokernels [4, Def. 2.0].

c) The comparison functor V : A→MulAlg(M) is fully faithful since J0 is dense; it pre-
serves filtered colimits since the objects of L0 are of finite presentation in A; and it
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4 Multialgebraic categories

preserves regular epimorphisms since U preserves them, UM reflects them, and since
we have an isomorphism UMV ∼= U . We will show that V is an equivalence of cate-
gories. Denote by LM the full subcategory of MulAlg(M) whose objects are the filtered
colimits of representableM-multialgebras. Every object of LM is isomorphic to an object
of the form V A, where A is an object of L. Let F be an M-multialgebra. By b) applied
to A =MulAlg(M), F is the regular quotient of an object of LM. There thus exists an

∣∣∣ p. 203
object A0 ∈ L and a regular epimorphism q0 : V A0 → F.

B0 A0 A

A1

R1

r

s

p0

p1
f

g

h l

F0 V A0 F

V A1

V R1

m

n

q0

q1
V f

V g

V h V l

Let (m,n) : F0 â V A0 be the kernel pair of q0. There exists, once again, an object A1
of L and a regular epimorphism q1 : V A1 → F0. Let f , g : A1 â A0 be morphisms in A
defined by V f = mq1 and V g = nq1, let (h, l) : R1 â A1 be the kernel pair of ( f , g), let
p1 : A1 → B0 be the cokernel of (h, l), and let r, s : B0 â A0 be the morphisms defined
by rp1 = f and sp1 = g. Then (V h,V f ) is the kernel pair of (V f ,V g). Since (m,n) is a
monomorphic pair, (V h,V l) is the kernel pair of q1. Since V preserves kernel pairs and
regular epimorphisms, the morphism V p1 is isomorphic to the morphism q1, and so the
pair (V r,V s) is isomorphic to the pair (m,n). Since the pair (m,n) is an equivalence, so
too is the pair (r, s). It admits a cokernel p0 : A0 ↠ A. The two morphisms U p0 and q0
are thus isomorphic, and so the object F is isomorphic to V A.

4 Multialgebraic categories
A category is multialgebraic if it is equivalent to a category MulAlg(M) of multialgebras
for some multialgebraic theory M. By §3, it is equivalent to ask that there exist a multial-
gebraic forgetful functor defined on the category.
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4 Multialgebraic categories

4.0 Theorem. A category is multialgebraic if and only if

1) it has filtered colimits and kernel pairs, and its equivalence relations are effective;

2) it has finite multisums; and

3) it has a proper generating set consisting of projective objects of finite presentation.

Proof. Recall that an object X is projective if the functor Hom(X ,−) preserves regular
epimorphisms, and is of finite presentation if the functor Hom(X ,−) preserves filtered col-
imits [5]. A category MulAlg(M) satisfies conditions 1), 2), and 3) by taking the generating
set to be the set of representable M-multialgebras HomM(X ,−), where X ∈M. Now let A
be a category satisfying conditions 1), 2), and 3). Let G be a proper generating set of A
consisting of projective objects of finite presentation. Define the functor U : A→ Ens by

U(−)= ∐
A0∈G

HomA(A0,−).

We will show that U is a multialgebraic forgetful functor. The functor U preserves filtered
∣∣∣ p. 204

colimits since, for a filtered diagram (A i)i∈I of A, we have

U(lim−−→
i∈I

A i)∼=
∐

A0∈G
HomA(A0, lim−−→

i∈I
A i)∼=

∐
A0∈G

lim−−→
i∈I

HomA(A0, A i)

∼= lim−−→
i∈I

∐
A0∈G

HomA(A0, A i)= lim−−→
i∈I

U A i.

The functor U preserves regular epimorphisms since, for a regular epimorphism f in A,
the map HomA(A0, f ) is surjective for all A0 ∈G, and so the map U f =∐

A0∈G HomA(A0, f )
is surjective too. The functor U reflects isomorphism since, for a morphism f in A such
that U f is a bijection, for every A0 ∈ G, we have that HomA(A0, f ) is a bijection, and
so f is an isomorphism. It remains to show that U admits a left multiadjoint. Let
I be a set. For every family (X i)i∈I of objects of G indexed by I, choose a multisum
(γi j : X i → Y j)(i, j)∈I×J((X i)) of (X i)i∈I in A, and for j ∈ J((X i)) we define the map g j : I →∐

A0∈G HomA(A0,Y j) by g j(i)= γ ji. We will show that

(g j : I →UY j) j∈∐
(Xi )∈GI J((X i))

is a universal family of morphisms from I to U . Let A be an object of A, and let

g : I →U A = ∐
A0∈G

HomA(A0, A)

be a map. For i ∈ I, let X i ∈ G be such that g(i) ∈ HomA(X i, A). We thus obtain an
inductive cone (g(i) : X i → A)i∈I in A with base (X i)i∈I . There thus exists a unique pair
( j, f ), where j ∈ J((X i)) and f : Y j → A satisfy f γi j = g(i) for all i ∈ I. For i ∈ I, we have
(U f )g j(i) = U f (γ ji) = f γ ji = g(i), and so (U f )g j = g. Suppose further the existence of
another factorisation g = (U f ′)g j′ , where (X ′

i)i∈I is a family of objects of G indexed by
I, j′ ∈ J((X i)), and f : Y j′ → A. Then g(i) ∈ HomA(X ′

i, A), so X ′
i = X i for all i ∈ I. Then

f ′γ j′ i = (U f ′)g j′ (i)= g(i), and so j′ = j and f ′ = f .
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4 Multialgebraic categories

4.1 Examples. Either Theorem 4.0 or Theorem 3.2 easily show that the following cate-
gories are multialgebraic, and that their structure-forgetful functor with values in Ens is
a multialgebraic forgetful functor.

K fields and homomorphisms
Kc commutative fields and homomorphisms
K(p) fields of characteristic p and homomorphisms
Kc(0) commutative fields of characteristic 0 and homomorphisms
Loc local rings and local homomorphisms
Locc commutative local rings and local homomorphisms
Int integral rings and injective homomorphisms
Dom integral domains and injective homomorphisms
Red reduced commutative rings and injective homomorphisms
Prim primary commutative rings (every zero divisor is nilpotent) and injective

homomorphisms ∣∣∣ p. 205

QPrim quasi-primary commutative rings (xy= 0 implies that either x or y is nilpo-
tent) and injective homomorphisms

Kdif differential fields and differential homomorphisms
Locdif differential local rings and differential local homomorphisms
Domdif differential integral domains and injective differential homomorphisms
etc.

KcO orderable commutative fields and homomorphisms
LoccO commutative local rings such that 1 + x2

1 + . . . + x2
n is invertible for all

x1, . . . , xn and local homomorphisms
Ordtot totally ordered sets and strictly increasing maps
Kcord ordered fields and increasing homomorphisms
LoccOrdt totally ordered commutative local rings and strictly increasing local homo-

morphisms
DomOrdt totally ordered integral domains and strictly increasing homomorphisms
etc.

GrOrd ordered groups and proper increasing homomorphisms ( f (x)Ê 0 =⇒ x Ê 0)
AbOrd ordered abelian groups and proper increasing homomorphisms
AncOrd ordered commutative rings and proper increasing homomorphisms
etc.

Kcv commutative fields with absolute values and homomorphisms that pre-
serve the absolute value

etc.
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5 Proper multialgebraic functors

Norm(R) normed R-vector spaces and linear maps that preserve the norm
ANorm(R) normed R-algebras and homomorphisms that preserve the norm
Stell(C) C∗-algebras and homomorphisms that preserve the norm
etc.

PHild pre-Hilbert spaces and orthogonal linear maps (linear maps that preserve
the scalar product)

Met metric spaces and isometries
Trloc local lattices (0 ̸= 1 and [x∨ y = 1 =⇒ (x = 1 or y= 1)]) and local homomor-

phisms ( f (x)= 1 =⇒ x = 1)
Trdloc distributive local lattices and local homomorphisms
etc.

5 Proper multialgebraic functors

5.0 Definitions. If M and N are multialgebraic theories, then a proper morphism of
multialgebraic theories from N to M is a functor m : N→M that is bijective on objects and
that preserves both the distinguished family of objects and all finite multiproducts. The
functor MulAlg(m) : MulAlg(M) →MulAlg(N) induced by the functor Ensm : EnsM → EnsN

∣∣∣ p. 206
is said to be proper multialgebraic. It satisfies

UN ◦MulAlg(m)=UM.

5.1 Theorem. Every proper multialgebraic functor MulAlg(m) : MulAlg(M) →MulAlg(N)
is faithful, reflects isomorphism, preserves filtered colimits and regular epimorphisms, and
has a left adjoint.

Proof. The first properties follow from Proposition 1.3 and from the fact that MulAlg(m)
is induced by Ensm. Define the functors

JN : Nop →MulAlg(N)

JM : Mop →MulAlg(M)

by JN( · ) = HomN( · ,−) and JM( · ) = HomM( · ,−). Since the functor JN is dense for filtered
colimits and JN-absolute cokernels (part (b) of the proof of Theorem 3.2), and since the cat-
egory MulAlg(M) has filtered colimits and cokernels of pairs of coequalisable morphisms,
the left Kan extension of JMmop along JN exists and determines a left adjoint functor of
the functor MulAlg(m) [4, Prop. 3.1].

5.2 Examples.

5.2.0. Let K0 be the category whose objects are pairs (n, I) consisting of a whole num-
ber n and a prime ideal I of Z[X1, . . . , Xn], and whose morphisms (n, I) → (m, J) are field
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5 Proper multialgebraic functors

homomorphisms k(I) → k(J), where k(I) (resp. k(J)) denotes the field of fractions of the
integral domain Z[X1, . . . , Xn]/I (resp. of Z[X1, . . . , Xm]/J). This is a category with finite
multisums, calculated as for D0 (1.2.1). The opposite category Kop

0 in which we distinguish
the objects of the form (1, I) is a multialgebraic theory. The category of multialgebras
MulAlg(Kop

0 ) is equivalent to the category Kc of commutative fields. A proper morphism
of multialgebraic theories r : Dop

0 → K
op
0 is defined by r(n, I) = (n, I) and r〈g1, . . . , gn〉 =

the extension of 〈g1, . . . , gn〉 to fractions. The proper multialgebraic functor

MulAlg(r) : MulAlg(Kop
0 )→MulAlg(Dop

0 )

is equivalent to the inclusion functor Kc → Dom, whose left adjoint sends an integral
domain to its field of fractions.

5.2.1. The proper morphism of multialgebraic theories s : Lop
0 → K

op
0 is the identity on

objects, and sends [g1, . . . , gn] : Z[X1, . . . , Xn]I → Z[X1, . . . , Xm]J to the quotient homomor-
phism s[g1, . . . , gn] : k(I)→ k(J). The proper multialgebraic functorMulAlg(s) : MulAlg(Kop

0 )→
MulAlg(Lop

0 ) is equivalent to the inclusion functor Kc → Locc, whose left adjoint sends a
commutative local ring to its quotient by its maximal ideal.

5.2.2. Let P0 be the category whose objects are pairs (n, I) consisting of a whole number
n and a prime ideal I of Z[X1, . . . , Xn], and whose morphisms (n, I)→ (m, J) are the homo-
morphisms of unital rings f : Z[X1, . . . , Xn]→Z[X1, . . . , Xm] such that f −1(J)= I. This is a
category with finite multisums, calculated as for D0. The opposite category Pop

0 in which we
∣∣∣ p. 207

distinguish the objects of the form (1, I) is a multialgebraic theory. The category of multi-
algebras MulAlg(Pop

0 ) is equivalent to the category Anc/Spec whose objects are pairs (A,P)
consisting of a commutative unital ring A and a prime ideal P of A, and whose morphisms
(A,P) → (B,Q) are the homomorphisms of unital rings g : A → B such that g−1(Q) = P.
We define a proper morphism of multialgebraic theories t : Pop

0 → D
op
0 by t(n, I) = (n, I),

and by t( f ) = quotient of f . The proper multialgebraic functor MulAlg(t) : MulAlg(Dop
0 ) →

MulAlg(Pop
0 ) is equivalent to the functor Dom→Anc/Spec that sends an integral domain A

to the pair (A, {0}), and whose left adjoint sends a pair (A,P) to the integral domain A/P.

5.2.3. The proper morphism of multialgebraic theories u : Pop
0 → L

op
0 is defined by u(n, I)=

(n, I), and by u( f )= localisation of f . The functor

MulAlg(u) : MulAlg(Lop
0 )→MulAlg(Pop

0 )

is equivalent to the functor Locc→Anc/Spec that sends a local ring A to the pair (A, MA),
where MA is the maximal ideal of A, and whose left adjoint sends a pair (A,P) to the
localised ring AP .

5.2.4. The proper morphism of multialgebraic theories rt = su : Pop
0 → K

op
0 defines the

functor MulAlg(rt) : Kc →Anc/Spec that sends a commutative field K to the pair (K , {0}),
and whose left adjoint sends a pair (A,P) to the field k(P).
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6 Multimonadic categories of finite rank

6 Multimonadic categories of finite rank
Multimonads and multimonadic categories are defined in [3].

6.0 Definitions. A multimonad (S,T)= (S; (T,η,µ)) on Ens is of finite rank if the functor S
preserves cofiltered limits and the functor T preserves filtered colimits. A category equiv-
alent to EnsT/S and a functor equivalent to UT

S : EnsT/S → Ens are said to be multimonadic of
finite rank over Ens.

6.1 Theorem. For a functor U : A→ Ens, the following claims are equivalent:

(i) U is multimonadic of finite rank;

(ii) U is multimonadic and A has filtered colimits preserved by U ; and

(iii) U is a multialgebraic forgetful functor.

Proof. The equivalence (ii) ⇐⇒ (iii) follows immediately from Theorem 3.2 and from [3,
Theorem 4.2]. We will show the equivalence (i) ⇐⇒ (ii) for UT

S : EnsT/S → Ens. First of
all, it is immediate that the category Ens/S has filtered colimits preserved by US if and
only if the functor S preserves cofiltered limits. If we assume (i), then Ens/S has filtered
colimits preserved by US , and so EnsT/S has filtered colimits preserved by U , and so EnsT/S

∣∣∣ p. 208

has filtered colimits preserved by UT
S . Now assume (ii). Let (X i)i∈I be a filtered diagram

in Ens/S . Denote by (ιi : US X i → E)i∈I the colimit of (US X i)i∈I in Ens, and by (l i : FTX i →
(Y , y))i∈I the colimit of (FTX i)i∈I in EnsT/S . Since the functor UT

S preserves filtered colimits,

(UT
S l i : UT

S FTX i →USY )i∈I

is a colimit of (UT
S FTX i)i∈I. The maps

(UsηX i : US X i →UT
S FTX i)i∈I

determine, by colimits, a map p : E →USY such that pιi = (UT
S l i)(USηi) for all i ∈ I. There

thus exists a unique object X of Ens/S and a unique morphism η : X →Y such that USη= p,
and a unique diagram (γi : X i → X )i∈I such that (X i)i∈I. Let ( f i : X i → Z)i∈I be an inductive
cone with base (X i)i∈I. Then there exists a unique morphism g : E →US Z such that gιi =
Us f i for all i ∈ I. Let f : X ′ → Z be the unique morphism such that US f = g. Then

US(ηZ f )ιi = (USηZ)(US f )ιi = (USηZ)(US f i)=US(ηZ f i)=US((UTFT f i)ηxi )

= (USUT(ll i))(USηxi )= (UT
S l)(UT

S l i)(USηxi )= (UT
S )pιi

=US((UTl)η)ιi.

We thus deduce the equality (UTl)η = ηZ f , and so f is a morphism X → Z such that
f γi = f i for all i ∈ I. Thus Ens/S has filtered colimits preserved by US . Since the functor
US reflects isomorphisms, it also reflects filtered colimits, and since U preserves filtered
colimits, UT also preserves filtered colimits. We thus deduce that S preserves cofiltered
limits, and that T preserves filtered colimits, i.e. that (S,T) is of finite rank.
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7 α-multialgebraic theories and categories
We consider a regular infinite cardinal α (say α = ℵ0, α = ℵ1, . . . ). A family is α-small if
its index set has cardinality less than α. A multiproduct of an α-small family of objects is
said to be α-small. A category has α-small multiproducts if every α-small family of objects
has a multiproduct.

7.0 Definitions. An α-multialgebraic theory is a small category M with α-small multi-
products endowed with a small distinguished family (X g)g∈G of objects such that every
object of M belongs to an α-small multiproduct of objects of this family.

An M-multialgebra is then a functor F : M→ Ens that is multicontinuous for α-small
multiproducts [2].

The category MulAlg(M) is defined as before.
A proper morphism of α-multialgebraic theories is a functor that is bijective on objects

and that preserves both the distinguished family of objects and all α-small multiproducts. ∣∣∣ p. 209

7.1. All the above results remain true if we substitute:

• “α-small” for “finite”;

• “α-filtered” for “filtered”;

• “α-presentable” for “of finite presentation”; and

• “rank-α” for “finite rank”.

7.2 Examples of ℵ1-multialgebraic categories.

Metcompl complete metric spaces and isometries
Metcomp compact metric spaces and isometries
Ban(R) real Banach spaces and linear maps that preserve the norm
AlgBan(R) real Banach algebras and homomorphisms that preserve the norm
Hilb Hilbert spaces and orthogonal linear maps
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We revise the notions of algebraic theories, algebras, categories, and algebraic functors introduced by F.W.~Lawvere, in such a way that the essential theorems can be generalised to apply to non-algebraic situations, such as that of fields, local rings, totally ordered sets, metric spaces, normed vector spaces, pre-Hilbert spaces, etc.

A multialgebraic category is a category of functors that are multicontinuous for finite multiproducts, defined over a small category with finite multiproducts with values in $\Set$.
We show that multialgebraic categories have filtered colimits, connected limits, and cokernels for coequalisable pairs of morphisms, and that their equivalence relations are effective, and their regular epimorphisms are universal, and that they have regular universal factorisations.
They are equipped with a structure-forgetful functor with values in $\Set$, which admits a left multiadjoint, reflects isomorphisms, and preserves filtered colimits, connected limits, and regular epimorphisms.
We give two characterisations of multialgebraic categories, and we show that they are equivalent to multimonadic categories of finite rank over $\Set$.
Proper morphisms of multialgebraic theories determine proper multialgebraic functors.
These functors possess a left adjoint.
For example, the inclusion functors of the category of commutative fields into the category of integral domains and into the category of commutative local rings are both proper multialgebraic.

We use the notation and results of \cite{2} and \cite{3}.

\oldpage{194}
\section{Multialgebraic theories and multialgebras}

\begin{rmenv}{1.0 Definition \cite{2}}
\label{1.0}
  A \emph{multiproduct} of a small family $(X_i)_{i\in I}$ of objects of a category $\bb{A}$ is a small family $(\gamma_{ij}\colon Y_j\to X_i)_{(i,j)\in I\times J}$ of morphisms in $\bb{A}$ such that, for every family $(f_i\colon Y\to X_i)_{i\in I}$ of morphisms in $\bb{A}$, there exists a unique pair $(j,f)$ consisting of $j\in J$ and a morphism $f\colon Y\to Y_j$ such that $\gamma_{ij}f=f_i$ for all $i\in I$.

  We say that the $Y_j$ \emph{belong} to the multiproduct of objects $(X_i)_{i\in I}$.
  The multiproduct is said to be \emph{finite} if $I$ is finite.
  The category $\bb{A}$ is said to have \emph{finite multiproducts} if every finite family of objects of $\bb{A}$ has a multiproduct.
\end{rmenv}

\begin{rmenv}{1.1 Definitions}
\label{1.1}
  A \emph{multialgebraic theory} is a small category $\bb{M}$ with finite multiproducts, endowed with a distinguished small family of objects $(X_g)_{g\in G}$ such that every object of $\bb{M}$ belongs to a finite multiproduct of objects of this family.

  An \emph{$\bb{M}$-multialgebra} is a functor $F\colon\bb{M}\to\Set$ that is multicontinuous for finite multiproducts \cite{2}, i.e. for every finite sequence $X_1,\ldots,X_n$ of objects of $\bb{M}$ that has a multiproduct $(\gamma_{ij}\colon Y_j\to X_i)_{(i,j)\in[1,n]\times J}$, the map
  \[
    \langle(F\gamma_{ij})\rangle\colon
    \coprod_{j\in J} FY_j \to
    \prod_{i=1}^n FX_i
  \]
  is bijective.

  If $F$ and $H$ are $\bb{M}$-multialgebras, then an \emph{$\bb{M}$-homomorphism} from $F$ to $H$ is a natural transformation from $F$ to $H$.

  The category of $\bb{M}$-multialgebras and $\bb{M}$-homomorphisms is denoted by $\MulAlg(\bb{M})$.
\end{rmenv}

\begin{rmenv}{1.2 Examples}
\label{1.2}

  \begin{rmenv}{1.2.0}
  \label{1.2.0}
    Algebraic theories and algebras in the sense of F.W.~Lawvere \cite{6}, and those of $I$-terms in the sense of J.~Benabou \cite{1}.
  \end{rmenv}

  \begin{rmenv}{1.2.1 The multialgebraic theory of integral domains}
  \label{1.2.1}
    Let $\bb{D}_0$ be the category whose objects are pairs $(n,I)$ consisting of an integer $n\in\bb{N}$ and a prime ideal $I$ of $\bb{Z}[X_1,\ldots,X_n]$, and whose morphisms $(n,I)\to(m,J)$ are the injective homomorphisms of unital rings $\bb{Z}[X_1,\ldots,X_n]/I\to\bb{Z}[X_1,\ldots,X_m]/J$.
    These are of the form $\langle g_1,\ldots,g_n\rangle$, where $g_1,\ldots,g_n$ are polynomials in $\bb{Z}[X_1,\ldots,X_m]$ such that $f\in I$ if and only if $f(g_1,\ldots,g_n)\in J$ for all $f\in\bb{Z}[X_1,\ldots,X_n]$, and where $\langle g_1,\ldots,g_n\rangle$ denotes the quotient homomorphism of the homomorphism $g_1,\ldots,g_n\colon\bb{Z}[X_1,\ldots,X_n]\to\bb{Z}[X_1,\ldots,X_m]$.
    The composition of morphisms is given by composing the ring homomorphisms.
    The category $\bb{D}_0$ has finite multisums, since the family of objects $(0,(p))$, where $p$ runs over all prime numbers, is initial in $\bb{D}_0$, and the multisum of $(n,I)$ and $(m,J)$ exists, consisting of the objects $(n+m,K)$, where $K$ runs over the prime ideals of $\bb{Z}[X_1,\ldots,X_n,X_{n+1},\ldots,X_{n+m}]$ such that
    \[
      K\cap\bb{Z}[X_1,\ldots,X_n] = I
      \quad\text{and}\quad
      K\cap\bb{Z}[X_{n+1},\ldots,X_{n+m}] = J.
    \]
    We can see that every object of $\bb{D}_0$ belongs to a finite multisum of objects of the form $(1,I)$.
    The opposite category $\bb{D}_0^\op$ in which we distinguish the objects of the form $(1,I)$ is thus a multialgebraic theory, which we denote by $\bb{M}$.
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    Let $A$ be an integral domain.
    For each $(x_1,\ldots,x_n)\in A^n$, denote by
    \[
      I_{x_1,\ldots,x_n} =
      \big\{
        P(X_1,\ldots,X_n)\in\bb{Z}[X_1,\ldots,X_n]
        :
        P(x_1,\ldots,x_n)=0
      \big\}
    \]
    the prime ideal of polynomial relations with coefficients in $\bb{Z}$ between the $x_1,\ldots,x_n$.
    We define a functor $A^{(\,\,)}\colon\bb{M}\to\Set$ by
    \[
      A^{(n,I)}=\{(x_1,\ldots,x_n)\in A^n:I_{x_1,\ldots,x_n}=I\}
    \]
    and, for a morphism $\langle g_1,\ldots,g_n\rangle\colon(n,I)\to(m,J)$ of $\bb{D}_0$, by
    \[
      A^{\langle g_1,\ldots,g_n\rangle}(x_1,\ldots,x_m) =
      \big(
        g_1(x_1,\ldots,x_m),
        \ldots,
        g_n(x_1,\ldots,x_m)
      \big).
    \]
    This functor is an $\bb{M}$-multialgebra since we have
    \[
      \coprod_p A^{(0,(p))} \cong 1
      \quad\text{and}\quad
      \coprod_K A^{(n+m,K)} \cong A^{(n,I)}\times A^{(m,J)}
    \]
    (where the first coproduct is over all primes $p$, and the second coproduct is over all $K$ such that $K\cap\bb{Z}[X_1,\ldots,X_n] = I$ and $K\cap\bb{Z}[X_{n+1},\ldots,X_{n+m}] = J$).
    But we can prove that every $\bb{M}$-multialgebra is, up to isomorphism, of this form, and thus defines an integral domain.
    This correspondence is functorial, i.e. if $\Dom$ denotes the category of integral domains and injective homomorphisms, then we can define a functor $V\colon\Dom\to\MulAlg(\bb{M})$ by $VA=A^{(\,\,)}$ and $Vf(x_1,\ldots,x_n)=(f(x_1),\ldots,f(x_n))$.
    We can, with difficulty, directly prove that $V$ is an equivalence of categories, but this result is also an immediate consequence of \hyperref[3.2]{Theorem~3.2}.
  \end{rmenv}

  \begin{rmenv}{1.2.2 The multialgebraic theory of commutative local rings}
  \label{1.2.2}
    Let $\bb{L}_0$ be the category whose objects are pairs $(n,I)$ consisting of an integer $n\in\bb{N}$ and a prime ideal $I$ of $\bb{Z}[X_1,\ldots,X_n]$, and whose morphisms $(n,I)\to(m,J)$ are the homomorphisms of local rings $\bb{Z}[X_1,\ldots,X_n]_I\to\bb{Z}[X_1,\ldots,X_m]_J$ that are localisations of polynomial rings at prime ideals.
    These are of the form $[g_1,\ldots,g_n]$, where $g_1,\ldots,g_n$ are polynomials in $\bb{Z}[X_1,\ldots,X_n]$ such that $f\in I$ if and only if $f(g_1,\ldots,g_n)\in J$ for all $f\in\bb{Z}[X_1,\ldots,X_n]$, and where $[g_1,\ldots,g_n]$ denotes the extension to fractions of the homomorphism $g_1,\ldots,g_n\colon\bb{Z}[X_1,\ldots,X_n]\to\bb{Z}[X_1,\ldots,X_m]$.
    The composition of morphisms is given by composing the ring homomorphisms.
    The category $\bb{L}_0$ has finite multisums since the objects of the form $(0,(p))$ form an initial family of objects, and the multisum of $(n,I)$ and $(m,J)$ exists, consisting of objects $(n+m,K)$, where $K$ runs over the prime ideals of $\bb{Z}[X_1,\ldots,x_n,X_{n+1},\ldots,X_{n+m}]$ such that
    \[
      K\cap\bb{Z}[X_1,\ldots,X_n] = I
      \quad\text{and}\quad
      K\cap\bb{Z}[X_{n+1},\ldots,X_{n+m}] = J.
    \]
    We can see that every object of $\bb{L}_0$ belongs to a finite multisum of objects of the form $(1,I)$.
    The opposite category in which we distinguish the objects of the form $(1,I)$ is thus a multialgebraic theory, which we denote by $\bb{M}$.

    Let $A$ be a commutative local ring.
    For every $(x_1,\ldots,x_n)\in A^n$, denote by
    \[
      J_{x_1,\ldots,x_n} =
      \big\{
        P(X_1,\ldots,X_n)\in\bb{Z}[X_1,\ldots,X_n]
        :
        \mbox{$P(X_1,\ldots,x_n)$ is not invertible}
      \big\}
    \]
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    the prime ideal.
    We define a functor  $A^{[\,\,]}\colon\bb{M}\to\Set$ by
    \[
      A^{[n,I]}=\{(x_1,\ldots,x_n)\in A^n:J_{x_1,\ldots,x_n}=I\}
    \]
    and, for a morphism $[g_1,\ldots,g_n]\colon(n,I)\to(m,J)$ of $\bb{L}_0$, by
    \[
      A^{[g_1,\ldots,g_n]}(x_1,\ldots,x_m) =
      \big(
        g_1(x_1,\ldots,x_m),
        \ldots,
        g_n(x_1,\ldots,x_m)
      \big).
    \]
    This functor is an $\bb{M}$-multialgebra since we have
    \[
      \coprod_p A^{[0,(p)]} \cong 1
      \quad\text{and}\quad
      \coprod_K A^{[n+m,K]} \cong A^{[n,I]}\times A^{[m,J]}
    \]
    (where the first coproduct is over all primes $p$, and the second coproduct is over all $K$ such that $K\cap\bb{Z}[X_1,\ldots,X_n] = I$ and $K\cap\bb{Z}[X_{n+1},\ldots,X_{n+m}] = J$).
    But we can prove that every $\bb{M}$-multialgebra is, up to isomorphism, of this form, and thus defines a commutative local ring.
    This correspondence is functorial, i.e. if $\Locc$ denotes the category of commutative local rings and local homomorphisms, then we can define a functor $V\colon\Locc\to\MulAlg(\bb{M})$ by $VA=A^{[\,\,]}$ and $Vf(x_1,\ldots,x_n)=(f(x_1),\ldots,f(x_n))$.
    We can, with difficulty, directly prove that $V$ is an equivalence of categories, but this result is also an immediate consequence of \hyperref[3.2]{Theorem~3.2}.
  \end{rmenv}

  \begin{rmenv}{1.2.3 The multialgebraic theory of real pre-Hilbert spaces}
  \label{1.2.3}
    A finite sequence of vectors in a real pre-Hilbert space is said to be orthonormal if the vectors are all of norm~$1$ and pairwise orthogonal.
    A real matrix with $p$ rows and $n$ columns is said to be orthonormal if its columns form an orthonormal sequence in $\bb{R}^p$.
    Let $\Orth$ be the category of orthonormal matrices, whose objects are the natural numbers, and whose morphisms $n\to p$ are the orthonormal matrices with $p$ rows and $n$ columns, with composition being given by matrix multiplication.
    In particular, there is a unique morphism $0\to n$, namely the empty matrix.
    The category $\Orth$ is in fact equivalent to the category $\Euc$ of Euclidean spaces, which is a full subcategory of the category $\PHilb$ of real pre-Hilbert spaces.
    It thus has finite multisums, by \cite[{}1.1.3]{2}.
    The opposite category $\Orth^\op$ in which we distinguish the family of objects $(X_\rho)_{\rho\in\bb{R}_+}$ defined by $X_0=0$ and $X_\rho=1$ for $\rho>0$ is a multialgebraic theory, which we denote by $\bb{M}$.

    If $E$ is a real pre-Hilbert space, then we define a functor $E^{(\,\,)}\colon\bb{M}\to\Set$ by
    \[
      E^{(n)} =
      \big\{
        (x_1,\ldots,x_n)\in E^n
        :
        \mbox{$x_1,\ldots,x_n$ is orthonormal in $E$}
      \big\}
    \]
    and, for a morphism $A=(a_{ji})\colon n\to p$, by
    \[
      E^{(A)}(x_1,\ldots,x_p) =
      (a_{11}x_1+\ldots+a_{p1}x_p,\ldots,a_{1n}x_1+\ldots+a_{pn}x_p).
    \]
    We can show that this functor is an $\bb{M}$-multialgebra, and, conversely, that every $\bb{M}$-multialgebra is, up to isomorphism, of the above form, and thus defines a real pre-Hilbert space.
    We can thus establish an equivalence between the category $\PHilb$ of real pre-Hilbert spaces and orthogonal linear maps and the category $\MulAlg(\bb{M})$.
    This result is an immediate consequence of \hyperref[3.2]{Theorem~3.2}.
  \end{rmenv}

  \begin{rmenv}{1.2.4 The multialgebraic theory of totally ordered sets}
  \label{1.2.4}
    Let $\Delta_\st$ be the category whose objects are the finite ordinals, and whose morphisms are the
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    strictly increasing maps.
    The object $0$ is initial, and the category has finite multisums, with the multisum of $n$ and $p$ being given by the set of pairs of morphisms $(f\colon n\to q,g\colon p\to q)$ that are globally surjective.
    The opposite category $\Delta_\st^\op$ in which we distinguish the object $1$ is a multialgebraic theory, which we denote by $\bb{M}$.

    A totally ordered set $E$ determines an $\bb{M}$-multialgebra $E^{(\,\,)}\colon\bb{M}\to\Set$, defined by
    \[
      E^{(n)} =
      \big\{
        (x_1,\ldots,x_n)\in E^n
        :
        x_1<x_2<\ldots<x_n
      \big\}
    \]
    and, for $f\colon n\to p$, by
    \[
      E^{(f)}(x_1,\ldots,x_n) =
      \big(
        x_{f(1)},\ldots,x_{f(n)}
      \big).
    \]
    Conversely, every $\bb{M}$-multialgebra is, up to isomorphism, of the above form, and thus determines a totally ordered set.
    We thus establish a correspondence between the category $\TotOrd$ of totally ordered sets and strictly increasing maps and the category $\MulAlg(\bb{M})$.
  \end{rmenv}

\end{rmenv}

\begin{itenv}{1.3 Proposition}
\label{1.3}
  $\MulAlg(\bb{M})$ is a multireflexive full subcategory of $\Set^\bb{M}$ that is closed under connected limits, filtered colimits, and cokernels of equivalence relations.
\end{itenv}

\begin{proof}
  \begin{enumerate}[a)]
    \item Let $(F_k)_{k\in\bb{K}}$ be a connected diagram in $\MulAlg(\bb{M})$ whose limit in $\Set^\bb{M}$ is $F$.
      For every finite multiproduct $(\gamma_{ij}\colon Y_j\to X_i)_{(i,j)\in[1,n]\times J}$ in $\bb{M}$, we have \cite[{}3.5.4.a]{2}
      \[
        \begin{aligned}
          \coprod_{j\in J} FY_j
          &= \coprod_{j\in J} \varprojlim_{k\in\bb{K}} F_kY_j
          \cong \varprojlim_{k\in\bb{K}} \coprod_{j\in J} F_kY_j
          \cong \varprojlim_{k\in\bb{K}} \prod_{i=1}^n F_kX_i
        \\&\cong \prod_{i=1}^n \varprojlim_{k\in\bb{K}} F_kX_i
          = \prod_{i=1}^n FX_i.
        \end{aligned}
      \]
      The functor $F$ is thus an $\bb{M}$-multialgebra, and so $\MulAlg(\bb{M})$ is a full subcategory of $\Set^\bb{M}$ that is closed under connected limits.
      To show that $\MulAlg(\bb{M})$ is a multireflexive subcategory of $\Set^\bb{M}$ it suffices, by \cite[Theorem~3.6.1]{2}, to show that the solution-set condition is satisfied.
    \item Let $G$ be an $\bb{M}$-multialgebra, and $f\colon F\to G$ a morphism in $\Set^\bb{M}$.
      Since the category $\Set^\bb{M}$ is regular, $f$ factors as $f=gh$, where $h\colon F\to H$ is a quotient functor, and $g\colon H\to G$ is a sub-functor.
      For every object $X$ of $\bb{M}$, denote by $\bar{H}X$ the set of elements of $G(X)$ of the form $G\omega(y)$, where $\omega\colon Y\to X$ runs over the set of morphisms in $\bb{M}$ whose source is an object $Y$ belonging to a finite multiproduct $(\gamma_{ij}\colon Y_j\to X_i)_{(i,j)\in[1,n]\times J}$ of objects of the family $(X_g)_{g\in G}$, i.e. $Y=Y_{j_0}$, and where $y$ is an element of $GY$ such that $G\gamma_{ij_0}\in HX_i$ for all $i\in[1,n]$.
      It is immediate that this defines a sub-functor $\bar{H}$ of $G$ which contains the sub-functor $H$.
      We will show that $\bar{H}$ is an $\bb{M}$-multialgebra.
      Let $(\delta_{ik}\colon Z_k\to X_i)_{(i,k)\in[1,n]\times K}$ be a finite multiproduct in $\bb{M}$.
      The map $\langle(\bar{H}\delta_{ik})\rangle\colon\coprod_{k\in K}\bar{H}Z_k\to\prod_{i=1}^n\bar{H}X_i$ induced by the bijection $\langle(G\delta_{ik})\rangle\colon\coprod_{k\in K}GZ_k\to\prod_{i=1}^nGX_i$ is injective.
      To show that it is surjective, consider an element $(x_i)\in\prod_{i=1}^n\bar{H}X_i$, which we will show that the unique element $z\in GZ_{k_0}$ satisfying $G\delta_{ik_0}(z)=x_i$ for all $i\in[1,n]$ belongs to $\bar{H}Z_{k_0}$.
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      \[
        \begin{tikzcd}[column sep=huge]
          T_{l_0} \ar[rr,"\beta_{il_0}"] \ar[dr,swap,"\omega_0"]
          && Y_1 \ar[dr,"\omega_1"]
        \\&Z_{k_0} \ar[rr,"\delta_{ik_0}"] \ar[ddrr,bend right=20]
          && X_1
        \\T_l \ar[rr,swap,"\beta_{2l}"]
          && Y_2 \ar[dr,"\omega_2"]
        \\&Z_k \ar[rr,swap,"\delta_{2k}"] \ar[uurr,bend left=20]
          && X_2
        \end{tikzcd}
      \]
      For all $i\in[1,n]$, the element $x_i$ belongs to $\bar{H}X_i$, and so there exists a morphism $\omega_i\colon Y_i\to X_i$ and an element $y_i\in GY_i$ satisfying the conditions stated above in the definition of $\bar{H}$.
      Let $(\beta_{il}\colon T_l\to Y_i)_{(i,l)\in[1,n]\times L}$ and $t\in GT_{l_0}$ be such that they satisfy $G\beta_{il_0}(t)=y_i$ for all $i\in[1,n]$.
      The family of morphisms $\omega_i\beta_{il_0}\colon T_{l_0}\to X_i$ factors uniquely through a family of morphisms $(\delta_{ik_1}\colon Z_{k_1}\to X_i)_{i\in I}$ and a morphism $\omega_0\colon T_{l_0}\to Z_{k_1}$.
      The relations
      \[
        (G\delta_{ik_1})(G\omega_0(t))
        = (G\omega_i)(G\beta_{il_0}(t))
        = G\omega_i(y_i)
        = x_i
      \]
      imply that $k_1=k_0$ and that $G\omega_0(t)=z$.
      We can then easily show that $z\in\bar{H}Z_{k_0}$.
      This proves that $\bar{H}$ is an $\bb{M}$-multialgebra.
      We finally obtain a solution-set of morphisms from $F$ to $\MulAlg(\bb{M})$ by noting that, up to isomorphism, there exists a set of quotient functors $H$ of $F$, and thus a set of functors of the form $\bar{H}$.
    \item If $(F_k)_{k\in\bb{K}}$ is a filtered diagram of $\MulAlg(\bb{M})$ that has $F$ as its colimit in $\Set^\bb{M}$, then, for every finite multiproduct $(\gamma_{ij}\colon Y_j\to X_i)_{(i,j)\in[1,n]\times J}$ in $\bb{M}$, we have
      \[
        \begin{aligned}
          \coprod_{j\in J} FY_j
          &= \coprod_{j\in J} \varinjlim_{k\in\bb{K}} F_kY_j
          \cong \varinjlim_{k\in\bb{K}} \coprod_{j\in J} F_kY_j
          \cong \varinjlim_{k\in\bb{K}} \prod_{i=1}^n F_kX_i
        \\&\cong \prod_{i=1}^n \varinjlim_{k\in\bb{K}} F_kX_i
          = \prod_{i=1}^n FX_i
        \end{aligned}
      \]
      and so $F$ is an $\bb{M}$-multialgebra.
      Thus $\MulAlg(\bb{M})$ is closed under filtered colimits.
    \item Let $(m,n)\colon R\rightrightarrows F$ be an equivalence relation in $\MulAlg(\bb{M})$.
      Let $g\colon F\to G$ be its cokernel in $\Set^\bb{M}$.
      Then, for every object $X$ of $\bb{M}$, $RX$ is an equivalence relation on $FX$ whose quotient is $GX$.
      For every finite multiproduct $(\gamma_{ij}\colon Y_j\to X_i)_{(i,j)\in[1,n]\times J}$ in $\bb{M}$, we have
      \[
        \begin{aligned}
          \coprod_{j\in J} GY_j
          &\cong \coprod_{j\in J} (FY_j/RY_j)
          \cong \coprod_{j\in J} FY_j \Big/ \coprod_{j\in J} RY_j
          \cong \prod_{i=1}^n FX_i \Big/ \prod_{i=1}^n RX_i
        \\&\cong \prod_{i=1}^n (FX_i/RX_i)
          \cong \prod_{i=1}^n GX_i.
        \end{aligned}
      \]
      This proves that $G$ is an $\bb{M}$-multialgebra.
      Thus $\MulAlg(\bb{M})$ is closed in $\Set^\bb{M}$ under quotients of equivalence relations.
  \end{enumerate}
\end{proof}
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\begin{itenv}{1.4 Proposition}
\label{1.4}
  $\MulAlg(\bb{M})$ is a multicocomplete category, whose equivalence relations are effective, and whose pairs of coequalisable morphisms have cokernels, and it has a universal factorisation of morphisms into monomorphisms and regular epimorphisms.
\end{itenv}

\begin{proof}
  Let $(F_k)$ be a diagram in $\MulAlg(\bb{M})$.
  If $(\iota_k\colon F_k\to F)_{k\in\bb{K}}$ is its colimit in $\Set^\bb{M}$, and if $(f_j\colon F\to G_j)_{j\in J}$ is a universal family of morphisms from $F$ to $\MulAlg(\bb{M})$, then it is immediate that $(f_j\iota_k\colon F_k\to G_j)_{(j,k)\in J\times\bb{K}}$ is a multicolimit of $(F_k)_{k\in\bb{K}}$ in $\MulAlg(\bb{M})$.
  Let $(f,g)\colon F\rightrightarrows G$ be a pair of morphisms in $\MulAlg(\bb{M})$ that is coequalisable by a morphism $h\colon G\to H$ in $\MulAlg(\bb{M})$.
  Denote by $(k_i\colon G\to K_i)_{i\in I}$ a multicokernel of $(f,g)$ in $\MulAlg(\bb{M})$.
  The set $I$ is non-empty, and so the kernel pair $(m,n)\colon R\rightrightarrows G$ of the family $(k_i\colon G\to K_i)_{i\in I}$ exists.
  This is an equivalence relation.
  Let $k\colon G\to K$ be its cokernel.
  Every morphism $k_i$ is of the form $k_i=h_ki$.
  Consequently, $|I|=1$, and $k\cong k_i$ is a cokernel of $(f,g)$.
  The inclusion functor $\MulAlg(\bb{M})\to\Set^\bb{M}$ preserves kernel pairs and fibre products.
  It preserves and reflects regular epimorphisms since these are cokernels of their kernel pairs.
  Since the category $\Set^\bb{M}$ has universal regular factorisations, so too does the category $\MulAlg(\bb{M})$.
\end{proof}



\section{Multialgebraic forgetful functors}
\label{2}

The \emph{structure-forgetful functor} $U_\bb{M}\colon\MulAlg(\bb{M})\to\Set$ is defined by $U_\bb{M}F=\coprod_{g\in G}FX_g$ and, for $f\colon F\to H$ in $\MulAlg(\bb{M})$, by $U_\bb{M}f=\coprod_{g\in G}fX_g$.

\begin{itenv}{2.0 Proposition}
\label{2.0}
  The functor $U_\bb{M}\colon\MulAlg(\bb{M})\to\Set$ has a left multiadjoint;
  it is faithful and reflects isomorphisms;
  it preserves connected limits, filtered colimits, and regular epimorphisms.
\end{itenv}

\begin{proof}
  If we denote by $k_\bb{M}\colon\MulAlg(\bb{M})\to\Set$ the inclusion functor, by $\varphi\colon G\to M$ the functor defined by $\varphi g=X_g$, by $\Set^\varphi\colon\Set^\bb{M}\to\Set^G$ the functor associated to $\varphi$, and by $\Sigma\colon\Set^G\to\Set$ the disjoint sum of sets functor, then we have $U_\bb{M}=\Sigma\Set^\varphi k_\bb{M}$.
  The functor $k_\bb{M}$ has a left multiadjoint (\hyperref[1.3]{Proposition~1.3}), and the functor $\Set^\varphi$ has a left adjoint.
  The functor $\Sigma$ also has a left multiadjoint since, for any set $E$, and writing $\Part(E)$ to mean the set of partitions of $E$ indexed by $G$, the family of maps
  \[
    \left(1_E\colon E\to\bigcup_{g\in G}E_g\right)_{(E_g)_{g\in G}\in\Part(E)}
  \]
  is a universal family of morphisms from $E$ to $\Sigma$.
  We thus deduce that the composite functor $U_\bb{M}$ has a left multiadjoint.

  Let $f,h\colon F\rightrightarrows G$ be morphisms in $\MulAlg(\bb{M})$ such that $Uf=Uh$.
  Then we have $\coprod_{g\in G}f_{X_g}=\coprod_{g\in G}h_{X_g}$, and so $f_{X_g}=h_{X_g}$ for all $g\in G$.
  If $(X_i)_{i\in[1,n]}$ is a finite sequence of objects of $(X_g)_{g\in G}$ that has a multiproduct $(\gamma_{ij}\colon Y_j\to X_i)_{(i,j)\in[1,n]\times J}$, then we have
  \[
    \prod_{i=1}^n f_{X_i} = \prod_{i=1}^n h_{X_i}
  \]
  and consequently
  \[
    \coprod_{j\in J} f_{Y_j} = \coprod_{j\in J} h_{Y_j}
  \]
  and so $f_{Y_j}=h_{Y_j}$ for all $j\in J$.
  But, since every object $Y$ of $\bb{M}$ is of the above form $Y_j$, we have $f_Y=h_Y$.
  Thus $f=h$.
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  Let $f\colon F\to G$ be a morphism in $\MulAlg(\bb{M})$ such that $U_\bb{M}f$ is bijective.
  Then $\coprod_{g\in G}f_{X_g}$ is bijective, and so $f_{X_g}$ is bijective for all $g\in G$.
  If $(X_i)_{i\in[1,n]}$ is a finite sequence of objects of $(X_g)_{g\in G}$ that has a multiproduct $(\gamma_{ij}\colon Y_j\to X_i)_{(i,j)\in[1,n]\times J}$, then the map $\prod_{i=1}^nf_{X_i}$ is bijective, and so $\coprod_{j\in J}f_{Y_j}$ is bijective, and consequently $f_{Y_j}$ is bijective for all $j\in J$.
  Since every object $Y$ of $\bb{M}$ is of the above form $Y_j$, we deduce that $f_Y$ is bijective, and consequently that $f$ is an isomorphism.

  The functor $U_\bb{M}$ preserves connected limits since it has a left multiadjoint; it preserves filtered colimits and regular epimorphisms since the functors $\Sigma$, $\Set^\varphi$, and $k_\bb{M}$ all preserve them.
\end{proof}

\begin{rmenv}{2.1 Examples}
\label{2.1}
  It is immediate that the structure-forgetful functors $U_\bb{M}\colon\MulAlg(\bb{M})\to\Set$ for the multialgebraic theories $\bb{M}$ given in \hyperref[1.2]{1.2} are equivalent to the usual structure-forgetful functors.
\end{rmenv}



\section{The multialgebraic theory generated by a functor \texorpdfstring{$U\colon\bb{A}\to\Set$}{U:A->Set} that has a left multiadjoint}
\label{3}

Let $U\colon\bb{A}\to\Set$ be a functor that has a left multiadjoint.
For each set $E$, we choose a universal family of morphisms from $E$ to $U$, and consider only the morphisms that are diagonally universal to $U$ belonging to these families.
We denote by $\bb{L}_0$ the full subcategory of $\bb{A}$ whose objects are the targets of the diagonally universal morphisms to $U$ whose sources are the finite cardinals.

\begin{itenv}{3.0 Lemma}
\label{3.0}
  The category $\bb{L}_0$ is small, has finite multisums, and each of its objects belongs to a finite multisum of objects that are targets of diagonally universal morphisms whose source is the cardinal $1$.
\end{itenv}

\begin{proof}
  Let $(X_i)_{i\in[1,n]}$ be a finite sequence of objects of $\bb{L}_0$.
  For every $i\in[1,n]$, let $E_i$ be a finite cardinal, and $g_i\colon E_i\to UX_i$ a diagonally universal morphism from $E_i$ to $U$.
  Set $(E,\iota)=\coprod_{i=1}^nE_i$, and denote by $(h_j\colon E\to UY_j)_{j\in J}$ a universal family of morphisms form $E$ to $U$.
  Since the cardinal $E$ is finite, the objects $Y_j$ belong to $\bb{L}_0$.
  Set
  \[
    J' =
    \big\{
      j\in J
      :
      \mbox{$h_j\iota_i$ factors through $g_i$ in the form $h_j\iota_i=(U\gamma_{ji})g_i$ for all $i\in[1,n]$}
    \big\}.
  \]
  We will show that $(\gamma_{ji}\colon X_i\to Y_j)_{(i,j)\in[1,n]\times J'}$ is a multisum of $(X_i)_{i\in[1,n]}$.
  Let $(f_i\colon X_i\to Z)_{i\in[1,n]}$ be an inductive cone in $\bb{A}$ with base $(X_i)_{i\in[1,n]}$.
  Then there exists a unique morphism $g\colon E\to UZ$ such that $g\iota_i=(Uf_i)g_i$ for all $i\in I$.
  Denote by $h_j\colon E\to UY_j$ the diagonally universal morphism from $E$ to $U$, and by $f\colon Y_j\to Z$ the morphism in $\bb{A}$ that satisfies $(Uf)h_j=g$.
  The relation $(Uf)h_j\iota_i=g\iota_i=(Uf_i)g_i$ implies the existence of a morphism $\gamma_{ji}\colon X_i\to Y_j$ such that $(U\gamma_{ji})g_i=h_j\iota_i$ and $f\gamma_{ji}=f_i$ for all $i\in[1,n]$.
  Then $j\in J'$ and the inductive cone $(f_i\colon X_i\to Z)_{i\in[1,n]}$ factor uniquely through the inductive cone $(\gamma_{ij}\colon X_i\to Y_j)_{i\in[1,n]}$.
  This shows that $\bb{L}_0$ has finite multisums.

  Let $Y$ be an object of $\bb{L}_0$.
  Then there exists a finite cardinal $E$ and a diagonally universal morphism $h\colon E\to UY$.
  The cardinal $E$ is the finite sum of models of the cardinal $1$,
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  say $(E,\iota)=\coprod_{i=1}^nE_i$, with $E_i=1$.
  For all $i\in[1,n]$, the map $h\iota_i\colon E_i\to UY$ factors through a diagonally universal morphism $g_i\colon E_i\to UX_i$.
  We then find ourselves in the situation described above.
  We thus deduce that $Y$ belongs to a multisum of $(X_i)_{i\in[1,n]}$, with each of the $X_i$ being the target of a diagonally universal morphism whose source is the cardinal $1$.
\end{proof}

\begin{rmenv}{3.1 Notation}
\label{3.1}
  The multialgebraic theory $\bb{M}$ \emph{generated} by the functor $U\colon\bb{A}\to\Set$ is the opposite category of the full subcategory $\bb{L}_0$ of $\bb{A}$ whose objects are the targets of the diagonally universal morphisms to $U$ whose sources are the finite cardinals, endowed with the distinguished family of the objects that are targets of diagonally universal morphisms whose source is the cardinal $1$.
  Writing $J_0\colon\bb{L}_0\to\bb{A}$ for the inclusion functor, the \emph{comparison functor} $V\colon\bb{A}\to\MulAlg(\bb{M})$ is defined by
  \[
    V(\,\cdot\,) = \Hom_\bb{A}(J_0(-),\,\cdot\,).
  \]
  It satisfies $U_\bb{M}V\cong U$.
  If $V$ is an equivalence, then the functor $U$ is said to be a \emph{multialgebraic forgetful functor}.
\end{rmenv}

\begin{itenv}{3.2 Theorem}
\label{3.2}
  A functor $U\colon\bb{A}\to\Set$ is a multialgebraic forgetful functor if and only if
  \begin{enumerate}[1)]
    \item it has a left multiadjoint;
    \item it reflects isomorphisms;
    \item $\bb{A}$ has filtered colimits and kernel pairs, and its equivalence relations are effective; and
    \item it preserves filtered colimits and regular epimorphisms.
  \end{enumerate}
\end{itenv}

\begin{proof}
  Since the category $\bb{A}$ does not necessarily have products, we consider here the kernel pairs of a set of morphisms with the same source.
  The conditions are necessary by Propositions~\hyperref[1.3]{1.3}, \hyperref[1.4]{1.4}, and \hyperref[2.0]{2.0}.

  Now consider a functor $U$ satisfying the conditions.
  \begin{enumerate}[a)]
    \item We will show that $U$ reflects regular epimorphisms.
      Let $f\colon X\to Y$ be a morphism in $\bb{A}$ whose image $Uf$ is a surjective map.
      Denote by $(m,n)\colon R\rightrightarrows X$ the kernel pair of $f$, by $g\colon X\to Z$ the cokernel of $(m,n)$, and by $h\colon Z\to Y$ the unique morphism such that $hg=f$.
      \[
        \begin{tikzcd}
          R \rar[shift left,"m"] \rar[shift right,swap,"n"]
          & X \ar[rr,"f"] \ar[dr,swap,"g"]
          && Y
        \\&& Z \ar[ur,swap,"h"]
        \end{tikzcd}
      \]
      \[
        \begin{tikzcd}
          UR \rar[shift left,"Um"] \rar[shift right,swap,"Un"]
          & UX \ar[rr,"Uf"] \ar[dr,swap,"Ug"]
          && UY
        \\&& UZ \ar[ur,swap,"Uh"] \ar[ur,sloped,"\sim"]
        \end{tikzcd}
      \]
      Then $(m,n)$ is the kernel pair of $g$.
      Consequently, $(Um,Un)$ is the kernel pair of $Uf$, and also of $Ug$.
      Since $Uf$ and $Ug$ are surjective maps, they are both cokernels of $(Um,Un)$, and so $Uh$ is bijective.
      Then $h$ is an isomorphism, and $f\cong g$ is a regular epimorphism.
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    \item We will show that the functor $J_0\colon\bb{L}_0\to\bb{A}$ is dense.
      We will in fact show that $J_0$ is dense by filtered colimits and $J_0$-absolute cokernels \cite{4}.
      The objects of $\bb{L}_0$ are of finite presentation in $\bb{A}$, since, if $E$ is a finite cardinal, if $(g_i\colon E\to UA_i)_{i\in I}$ is a universal family of morphisms from $E$ to $U$, and if $A=\varinjlim_{k\in\bb{K}}A_k$ is a filtered colimit in $\bb{A}$, then we have
      \[
        \begin{aligned}
          \coprod_{i\in I} \Hom_\bb{A}(A_i,A)
          &\cong \Hom_\Set(E,UA)
          \cong \varinjlim_{k\in\bb{K}} \Hom_\Set(E,UA_k)
        \\&\cong \varinjlim_{k\in\bb{K}} \coprod_{i\in I} \Hom_\bb{A}(A_i,A_k)
          \cong \coprod_{i\in I} \varinjlim_{k\in\bb{K}} \Hom_\bb{A}(A_i,A_k)
        \end{aligned}
      \]
      and so, for all $i\in I$, we have $\Hom_\bb{A}(A_i,A)\cong\varinjlim_{k\in\bb{K}}\Hom_\bb{A}(A_i,A_k)$.
      We thus deduce that the filtered colimits of $\bb{A}$ are $J_0$-absolute \cite{4}.
      Let $A$ be an object of $\bb{A}$.
      Set $K=\{(A_0,x_0):\mbox{$A_0\in\bb{L}_0$ and $x_0\colon A_0\to A$}\}$, and denote by $P$ the set of finite subsets of $K$.
      Then $P$ is a filtered ordered set.
      For $K_0\in P$, consider a multisum of $(A_0)_{(A_0,x_0)\in K_0}$ in $\MulAlg(\bb{M})$, and denote by $(\iota_{A_0,x_0}\colon A_0\to S_{K_0})_{(A_0,x_0)\in K_0}$ the family of morphisms of this multisum, which factors as the family of morphisms $(x_0\colon A_0\to A)_{(A_0,x_0)\in K_0}$ and a morphism $x_{K_0}\colon S_{K_0}\to A$.
      \[
        \begin{tikzcd}[column sep=7em]
          A_0 \ar[ddr,swap,"\iota_{A_0,x_0}"] \ar[ddrrr,bend left=20,"x_0"]
        \\
        \\&S_{K_0} \ar[dr,swap,"\iota_{K_0}"] \ar[rr,"x_{K_0}"]
          && A
        \\&& S \ar[ru,"x"]
        \\A_1 \ar[uur,"\iota_{A_1,x_1}"] \ar[uurrr,bend right=20,swap,"x_1"]
        \end{tikzcd}
      \]

      The objects $S_{K_0}$ are in $\bb{L}_0$.
      For $K_0\subset K_1\in P$, we denote by $\iota_{K_1K_0}\colon S_{K_0}\to S_{K_1}$ the canonical morphism.
      Let $(\iota_{K_0}\colon S_{K_0}\to S)_{K_0\in P}$ be the filtered colimit of $(S_{K_0})_{K_0\in P}$, and $x\colon S\to A$ the morphism defined by $x\iota_{K_0}=x_{K_0}$ for all $K_0\in P$.
      For every object $A_0\in\bb{L}_0$, the map $\Hom_\bb{A}(A_0,x)$ is surjective.
      Since the map $Ux$ is equivalent to the sum $\coprod_{A_0}\Hom_\bb{A}(A_0,x)$, where $A_0$ runs over the targets of the diagonally universal morphisms whose source is $1$, it is also surjective.
      Since the functor $U$ reflects regular epimorphisms, we thus deduce that $x$ is a regular epimorphism.
      It is thus a $J_0$-absolute regular epimorphism.
      We denote by $\bb{L}$ the full subcategory of $\bb{A}$ whose objects are the filtered colimit of objects of $\bb{L}_0$.
      Every object of $\bb{A}$ is then the $J_0$-absolute regular quotient of an object of $\bb{L}$.
      We thus deduce that every object of $\bb{A}$ is the $J_0$-absolute cokernel of morphisms of $\bb{L}$ \cite[Lemma~5.6.1]{4}, and consequently $J_0$ is dense by filtered colimit and $J_0$-absolute cokernels \cite[Def.~2.0]{4}.
    \item The comparison functor $V\colon\bb{A}\to\MulAlg(\bb{M})$ is fully faithful since $J_0$ is dense;
      it preserves filtered colimits since the objects of $\bb{L}_0$ are of finite presentation in $\bb{A}$;
      and it preserves regular epimorphisms since $U$ preserves them, $U_\bb{M}$ reflects them, and since we have an isomorphism $U_\bb{M}V\cong U$.
      We will show that $V$ is an equivalence of categories.
      Denote by $\bb{L}_\bb{M}$ the full subcategory of $\MulAlg(\bb{M})$ whose objects are the filtered colimits of representable $\bb{M}$-multialgebras.
      Every object of $\bb{L}_\bb{M}$ is isomorphic to an object of the form $VA$, where $A$ is an object of $\bb{L}$.
      Let $F$ be an $\bb{M}$-multialgebra.
      By b) applied to $\bb{A}=\MulAlg(\bb{M})$, $F$ is the
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      regular quotient of an object of $\bb{L}_\bb{M}$.
      There thus exists an object $A_0\in\bb{L}$ and a regular epimorphism $q_0
      \colon VA_0\to F$.
      \[
        \begin{tikzcd}[sep=huge]
          B_0 \rar[shift left,"r"] \rar[shift right,swap,"s"]
          & A_0 \rar["p_0"]
          & A
        \\A_1 \uar["p_1"] \ar[ur,shift left,"f"] \ar[ur,shift right,swap,"g"]
        \\R_1 \uar[shift left,"h"] \uar[shift right,swap,"l"]
        \end{tikzcd}
      \]
      \[
        \begin{tikzcd}[sep=huge]
          F_0 \rar[shift left,"m"] \rar[shift right,swap,"n"]
          & VA_0 \rar[two heads,"q_0"]
          & F
        \\VA_1 \uar["q_1"] \ar[ur,shift left,"Vf"] \ar[ur,shift right,swap,"Vg"]
        \\VR_1 \uar[shift left,"Vh"] \uar[shift right,swap,"Vl"]
        \end{tikzcd}
      \]

      Let $(m,n)\colon F_0\rightrightarrows VA_0$ be the kernel pair of $q_0$.
      There exists, once again, an object $A_1$ of $\bb{L}$ and a regular epimorphism $q_1\colon VA_1\to F_0$.
      Let $f,g\colon A_1\rightrightarrows A_0$ be morphisms in $\bb{A}$ defined by $Vf=mq_1$ and $Vg=nq_1$, let $(h,l)\colon R_1\rightrightarrows A_1$ be the kernel pair of $(f,g)$, let $p_1\colon A_1\to B_0$ be the cokernel of $(h,l)$, and let $r,s\colon B_0\rightrightarrows A_0$ be the morphisms defined by $rp_1=f$ and $sp_1=g$.
      Then $(Vh,Vf)$ is the kernel pair of $(Vf,Vg)$.
      Since $(m,n)$ is a monomorphic pair, $(Vh,Vl)$ is the kernel pair of $q_1$.
      Since $V$ preserves kernel pairs and regular epimorphisms, the morphism $Vp_1$ is isomorphic to the morphism $q_1$, and so the pair $(Vr,Vs)$ is isomorphic to the pair $(m,n)$.
      Since the pair $(m,n)$ is an equivalence, so too is the pair $(r,s)$.
      It admits a cokernel $p_0\colon A_0\twoheadrightarrow A$.
      The two morphisms $Up_0$ and $q_0$ are thus isomorphic, and so the object $F$ is isomorphic to $VA$.
  \end{enumerate}
\end{proof}



\section{Multialgebraic categories}
\label{4}

A category is \emph{multialgebraic} if it is equivalent to a category $\MulAlg(\bb{M})$ of multialgebras for some multialgebraic theory $\bb{M}$.
By \hyperref[3]{\S3}, it is equivalent to ask that there exist a multialgebraic forgetful functor defined on the category.

\begin{itenv}{4.0 Theorem}
\label{4.0}
  A category is multialgebraic if and only if
  \begin{enumerate}[1)]
    \item it has filtered colimits and kernel pairs, and its equivalence relations are effective;
    \item it has finite multisums; and
    \item it has a proper generating set consisting of projective objects of finite presentation.
  \end{enumerate}
\end{itenv}

\begin{proof}
  Recall that an object $X$ is projective if the functor $\Hom(X,-)$ preserves regular epimorphisms, and is of finite presentation if the functor $\Hom(X,-)$ preserves filtered colimits \cite{5}.
  A category $\MulAlg(\bb{M})$ satisfies conditions 1), 2), and 3) by taking the generating set to be the set of representable $\bb{M}$-multialgebras $\Hom_\bb{M}(X,-)$, where $X\in\bb{M}$.
  Now let $\bb{A}$ be a category satisfying conditions 1), 2), and 3).
  Let $G$ be a proper generating set of $\bb{A}$ consisting of projective objects of finite presentation.
  Define the functor $U\colon\bb{A}\to\Set$ by
  \[
    U(-) = \coprod_{A_0\in G} \Hom_\bb{A}(A_0,-).
  \]
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  We will show that $U$ is a multialgebraic forgetful functor.
  The functor $U$ preserves filtered colimits since, for a filtered diagram $(A_i)_{i\in\bb{I}}$ of $\bb{A}$, we have
  \[
    \begin{aligned}
      U(\varinjlim_{i\in\bb{I}} A_i)
      &\cong \coprod_{A_0\in G} \Hom_\bb{A}(A_0,\varinjlim_{i\in\bb{I}} A_i)
      \cong \coprod_{A_0\in G} \varinjlim_{i\in\bb{I}} \Hom_\bb{A}(A_0,A_i)
    \\&\cong \varinjlim_{i\in\bb{I}} \coprod_{A_0\in G} \Hom_\bb{A}(A_0,A_i)
      = \varinjlim_{i\in\bb{I}} UA_i.
    \end{aligned}
  \]
  The functor $U$ preserves regular epimorphisms since, for a regular epimorphism $f$ in $\bb{A}$, the map $\Hom_\bb{A}(A_0,f)$ is surjective for all $A_0\in G$, and so the map $Uf=\coprod_{A_0\in G}\Hom_\bb{A}(A_0,f)$ is surjective too.
  The functor $U$ reflects isomorphism since, for a morphism $f$ in $\bb{A}$ such that $Uf$ is a bijection, for every $A_0\in G$, we have that $\Hom_\bb{A}(A_0,f)$ is a bijection, and so $f$ is an isomorphism.
  It remains to show that $U$ admits a left multiadjoint.
  Let $I$ be a set.
  For every family $(X_i)_{i\in I}$ of objects of $G$ indexed by $I$, choose a multisum $(\gamma_{ij}\colon X_i\to Y_j)_{(i,j)\in I\times J((X_i))}$ of $(X_i)_{i\in I}$ in $\bb{A}$, and for $j\in J((X_i))$ we define the map $g_j\colon I\to\coprod_{A_0\in G}\Hom_\bb{A}(A_0,Y_j)$ by $g_j(i)=\gamma_{ji}$.
  We will show that
  \[
    (g_j\colon I\to UY_j)_{j\in\coprod_{(X_i)\in GI}J((X_i))}
  \]
  is a universal family of morphisms from $I$ to $U$.
  Let $A$ be an object of $\bb{A}$, and let
  \[
    g\colon I\to UA = \coprod_{A_0\in G} \Hom_\bb{A}(A_0,A)
  \]
  be a map.
  For $i\in I$, let $X_i\in G$ be such that $g(i)\in\Hom_\bb{A}(X_i,A)$.
  We thus obtain an inductive cone $(g(i)\colon X_i\to A)_{i\in I}$ in $\bb{A}$ with base $(X_i)_{i\in I}$.
  There thus exists a unique pair $(j,f)$, where $j\in J((X_i))$ and $f\colon Y_j\to A$ satisfy $f\gamma_{ij}=g(i)$ for all $i\in I$.
  For $i\in I$, we have $(Uf)g_j(i)=Uf(\gamma_{ji})=f\gamma_{ji}=g(i)$, and so $(Uf)g_j=g$.
  Suppose further the existence of another factorisation $g=(Uf')g_{j'}$, where $(X'_i)_{i\in I}$ is a family of objects of $G$ indexed by $I$, $j'\in J((X_i))$, and $f\colon Y_{j'}\to A$.
  Then $g(i)\in\Hom_\bb{A}(X'_i,A)$, so $X'_i=X_i$ for all $i\in I$.
  Then $f'\gamma_{j'i}=(Uf')g_{j'}(i)=g(i)$, and so $j'=j$ and $f'=f$.
\end{proof}

\begin{rmenv}{4.1 Examples}
\label{4.1}
  Either \hyperref[4.0]{Theorem~4.0} or \hyperref[3.2]{Theorem~3.2} easily show that the following categories are multialgebraic, and that their structure-forgetful functor with values in $\Set$ is a multialgebraic forgetful functor.
  \begin{longtable}{p{0.5in}p{4.4in}}
    $\bb{K}$ & fields and homomorphisms
  \\$\bb{K}\mathrm{c}$ & commutative fields and homomorphisms
  \\$\bb{K}(p)$ & fields of characteristic~$p$ and homomorphisms
  \\$\bb{K}\mathrm{c}(0)$ & commutative fields of characteristic~$0$ and homomorphisms
  \\$\bb{L}\mathrm{oc}$ & local rings and local homomorphisms
  \\$\bb{L}\mathrm{occ}$ & commutative local rings and local homomorphisms
  \\$\bb{I}\mathrm{nt}$ & integral rings and injective homomorphisms
  \\$\bb{D}\mathrm{om}$ & integral domains and injective homomorphisms
  \\$\bb{R}\mathrm{ed}$ & reduced commutative rings and injective homomorphisms
  \\$\bb{P}\mathrm{rim}$ & primary commutative rings (every zero divisor is nilpotent) and injective homomorphisms
  \end{longtable}
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  \begin{longtable}{p{0.5in}p{4.4in}}
    $\bb{Q}\mathrm{Prim}$ & quasi-primary commutative rings ($xy=0$ implies that either $x$ or $y$ is nilpotent) and injective homomorphisms
  \\$\bb{K}\mathrm{dif}$ & differential fields and differential homomorphisms
  \\$\bb{L}\mathrm{ocdif}$ & differential local rings and differential local homomorphisms
  \\$\bb{D}\mathrm{omdif}$ & differential integral domains and injective differential homomorphisms
  \\etc.
  \end{longtable}
  \begin{longtable}{p{0.5in}p{4.4in}}
    $\bb{K}\mathrm{cO}$ & orderable commutative fields and homomorphisms
  \\$\bb{L}\mathrm{occO}$ & commutative local rings such that $1+x_1^2+\ldots+x_n^2$ is invertible for all $x_1,\ldots,x_n$ and local homomorphisms
  \\$\bb{O}\mathrm{rdtot}$ & totally ordered sets and strictly increasing maps
  \\$\bb{K}\mathrm{cord}$ & ordered fields and increasing homomorphisms
  \\$\bb{L}\mathrm{occOrdt}$ & totally ordered commutative local rings and strictly increasing local homomorphisms
  \\$\bb{D}\mathrm{omOrdt}$ & totally ordered integral domains and strictly increasing homomorphisms
  \\etc.
  \end{longtable}
  \begin{longtable}{p{0.5in}p{4.4in}}
    $\bb{G}\mathrm{rOrd}$ & ordered groups and proper increasing homomorphisms ($f(x)\geq0\implies x\geq0$)
  \\$\bb{A}\mathrm{bOrd}$ & ordered abelian groups and proper increasing homomorphisms
  \\$\bb{A}\mathrm{ncOrd}$ & ordered commutative rings and proper increasing homomorphisms
  \\etc.
  \end{longtable}
  \begin{longtable}{p{0.5in}p{4.4in}}
    $\bb{K}\mathrm{cv}$ & commutative fields with absolute values and homomorphisms that preserve the absolute value
  \\etc.
  \end{longtable}
  \begin{longtable}{p{0.5in}p{4.4in}}
    $\bb{N}\mathrm{orm}(\bb{R})$ & normed $\bb{R}$-vector spaces and linear maps that preserve the norm
  \\$\bb{Alg}\mathrm{Norm}(\bb{R})$ & normed $\bb{R}$-algebras and homomorphisms that preserve the norm
  \\$\bb{S}\mathrm{tell}(\bb{C})$ & $\bb{C}^*$-algebras and homomorphisms that preserve the norm
  \\etc.
  \end{longtable}
  \begin{longtable}{p{0.5in}p{4.4in}}
    $\bb{P}\mathrm{Hild}$ & pre-Hilbert spaces and orthogonal linear maps (linear maps that preserve the scalar product)
  \\$\bb{M}\mathrm{et}$ & metric spaces and isometries
  \\$\bb{T}\mathrm{rloc}$ & local lattices ($0\neq1$ and $[x\vee y=1\implies(\mbox{$x=1$ or $y=1$})]$) and local homomorphisms ($f(x)=1\implies x=1$)
  \\$\bb{T}\mathrm{rdloc}$ & distributive local lattices and local homomorphisms
  \\etc.
  \end{longtable}
\end{rmenv}



\section{Proper multialgebraic functors}
\label{5}

\begin{rmenv}{5.0 Definitions}
\label{5.0}
  If $\bb{M}$ and $\bb{N}$ are multialgebraic theories, then a \emph{proper morphism} of multialgebraic theories from $\bb{N}$ to $\bb{M}$ is a functor $m\colon\bb{N}\to\bb{M}$ that is bijective on objects and that preserves both the distinguished family of objects and all finite multiproducts.
  The functor $\MulAlg(m)\colon\MulAlg(\bb{M})\to\MulAlg(\bb{N})$ induced by the
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  functor $\Set^m\colon\Set^\bb{M}\to\Set^\bb{N}$ is said to be \emph{proper multialgebraic}.
  It satisfies
  \[
    U_\bb{N}\circ\MulAlg(m) = U_\bb{M}.
  \]
\end{rmenv}

\begin{itenv}{5.1 Theorem}
\label{5.1}
  Every proper multialgebraic functor $\MulAlg(m)\colon\MulAlg(\bb{M})\to\MulAlg(\bb{N})$ is faithful, reflects isomorphism, preserves filtered colimits and regular epimorphisms, and has a left adjoint.
\end{itenv}

\begin{proof}
  The first properties follow from \hyperref[1.3]{Proposition~1.3} and from the fact that $\MulAlg(m)$ is induced by $\Set^m$.
  Define the functors
  \[
    \begin{aligned}
      J_\bb{N}\colon \bb{N}^\op &\to \MulAlg(\bb{N})
    \\J_\bb{M}\colon \bb{M}^\op &\to \MulAlg(\bb{M})
    \end{aligned}
  \]
  by $J_\bb{N}(\,\cdot\,)=\Hom_\bb{N}(\,\cdot\,,-)$ and $J_\bb{M}(\,\cdot\,)=\Hom_\bb{M}(\,\cdot\,,-)$.
  Since the functor $J_\bb{N}$ is dense for filtered colimits and $J_\bb{N}$-absolute cokernels (part~(b) of the proof of \hyperref[3.2]{Theorem~3.2}), and since the category $\MulAlg(\bb{M})$ has filtered colimits and cokernels of pairs of coequalisable morphisms, the left Kan extension of $J_\bb{M}m^\op$ along $J_\bb{N}$ exists and determines a left adjoint functor of the functor $\MulAlg(m)$ \cite[Prop.~3.1]{4}.
\end{proof}

\begin{rmenv}{5.2 Examples}
\label{5.2}

  \begin{rmenv}{5.2.0}
  \label{5.2.0}
    Let $\bb{K}_0$ be the category whose objects are pairs $(n,I)$ consisting of a whole number $n$ and a prime ideal $I$ of $\bb{Z}[X_1,\ldots,X_n]$, and whose morphisms $(n,I)\to(m,J)$ are field homomorphisms $k(I)\to k(J)$, where $k(I)$ (resp. $k(J)$) denotes the field of fractions of the integral domain $\bb{Z}[X_1,\ldots,X_n]/I$ (resp. of $\bb{Z}[X_1,\ldots,X_m]/J$).
    This is a category with finite multisums, calculated as for $\bb{D}_0$ (\hyperref[1.2.1]{1.2.1}).
    The opposite category $\bb{K}_0^\op$ in which we distinguish the objects of the form $(1,I)$ is a multialgebraic theory.
    The category of multialgebras $\MulAlg(\bb{K}_0^\op)$ is equivalent to the category $\bb{K}\mathrm{c}$ of commutative fields.
    A proper morphism of multialgebraic theories $r\colon\bb{D}_0^\op\to\bb{K}_0^\op$ is defined by $r(n,I)=(n,I)$ and $r\langle g_1,\ldots,g_n\rangle=\mbox{the extension of $\langle g_1,\ldots,g_n\rangle$ to fractions}$.
    The proper multialgebraic functor
    \[
      \MulAlg(r)\colon \MulAlg(\bb{K}_0^\op) \to \MulAlg(\bb{D}_0^\op)
    \]
    is equivalent to the inclusion functor $\bb{K}\mathrm{c}\to\Dom$, whose left adjoint sends an integral domain to its field of fractions.
  \end{rmenv}

  \begin{rmenv}{5.2.1}
  \label{5.2.1}
    The proper morphism of multialgebraic theories $s\colon\bb{L}_0^\op\to\bb{K}_0^\op$ is the identity on objects, and sends $[g_1,\ldots,g_n]\colon\bb{Z}[X_1,\ldots,X_n]_I\to\bb{Z}[X_1,\ldots,X_m]_J$ to the quotient homomorphism $s[g_1,\ldots,g_n]\colon k(I)\to k(J)$.
    The proper multialgebraic functor $\MulAlg(s)\colon\MulAlg(\bb{K}_0^\op)\to\MulAlg(\bb{L}_0^\op)$ is equivalent to the inclusion functor $\bb{K}\mathrm{c}\to\Locc$, whose left adjoint sends a commutative local ring to its quotient by its maximal ideal.
  \end{rmenv}

  \begin{rmenv}{5.2.2}
    Let $\bb{P}_0$ be the category whose objects are pairs $(n,I)$ consisting of a whole number $n$ and a prime ideal $I$ of $\bb{Z}[X_1,\ldots,X_n]$, and whose morphisms $(n,I)\to(m,J)$ are the homomorphisms of unital rings $f\colon\bb{Z}[X_1,\ldots,X_n]\to\bb{Z}[X_1,\ldots,X_m]$ such that $f^{-1}(J)=I$.
    This is a category with finite multisums, calculated as for $\bb{D}_0$.
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    The opposite category $\bb{P}_0^\op$ in which we distinguish the objects of the form $(1,I)$ is a multialgebraic theory.
    The category of multialgebras $\MulAlg(\bb{P}_0^\op)$ is equivalent to the category $\bb{A}\mathrm{nc/Spec}$ whose objects are pairs $(A,P)$ consisting of a commutative unital ring $A$ and a prime ideal $P$ of $A$, and whose morphisms $(A,P)\to(B,Q)$ are the homomorphisms of unital rings $g\colon A\to B$ such that $g^{-1}(Q)=P$.
    We define a proper morphism of multialgebraic theories $t\colon\bb{P}_0^\op\to\bb{D}_0^\op$ by $t(n,I)=(n,I)$, and by $t(f)=\mbox{quotient of $f$}$.
    The proper multialgebraic functor $\MulAlg(t)\colon\MulAlg(\bb{D}_0^\op)\to\MulAlg(\bb{P}_0^\op)$ is equivalent to the functor $\Dom\to\bb{A}\mathrm{nc/Spec}$ that sends an integral domain $A$ to the pair $(A,\{0\})$, and whose left adjoint sends a pair $(A,P)$ to the integral domain $A/P$.
  \end{rmenv}

  \begin{rmenv}{5.2.3}
  \label{5.2.3}
    The proper morphism of multialgebraic theories $u\colon\bb{P}_0^\op\to\bb{L}_0^\op$ is defined by $u(n,I)=(n,I)$, and by $u(f)=\mbox{localisation of $f$}$.
    The functor
    \[
      \MulAlg(u)\colon \MulAlg(\bb{L}_0^\op) \to \MulAlg(\bb{P}_0^\op)
    \]
    is equivalent to the functor $\Locc\to\bb{A}\mathrm{nc/Spec}$ that sends a local ring $A$ to the pair $(A,M_A)$, where $M_A$ is the maximal ideal of $A$, and whose left adjoint sends a pair $(A,P)$ to the localised ring $A_P$.
  \end{rmenv}

  \begin{rmenv}{5.2.4}
  \label{5.2.4}
    The proper morphism of multialgebraic theories $rt=su\colon\bb{P}_0^\op\to\bb{K}_0^\op$ defines the functor $\MulAlg(rt)\colon\bb{K}\mathrm{c}\to\bb{A}\mathrm{nc/Spec}$ that sends a commutative field $K$ to the pair $(K,\{0\})$, and whose left adjoint sends a pair $(A,P)$ to the field $k(P)$.
  \end{rmenv}

\end{rmenv}



\section{Multimonadic categories of finite rank}
\label{6}

Multimonads and multimonadic categories are defined in \cite{3}.

\begin{rmenv}{6.0 Definitions}
\label{6.0}
  A multimonad $(S,\bb{T})=(S;(T,\eta,\mu))$ on $\Set$ is of \emph{finite rank} if the functor $S$ preserves cofiltered limits and the functor $T$ preserves filtered colimits.
  A category equivalent to $\Set_{/S}^\bb{T}$ and a functor equivalent to $U_S^\bb{T}\colon\Set_{/S}^\bb{T}\to\Set$ are said to be \emph{multimonadic of finite rank} over $\Set$.
\end{rmenv}

\begin{itenv}{6.1 Theorem}
\label{6.1}
  For a functor $U\colon\bb{A}\to\Set$, the following claims are equivalent:
  \begin{enumerate}[(i)]
    \item $U$ is multimonadic of finite rank;
    \item $U$ is multimonadic and $\bb{A}$ has filtered colimits preserved by $U$; and
    \item $U$ is a multialgebraic forgetful functor.
  \end{enumerate}
\end{itenv}

\begin{proof}
  The equivalence (ii)$\iff$(iii) follows immediately from \hyperref[3.2]{Theorem~3.2} and from \cite[Theorem~4.2]{3}.
  We will show the equivalence (i)$\iff$(ii) for $U_S^\bb{T}\colon\Set_{/S}^\bb{T}\to\Set$.
  First of all, it is immediate that the category $\Set_{/S}$ has filtered colimits preserved by $U_S$ if and only if the functor $S$ preserves cofiltered limits.
  If we assume (i), then $\Set_{/S}$ has filtered colimits preserved by $U_S$, and so $\Set_{/S}^\bb{T}$ has
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  filtered colimits preserved by $U$, and so $\Set_{/S}^\bb{T}$ has filtered colimits preserved by $U_S^\bb{T}$.
  Now assume (ii).
  Let $(X_i)_{i\in\bb{I}}$ be a filtered diagram in $\Set_{/S}$.
  Denote by $(\iota_i\colon U_SX_i\to E)_{i\in\bb{I}}$ the colimit of $(U_SX_i)_{i\in\bb{I}}$ in $\Set$, and by $(l_i\colon F^\bb{T}X_i\to(Y,y))_{i\in\bb{I}}$ the colimit of $(F^\bb{T}X_i)_{i\in\bb{I}}$ in $\Set_{/S}^\bb{T}$.
  Since the functor $U_S^\bb{T}$ preserves filtered colimits,
  \[
    (U_S^\bb{T}l_i\colon U_S^\bb{T}F^\bb{T}X_i \to U_SY)_{i\in\bb{I}}
  \]
  is a colimit of $(U_S^\bb{T}F^\bb{T}X_i)_{i\in\bb{I}}$.
  The maps
  \[
    (U_s\eta_{X_i}\colon U_SX_i \to U_S^\bb{T}F^\bb{T}X_i)_{i\in\bb{I}}
  \]
  determine, by colimits, a map $p\colon E\to U_SY$ such that $p\iota_i=(U_S^\bb{T}l_i)(U_S\eta_i)$ for all $i\in\bb{I}$.
  There thus exists a unique object $X$ of $\Set_{/S}$ and a unique morphism $\eta\colon X\to Y$ such that $U_S\eta=p$, and a unique diagram $(\gamma_i\colon X_i\to X)_{i\in I}$ such that $(X_i)_{i\in\bb{I}}$.
  Let $(f_i\colon X_i\to Z)_{i\in\bb{I}}$ be an inductive cone with base $(X_i)_{i\in\bb{I}}$.
  Then there exists a unique morphism $g\colon E\to U_SZ$ such that $g\iota_i=U_sf_i$ for all $i\in I$.
  Let $f\colon X'\to Z$ be the unique morphism such that $U_Sf=g$.
  Then
  \[
    \begin{aligned}
      U_S(\eta_Zf)\iota_i
      &= (U_S\eta_Z)(U_Sf)\iota_i
      = (U_S\eta_Z)(U_Sf_i)
      = U_S(\eta_Zf_i)
      = U_S((U^\bb{T}F^\bb{T}f_i)\eta_{x_i})
    \\&= (U_SU^\bb{T}(ll_i))(U_S\eta_{x_i})
      = (U_S^\bb{T}l)(U_S^\bb{T}l_i)(U_S\eta_{x_i})
      = (U_S^\bb{T})p\iota_i
    \\&= U_S((U^\bb{T}l)\eta)\iota_i.
    \end{aligned}
  \]
  We thus deduce the equality $(U^\bb{T}l)\eta=\eta_Zf$, and so $f$ is a morphism $X\to Z$ such that $f\gamma_i=f_i$ for all $i\in I$.
  Thus $\Set_{/S}$ has filtered colimits preserved by $U_S$.
  Since the functor $U_S$ reflects isomorphisms, it also reflects filtered colimits, and since $U$ preserves filtered colimits, $U^\bb{T}$ also preserves filtered colimits.
  We thus deduce that $S$ preserves cofiltered limits, and that $T$ preserves filtered colimits, i.e. that $(S,\bb{T})$ is of finite rank.
\end{proof}



\section{\texorpdfstring{$\alpha$}{alpha}-multialgebraic theories and categories}
\label{7}

We consider a regular infinite cardinal $\alpha$ (say $\alpha=\aleph_0$, $\alpha=\aleph_1$, \ldots).
A family is $\alpha$-small if its index set has cardinality less than $\alpha$.
A multiproduct of an $\alpha$-small family of objects is said to be $\alpha$-small.
A category has \emph{$\alpha$-small multiproducts} if every $\alpha$-small family of objects has a multiproduct.

\begin{rmenv}{7.0 Definitions}
\label{7.0}
  An \emph{$\alpha$-multialgebraic theory} is a small category $\bb{M}$ with $\alpha$-small multiproducts endowed with a small distinguished family $(X_g)_{g\in G}$ of objects such that every object of $\bb{M}$ belongs to an $\alpha$-small multiproduct of objects of this family.

  An \emph{$\bb{M}$-multialgebra} is then a functor $F\colon\bb{M}\to\Set$ that is multicontinuous for $\alpha$-small multiproducts \cite{2}.

  The category $\MulAlg(\bb{M})$ is defined as before.

  A \emph{proper morphism of $\alpha$-multialgebraic theories} is a functor that is bijective on objects and that preserves both the distinguished family of objects and all $\alpha$-small multiproducts.
\end{rmenv}
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\begin{rmenv}{7.1}
  All the above results remain true if we substitute:
  \begin{itemize}
    \item ``$\alpha$-small'' for ``finite'';
    \item ``$\alpha$-filtered'' for ``filtered'';
    \item ``$\alpha$-presentable'' for ``of finite presentation''; and
    \item ``rank-$\alpha$'' for ``finite rank''.
  \end{itemize}
\end{rmenv}

\begin{rmenv}{7.2 Examples of $\aleph_1$-multialgebraic categories}
  \begin{longtable}{p{0.6in}p{4.4in}}
    $\bb{M}\mathrm{etcompl}$ & complete metric spaces and isometries
  \\$\bb{M}\mathrm{etcomp}$ & compact metric spaces and isometries
  \\$\bb{B}\mathrm{an}(\bb{R})$ & real Banach spaces and linear maps that preserve the norm
  \\$\bb{A}\mathrm{lgBan}(\bb{R})$ & real Banach algebras and homomorphisms that preserve the norm
  \\$\bb{H}\mathrm{ilb}$ & Hilbert spaces and orthogonal linear maps
  \end{longtable}
\end{rmenv}
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