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Chapter 0. Introduction

Chapter 0

Introduction

If X is a (non-singular) complex-analytic manifold, then there is an equivalence between
the notions of

a) local systems of complex vectors on X ; and
b) vector bundles on X endowed with an integrable connection.

The latter of these two notions can be adapted in an evident way to the case where X
is a non-singular algebraic variety over a field 2 (which we will take here to be of char-
acteristic 0). However, general algebraic vector bundles with integrable connections are
pathological (see (I1.6.19)); we only obtain a reasonable theory if we impose a “regularity”
condition at infinity. By a theorem of Griffiths [8], this condition is automatically satisfied
for “Gauss-Manin connections” (see (I1.7)). In dimension one, this is closely linked to the
idea of regular singular points of a differential equation (see (1.4) and (II.1)).

In Chapter I, we explain the different forms that the notion of an integrable connection
can take. In Chapter II, we prove the fundamental facts concerning regular connections.
In Chapter III, we translate certain results that we have obtained into the language of
Nilsson class functions, and, as an application of the regularity theorem (I1.7), we explain
the proof by Brieskorn [5] of the monodromy theorem.

These notes came from the non-crystalline part of a seminar given at Harvard during
the autumn of 1969, under the title: “Regular singular differential equations and crys-
talline cohomology”.

I thank the assistants of this seminar, who had to be subjected to often unclear talks,
and who allowed me to find numerous simplifications.

I also thank N. Katz, with whom I had numerous and useful conversations, and to
whom are due the principal results of section (II.1).

Notation and terminology

Within a single chapter, the references follow the decimal system. A reference to a differ-
ent chapter (resp. to the current introduction) is preceded by the Roman numeral of the
chapter (resp. by 0).

We will use the following definitions:
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(0.1) analytic space: the analytic spaces are complex and of locally-finite dimension. They
are assumed to be o-compact, but not necessarily separated.

(0.2) multivalued function: a synonym for multivalued function — for a precise definition,
see (1.6.2).

(0.3) immersion: following the tradition of algebraic geometers, immersion is a synonym
for “embedding”.

(0.4) smooth: a morphism f: X — S of analytic spaces is smooth if, locally on X, it is
isomorphic to the projection from D" x S to S, where D" is an open polydisc.

(0.5) locally paracompact: a topological space is locally paracompact if every point has a
paracompact neighbourhood (and thus a fundamental system of paracompact neigh-
bourhoods).

(0.6) non-singular (or smooth) complex algebraic variety: a smooth scheme of finite type
over Spec(C).

(0.7) (complex) analytic manifold: a non-singular (or smooth) analytic space.

(0.8) covering: following the tradition of topologists, a covering is a continuous map f: X —
Y such that every point y € Y has a neighbourhood V' such that f|V is isomorphic to
the projection from F' xV to V, where F is discrete.
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Chapter I

Dictionary

In this chapter, we explain the relations between various aspects and various uses of the
notion of “local systems of complex vectors”. The equivalence between the points of view
considered has been well known for a long time.

We do not consider the “crystalline” point of view; see [4, 10].

I.1 Local systems and the fundamental group

Definition 1.1. Let X be a topological space. A complex local system on X is a sheaf of
complex vectors on X that, locally on X, is isomorphic to a constant sheaf C* (ne N).

1.2. Let X be a locally path-connected and locally simply path-connected topological space,
along with a basepoint xg € X. To avoid any ambiguity, we point out that:

a) The fundamental group 71(X,x¢) of X at xg has elements given by homotopy classes of
loops based at x;

b) If a,f € m11(X,x0) are represented by loops a and b, then af is represented by the loop
ab obtained by juxtaposing b and a, in that order.

Let .% be alocally constant sheaf on X. For every path a: [0,1] — X, the inverse image
a*.7 of 7 on[0,1]is a locally constant, and thus constant, sheaf, and there exists exactly
one isomorphism between a*.# and the constant sheaf defined by the set (a*.%)¢ = .Z4(0)-
This isomorphism defines an isomorphism a(.%#) between (a¢*.%)y and (a*.%)1, i.e. an
isomorphism

a(F): o) = Fa)-

This isomorphism depends only on the homotopy class of a, and satisfies ab(#) = a(.F)-
b(%#). In particular, 71(X,xo) acts (on the left) on the fibre .%,, of .# at x¢. It is well known
that:

Proposition 1.3. Under the hypotheses of (1.2), with X connected, the functor F — Fy,

is an equivalence between the category of locally constant sheaves on X and the category of
sets endowed with an action by the group n1(X,xo).
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Corollary 1.4. Under the hypotheses of (1.2), with X connected, the functor F — Z,, isan
equivalence between the category of complex local systems on X and the category of complex
finite-dimensional representations of m1(X,xo).

1.5. Under the hypotheses of (1.2), if a: [0,1] — X is a path, and b a loop based at a(0), then
aba! = a(b) is a path based at a(1). Its homotopy class depends only on the homotopy
classes of @ and b. This construction defines an isomorphism between 71(X,a(0)) and
71X, a(1)).

Proposition 1.6. Under the hypotheses of (1.5), there exists, up to unique isomorphism,
exactly one locally constant sheaf of groups I11(X) on X (the fundamental groupoid), en-
dowed, for all xy € X, with an isomorphism

(X)), = 71(X, x0) (1.6.1)

and such that, for every path a:[0,1] — X, the isomorphism in (1.5) between m1(X,a(0))
and m1(X,a(1)) can be identified, via (1.6.1), with the isomorphism in (1.2) between I11(X)4(0)
and I11(X)q1)-

If X is connected, with base point xg, then the sheaf I1;(X) corresponds, via the equiv-
alence in (1.3), to the group 71(X,xg) endowed with its action over itself by inner automor-
phisms.

Proposition 1.7. If % is a locally constant sheaf on X, then there exists exactly one action
(said to be canonical) of I11(X) on % that, at each x € X, induces the action from (1.2) of
711(X,x0) on Z.

1.2 Integrable connections and local systems

2.1. Let X be an analytic space (0.1). We define a (holomorphic) vector bundle on X to be
a locally free sheaf of modules that is of finite type over the structure sheaf @ of X. If ¥
is a vector bundle on X, and x a point of X, then we denote by 7, the free ,)-module of
finite type of germs of sections of 7. If m, is the maximal ideal of 0(,), then we define the
fibre at x of the vector bundle 7 to be the C-vector space of finite rank

Ve = V) 86, Oxy/Miy. (2.1.1)

If f: X — Y is a morphism of analytic spaces, then the inverse image of a vector bundle
¥ on Y is the vector bundle f*7 on X given by the inverse image of 7 as a coherent
module: if f°7 is the sheaf-theoretic inverse image of 7, then

fV=0x®re, fV (2.1.2)

In particular, if x: P — X is the morphism from the point space P to X defined by a
point x of X, then
Ve=x"V. (2.1.3)
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2.2. Let X be a complex-analytic manifold (0.7) and 7" a vector bundle on X. The old school
would have defined a (holomorphic) connection on 7 as the data, for every pair of points
(x,y) that are first order infinitesimal neighbours in X, of an isomorphism vy, .: ¥ — 7,
that depends holomorphically on (x,y) and is such that y, , =Id.

Suitably interpreted, this “definition” coincides with the currently fashionable defini-
tion (2.2.4) given below (which we not be use in the rest of the section).

It suffices to understand “point” to mean “point with values in any analytic space”:

2.2.1. A point in an analytic space X with values in an analytic space S is a morphism
from S to X.

2.2.2. If Y is a subspace of X, then the n* infinitesimal neighbourhood of Y in X is the
subspace of X defined locally by the (n + 1)-th power of the ideal of O'x that defines Y.

2.2.3. Two points x,y € X with values in S are said to be first order infinitesimal neigh-
bours if the map (x,y): S — X x X that they define factors through the first order infinites-
imal neighbourhood of the diagonal of X x X.

2.2.4. If X is a complex-analytic manifold and 7 is a vector bundle on X, then a (holomor-
phic) connection y on ¥ consists of the following data:

for every pair (x,y) of points of X with values in an arbitrary analytic space S, with x
and y first order infinitesimal neighbours, an isomorphism y, ,: x*7 — y*7; this data is
subject to the conditions:

(i) (functoriality) For any f: T — S and any first order infinitesimal neighbours x,y: S =
X, we have f*(Yyx) = Yyf.af-

(ii)) We have y, . =1d.

2.3. Let X7 be the first-order infinitesimal neighbourhood of the diagonal X of X x X, and
let p1 and py be the two projections of X1 to X. By definition, the vector bundle P1(¥)
of first-order jets of sections of 7' is the bundle (p1).p;7. We denote by j! the first-order
differential operator that sends each section of 7 to its first-order jet:

FL V=Pl Y)=0x, 96, V.

A connection ((2.2.4)) can be understood as a homomorphism (which is automatically
an isomorphism)
Y=piV —p3V (2.3.1)

which induces the identity over X. Since
Homy, (p17,p5V) =Hom(¥,(p1)«p3¥),
a connection can also be understood as a (G-linear) homomorphism

D: 7 —Pl) (2.3.2)
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such that the obvious composite arrow
v 2Py~

is the identity. The sections Ds and jl(s) of P1(v) thus have the same image in 7, and
Jj1(s)=D(s) can be identified with a section Vs of O} ® 7 = Ker(P1(¥) — 7):

V: 7 - QY(X) (2.3.3)

j(s)=D(s) + Vs. (2.3.4)

In other words, a connection (2.2.4), allowing us to compare two neighbouring fibres of
¥, also allows us to define the differential Vs of a section of 7.

Conversely, equation (2.3.4) allows us to define D, and thus y, from the covariant
derivative V. For D to be linear, it is necessary and sufficient for V to satisfy the iden-
tity

V(fs)=df-s+f-Vs (2.3.5)

Definition (2.2.4) is thus equivalent to the following definition, due to J.L. Koszul.

Definition 2.4. Let 7 be a (holomorphic) vector bundle on a complex-analytic manifold
X. A holomorphic connection (or simply, connection) on ¥ is a C-linear homomorphism

V¥V —Q3(0)=Q% 8V

that satisfies the Leibniz identity ((2.3.5)) for local sections f of @ and s of 7. We call V
the covariant derivative defined by the connection.

2.5. If the vector bundle 7 is endowed with a connection I" with covariant derivative V,
and if w is a holomorphic vector field on X, then we set, for every local section v of 7" over
an open subset U of X,

V(@) =(Vv,w) e V(U).

We call V,,: 7 — 7 the covariant derivative along the vector field w.
2.6. If 1I" and oI are connections on X, with covariant derivatives 1V and oV (respectively),
then 9V — 1V is a @-linear homomorphism from 7 to Q}((V). Conversely, the sum of 1V and

such a homomorphism defines a connection on 7. Thus connections on 7 form a principal
homogeneous space (or torsor) on Hom(7/, Q}((V)) =~ Q}((End(V)).

2.7. If vector bundles are endowed with connections, then every vector bundle obtained
by a “tensor operation” is again endowed with a connection. This is evident with (2.2.4).
More precisely, let 71 and 73 be vector bundles endowed with connections with covariant
derivatives V; and V.

2.7.1. We define a connection on 7] @ 7 by the formula

V(w1 +v2) = 1Vy(v1) + 2V (v2)
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2.7.2. We define a connection on 7] ® 73 by the Leibniz formula

V(w1 ®vg)=Vy,v1-ve+v1-Vyvo.

2.7.3. We define a connection on Hom(71,7,) by the formula

(V1) = oV (f (1) - F(1Vyu1).

The canonical connection on @ is the connection for which Vf =df.
Let 7 be a vector bundle endowed with a connection.

2.7.4. We define a connection on the dual 7V of 7 via (2.7.3) and the defining isomorphism
VY =Hom(7,0). We have

(V' 0) =0, (v',0) = (v, V1),
We leave it to the reader to verify that these formulas do indeed define connections.
For (2.7.2), for example, one must verify that, firstly, the given formula defines a C-bilinear

map from (7] ® 72), which means that the right-hand side II(v,v2) is C-bilinear and such
that II(fvy,ve) = II(v1, fv2); secondly, one must also verify identity (2.3.5).

2.8. An 0-homomorphism f between vector bundles 7; and 7 endowed with connections
is said to be compatible with the connections if

oV-f=f-1V.

By (2.7.3), this reduces to saying that Vf =0, if f is thought of as a section of Hom(71,73).
For example, by (2.7.3), the canonical map

Hom(71,7) @ 11 — 2
is compatible with the connections.

2.9. A local section v of 7 is said to be horizontal if Vv = 0. If f is a homomorphism
between bundles 77 and 73 endowed with connections, then it is equivalent to say either
that f is horizontal, or that f is compatible with the connections (2.8).

2.10. Let 7 be a holomorphic vector bundle on X. Define Qf = AP Q} and Q% (V) =
fo ®p ¥ (the sheaf of exterior differential p-forms with values in 7). Suppose that 7 is
endowed with a holomorphic connection. We then define C-linear morphisms

V: QR - Q) (2.10.1)
characterised by the following formula:

V(a,v)=da-v+(-1’a AV, (2.10.2)
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where a is any local section of QP v is any local section of 7, and d is the exterior differen-
tial. To prove that the right-hand side II(a,v) of (2.10.2) defines a homomorphism (2.10.1),
it suffices to show that II(«,v) is C-bilinear and satisfies

II(fa,v) =1l(a, fv).

But we have that
II(fa,v)=d(fa)v+ (-1’ fa AVv

=da-fv+df nav+(-1PfanVu
=da-fv+ (1P an(fVv+df-v)
=1I(a, fv).

Let 71 and 7 be vector bundles endowed with connections, and let 7 be their tensor
product (2.7.2). We denote by A the evident maps

A QP4 @ QL () — QPH(Y)

such that, for any local section a (resp. B, resp. vy, resp. vg) of QP (resp. QY, resp. 71,
resp. 72), we have that (a ®@v1) A (B®v2) =(a A P)®(v1 ®vg). If vi (resp. vo) is any local
section of QP (77) (resp. Q4(72)), then

V(viAve)=viAve+(=1Pvi Ave. (2.10.3)
Indeed, if vi = av; and vg = Bvg, then
ViviAve)=V(a APV ®V2)
=d(a Bl ®vy+ (-1’ 9 anBAV(v, ®v2)
=daApPrieve+(—-1)Pandfv; ®vy
+ (=1 anBAVVL®Uy+ (=1’ Ta A Bug AV
=davi Avg+(—=1)Pvi AdPve + (1)’ a AVuy Avg
+(=1)"*9vy A BA Vg
=(davi + (-1’ a AVv1) Avg +(=1)Pvi A(dBve + (—=1)? B A Vug)
=VviAvg+(=1)Pv{ AVvs.

Let 7 be a vector bundle endowed with a connection. If we apply the above formula to
© and 7, then, for any local section a (resp. v) of QP (resp. Q4(¥)), we have that

ViaAv)=daAv+(-1)PaAVv. (2.10.4)
Iterating this formula gives

VV(aAv)=V(daAv+ (-1 PaAVv)
=daAv+ (1P da AVv+(-1)Pda AVv+a AVVY (2.10.5)
=aAVVv.

Definition 2.11. Under the hypotheses of (2.10), the curvature R of the given connection
on 7 is the composite homomorphism

R:V —Q%()
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considered as a section of Hom(7/,Q§((7/)) =~ Qg((End(V)).

2.12. Taking ¢ =0 in (2.10.4) gives
VV(av) = a AR(v), (2.12.1)

which we write as
VV(v)=R AV (the Ricci identity). (2.12.2)

We endow End(7) with the connection given in (2.7.3). The equation V(VV) = (VV)V
can be written as V(R Av) =R AVv. By (2.7.3), we have that VR Av=V(R Av)—R AVv, so
that

VR=0 (the Bianchi identity). (2.12.3)

2.13. If a is an exterior differential p-form, then we know that

da,XoA...AXp) =Y (=D jx, (@, XoN... AXi Ao N Xp)
i
+ D", [X, XA X0 A AK A AX A A X

i<j

From this formula, and from (2.10.2), we see that, for any local section v of Q§(7/), and
holomorphic vector fields Xo,...,X,,

(W, XoA...AXp) =Y (-1)'Vx, (v, Xo A . AXG AL AXp)
' . - — (2.13.1)
I DT WXL XIAXoN AKX A AXG AL AX ).
i<j
In particular, for any local section v of 7, we have that

<vvv,X1 /\X2> = le <VU,X2> - VX2 <UyX1> - <VU,[X]_,X2]>.

That is,
R(X1,X9)v)= Vx,Vx,v = Vx,Vx,v = Vix, x,10. (2.13.2)

Definition 2.14. A connection is said to be integrable if its curvature is zero, i.e. (2.13.2)
if the following holds identically:

Vixy1=I[Vx,Vyl

If dim(X) < 1, then every connection is integrable.
If T is an integrable connection on 7, then the morphism V of (2.10.1) satisfy VV =0,
and so the QP(¥) give a differential complex Q°(7).

Definition 2.15. Under the above hypotheses, the complex Q°(7) is called the holomor-
phic de Rham complex with values in 7.

The results (2.16) to (2.19) that follow will be proven in a more general setting in (2.23).

Proposition 2.16. Let V be a local complex system on a complex-analytic variety X (0.6),
andletV =0®cV.
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(i) There exists, on the vector bundle V7, exactly one connection (said to be canonical)
whose horizontal sections are the local sections of the subsheaf'V of V.

(ii) The canonical connection on V is integrable.
(iit) For any local section f (resp. v) of O (resp. V),

V(fv)=df -v. (2.16.1)

Proof. If V satisfies (i), then (2.16.1) is a particular case of (2.3.5). Conversely, the right-
hand side II(f,v) of (2.16.1) is C-bilinear, and thus extends uniquely to a C-linear map
V: 7 — QL(¥), which we can show defines a connection. Claim (ii) is local on X, which
allows us to reduce to the case where V =C. Then ¥ =0, V=d, and Vix y) =[Vx,Vyl by
the definition of [X,Y]. O

It is well known that:

Theorem 2.17. Let X be a complex-analytic variety. Then the following functors are quasi-
inverse to one another, and thus give an equivalence between the category of complex local
systems on X and the category of holomorphic vector bundles with on X with integrable
connections (with the morphisms being the horizontal morphisms of vector bundles):

a) the complex local system V is sent to V' =0 ® V endowed with its canonical connection;

b) the holomorphic vector bundle V' endowed with its integrable connection is sent to the
subsheaf' V of V consisting of horizontal sections (i.e. those v such that Vv = 0).

These equivalences are compatible with taking the tensor product, the internal Hom,
and the dual; to the unit complex local system C corresponds the bundle & endowed with
the connection V such that Vf =df.

Definition (2.10.2) implies the following:

Proposition 2.18. If'V is a complex local system on X, and if V' =0 ®c V, then the system
of isomorphisms
Q§®CV=Q§®@@®CV=Q§®@7/

is an isomorphism of complexes

Q}( QcV — 93((7/)-

From this, the holomorphic Poincaré lemma gives the following:
Proposition 2.19. Under the hypotheses of (2.16), the complex Q5 (V) is a resolution of the
sheaf V.
2.20. Variants.

2.20.1. If X is a differentiable manifold, and we consider C* connections on C* vector
bundles, then all of the above results still hold true, mutatis mutandis. We will not use
this fact.
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2.20.2. Theorem (2.17) makes essential use of the non-singularity of X; it is thus unim-
portant to note that this hypothesis has not been used in an essential way before (2.17)

2.20.3. The definition (2.4) of a connection and the definition (2.11) of an integrable con-
nection are formal enough that we can transport them to the category of schemes, or in
relative settings:

Definition 2.21.

(i) Let f: X — S be a smooth morphism of schemes, and 7 a quasi-coherent sheaf on X.
A relative connection on 7 is an [ *Og-linear sheaf morphism

ViV = QY s(V)

(called the covariant derivative defined by the connection) that identically satisfies,
for any local section f (resp. v) of Ox (resp. 7),

V(fv)=f-Vu+df -v.

(ii) Given 7 endowed with a relative connection, there exists exactly one system of f *Og-
homomorphisms of sheaves

v 0%, ) 05k
that satisfies (2.10.4) and is such that V¥ = v.
(iii) The curvature of a connection is defined by
R =VIVO e Hom(7,0% (7)) = Q% o (End(¥)).
The curvature satisfies the Ricci identity (2.12.2) and the Bianchi identity (2.12.3).

(iv) An integrable connection is a connection with zero curvature.

(v) The de Rham complex defined by an integrable connection is the complex (Q§ 15V, V).

2.22. Let f: X — S be a smooth morphism of complex-analytic spaces; by hypothesis, f is
thus locally (in the domain) isomorphic to a projection pry: C* xS — S (for some n € N).
A local relative system on X is a sheaf of f*Og-modules that is locally isomorphic to the
sheaf-theoretic inverse image of a coherent analytic sheaf on S. If 7 is a coherent analytic
sheaf on X, then a relative connection on 7 is an f*Og-linear homomorphism

ViV — Q)
that identically satisfies, for any local section f (resp. v) of @ (resp. 7),
V(fv)=f-Vuo+df-v.
A morphism between vector bundles endowed with relative connections is a morphism of

vector bundles that commutes with V. We define, as in (2.11) and (2.21), the curvature
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Re Qi, ,g(End(7)) of a relative connection. A relative connection is said to be integrable if
R =0, in which case we have the relative de Rham complex with values in 7', denoted by
Q}(/S(V)’ and defined as in (2.15) and (2.21).

The “absolute” statements (2.17), (2.18), and (2.19) have “relative” (i.e. “with parame-
ters”) analogues:

Theorem 2.23. Under the hypotheses of (2.22), we have the following.

(i) For every relative local system V on X, there exists a coherent analytic sheafV = Ox ®+g4 V,

and exactly one relative connection, said to be canonical, such that a local section v of
V is horizontal (i.e. such that Vv =0) if and only if v is a section of V ; this connection
is integrable.

(ii) Given a relative local system V on X, the de Rham complex defined by V = Ox ®f+o4V,
endowed with its canonical connection, is a resolution of the sheaf V.

(iii) The following functors are quasi-inverse to one another, and thus give an equivalence
between the category of relative local systems on X and the category of coherent ana-
lytic sheaves on X endowed with a relative integrable connection:

a) the relative local system V is sent to V = Ox ®f+¢4 V endowed with its canonical
connection;
b) the coherent analytic sheaf V on X endowed with a relative integrable connection

is sent to the subsheaf consisting of its horizontal sections (i.e. the sections v such
that Vv =0).

Proof. We first prove (i). To show that 7 is coherent, it suffices to do so locally, for V = £V,
in which case 7 is the inverse image, in the sense of coherent analytic sheaves, of 7). The
canonical relative connection necessarily satisfies, for any local section f (resp vg) of Ox
(resp. V),

V(fvg)=df -vp. (2.23.1)
The right-hand side II(f,vq) of this equation is biadditive in f and v, and satisfies, for
any local section g of f*Og, the identity

II(f g,v0) = II(f, gvo)

(using the fact that dg =0 in Q%( ). We thus deduce the existence and uniqueness of a
relative connection V that satisfies (2.23.1). Finally, we have that

VV(fvo) =V(df -vo) =ddf -vo =0,
and so the canonical connection V is integrable. The fact that only the sections of V are

horizontal is a particular case of (ii), which is proven below. O

2.23.2. We first of all consider the particular case of (ii) where S = D", X = D" x D™,
f =prg, and the relative local system V is the inverse image of Og. The complex of global
sections

0—I(f'0s) = T(Ox) — T(Qxg) — ...

is acyclic, since it admits the homotopy operator H defined below.
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a) H:T(Ox)—T(f'0g)=T(S,0g) is the inverse image under the zero section of f;

b) an element w € F(Q‘;(/S) (where p > 0) can be represented in a unique way as a sum of

convergent series:

o= £ dfles]( T ]
i€[l,m+n\I

Ic[1,m] neNm+n iel
|I1=p

and we set
nj+1
X .

_ I nja 7 n;
Hw= ) Y ) a, ij dx; — ( [T = )
Ic[1,m] jel neNm+n jeI nj ie[1,m+n\I

i#]

This remains true if we replace D™*" by a smaller polycylinder, and so Q% g is a
resolution of f*Og.

2.23.3. We now prove (ii), which is of a local nature on X and S. Denoting by D the
open unit disc, we can thus restrict to the case where S is a closed analytic subset of the
polycylinder D", where X = D™ x S, with f = pry, and where V is the inverse image of a
coherent analytic sheaf Vy on S. Applying the syzygy theorem, and possibly shrinking X
and S, we can further suppose that the direct image of Vy on D", which we again denote
by Vo, admits a finite resolution .Z by free coherent Opr-modules. To prove (ii), we are
allowed to replace Vj by its direct image on D", and to suppose that D™ = S, which we
now do.
If Xy is a short exact sequence of coherent Gg-modules

Zo:O*Vé—*Vo—*Vé’*O,

then let Z = f"Z( be the exact sequence of relative local systems given by the inverse image
of Xy (which is exact since f~ is an exact functor), and let Q% (Z) be the corresponding
exact sequence of relative de Rham complexes:

Qx/s(2): 0= QF g 8p65 [ Vg — Qs 8165 [ Vo — Qg 81265 Vg — 0.

This sequence is exact since fo /s 1s flat over f"Og, since it is locally free over Ox which is
itself flat over f*Og.

The snake lemma applied to Q% ¢(£) shows that, if claim (ii) is satisfied for any two
of relative local systems Vo, f*V, and f'V{/, then it is again satisfied for the third. We
thus deduce, by induction, that, if Vy admits a finite resolution M. by modules that satisfy
(ii), then V; satisfies (ii). This, applied to Vy and .£*, finishes the proof of (i) and (ii).

It follows from (ii) that the composite (iii)bo(iii)a of the functors from (iii) is canonically
isomorphic to the identity; furthermore, if V1 and Vy are relative local systems, and if
u: 73 — ¥ is a homomorphism that induces 0 on V7, then u =0, since V; generates 77; it
thus follows that the functor (iii)a is fully faithful. It remains to show that every vector
bundle 7 endowed with a relative connection V is given locally by a relative local system.
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Case 1: S=D", X =D""1 =D"x D, f =pry, and V is free.

Under these hypotheses, if v is an arbitrary section of the inverse image of 7 under
the zero section sq of f, then there exists exactly one horizontal section v of 7 that
agrees with v on s¢(S) (as follows from the existence and uniqueness of solutions for
Cauchy problems with parameters). If (e;)1<i<z is a basis of 537/, then the é; form a
horizontal basis of 7/, and (¥, V) is defined by the relative local system f’s;7 = f '@’g.

Case 2: S=D", X =D"*'=D"x D, and f =pr;.

By possibly shrinking X and S, we can suppose that 7 admits a free presentation:
"Lty —o.

By then possibly shrinking again, we can further suppose that 7 and 7; admit
connections Vi and Vg (respectively) such that ¢ and d are compatible with the
connections (if (e;) is a basis of 7y, then Vj is determined by the Vge;, and it suf-
fices to choose Vge; such that €(Vge;) = V(e(e;)); we proceed similarly for Vi). The
connections Vg and V; are automatically integrable, since f is of relative dimen-
sion 1. There thus exist (by Case 1) relative local systems Vy and V; such that
(%,V;)=Ox ®¢-04 Vi. We then have that

(V,V) = 0x ®7-g4 (Vo/dV1).

Case 3: [ is of relative dimension 1.

We can suppose that S is a closed analytic subset of D", and that X =S x D and
f =pr;. The relative local systems (resp. the modules with relative connections)
on X can then be identified with the local relative systems (resp. the modules with
relative connections) on D" x D that are annihilated by the inverse image of the
ideal that defines S, and we conclude by using Case 2.

General case. We proceed by induction on the relative dimension n of f. The case
n =0 is trivial. If n # 0, then we are led to the case where X =S x D"1 x D and
f =pr;. The bundle with connection (7,V) induces a bundle 7 with connection on
Xo =8 x D" 1 x {0} which is, by induction, of the form (%, Vg) = Ox, ®pr: 05 V. The
projection f from X to S xD"!is of relative dimension 1, and the relative connection
V induces a relative connection for 7 on X/S x D"~1. By Case 3, there exists a vector
bundle V; on S x D*"!, as well as an isomorphism

V =~ @’X ®p-@>san_1 p.Vl.

of bundles with relative connections (with respect to p).

The vector bundle V7 can be identified with the restriction of 7 to X, whence we
obtain an isomorphism
a:V =0x®re, V

of vector bundles, such that
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(1) the restriction of a to Xy is horizontal ; and

(i) a is “relatively horizontal” with respect to p.

If v is a section of V, then condition (ii) implies that

Vg, v =0.

If 1<i<n, since R =0, then, by an analogous statement to (2.13.2), we have that

Vi, Vi, 0= Vy; Ve, v =0.

In other words, Vv is a relative horizontal section, with respect to p, of 7; by (i), it
is zero on Xy, and is thus zero, and we conclude that Vv = 0. The isomorphism « is
thus horizontal, and this finishes the proof of (2.23).

O

Some results in general topology ((2.24) to (2.27)) will be necessary to deduce (2.28)
from (2.23).

Reminder 2.24. Let Y be a closed subset of a topological space X, and suppose that Y
has a paracompact neighbourhood. For every sheaf .%# on X, we have that

lim H' (U, %) = H'(Y, 7).
UoY

Proof. See Godement [7, I1, 4.11.1, p. 193]. O

Corollary 2.25. Let f: X — S be a proper separated morphism between topological spaces.
Suppose that S is locally paracompact (0.5). Then, for every s € S, and for every sheaf
on X, we have that _ _

R f. F)s =H'(f 1), ZIf ~1(s)).

Proof. Since f is closed, the f~1(U) form a fundamental system of neighbourhoods of
f1(s), where the U are neighbourhoods of s. Furthermore, if U is paracompact, then
f~1(U) is paracompact, since f is proper and separated. We conclude by (2.24). O

Reminder 2.26. Let X be a contractible locally paracompact topological space, i an in-
teger, and V a complex local system on X, such that dim¢ H*(X,V) < co. Then, for every
vector space A over C, possibly of infinite dimension, we have that

AecH(X,V)=H\(X,AecV). (2.26.1)
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Proof. We denote by H.(X,V*) the singular homology of X with coefficients in V*. The
universal coefficient formula, which holds here, gives

H!(X,A ®V)=Homc(H;(X,V*),A). (2.26.2)
For A =C, we thus conclude that dimH;(X,V*) < co. Equation (2.26.1) then follows from
(2.26.2). O

2.27. Let f: X — S be a smooth morphism of complex-analytic spaces, and let V be a local
system on X. Then the sheaf
Viel = fOs ®cV (2.27.1)

is a relative local system. We denote by Q% (V) the corresponding de Rham complex. By
(2.23), 0% gisa resolution of V. We thus have that

Rif*vrel = le*(Q,;(/S(V)) (2.27.2)

where the right-hand side is the relative hypercohomology. From (2.27.1), we thus obtain
an arrow

Os ®c R f.V =R f.(Vre), (2.27.3)
whence, by composition, an arrow
Os @R .V =R f.(Qx;s (V). (2.27.4)

Proposition 2.28. Let f: X — S be a smooth separated morphism of analytic spaces, i an
integer, and V a complex local system on X. We suppose that

a) f is topologically trivial locally on S ; and

b) the fibres of f satisfy )
dimH (£ 1(5),V) < c0.

Then the arrow (2.27.4) is an isomorphism:

Os ®c R f.V =R £,.(Q% 5 (V).

Proof. Let s€S,Y = f~s), and Vy = V|Y. To show that (2.27.4) is an isomorphism, it
suffices to construct a fundamental system T' of neighbourhoods of s such that the arrows

H(T,05)® H'(T x Y ,pry Vo) = H(T x Y, pr;Os ® pry Vo) (2.28.1)

are isomorphisms. In fact, the fibre at s of (2.27.3), which is the inductive limit of the
arrows (2.28.1), will then be an isomorphism.

We will prove (2.28.1) for a compact Stein neighbourhood T of s, assumed to be con-
tractible. The arrow in (2.28.1) can then be written as

H(T,05) e H'(Y, Vo) = H'(T x Y ,pr; O ® prj V). (2.28.2)

We can calculate the right-hand side of (2.28.2) by using the Leray spectral sequence
for pro: T xY — Y. By (2.25), since H(T',05) = 0, we have that

H{(T x Y,pri0s ® pryVo) = H/(Y,HAT,05) ® V),
and we conclude by (2.26). O
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2.29. Under the hypotheses of (2.28), with S smooth, we define the Gauss-Manin con-
nection on R'f. Q% (V) as being the unique integrable connection that admits the local

sections of Rf, V as its horizontal sections (2.17).

I.3 Translation in terms of first-order partial differen-
tial equations

3.1. Let X be a complex-analytic variety. If 7 is the holomorphic vector bundle defined
by a C-vector space Vj, then we have seen that 7 admits a canonical connection with
covariant derivative ¢V. If V is the covariant derivative defined by another connection on
7, then we have seen (2.6) that V can be written in the form

V=¢V+I, whereI € Q(End(7)).
If we identify sections of 7 with holomorphic maps from X to Vj, then we have that
Vo=dv+T-v 3.1.1)

If we suppose that we have chosen a basis of V, i.e. an isomorphism e: C* — V; with
coordinates (identified with basis vectors) e, : C — Vj, then I can be written as a matrix
wg of differential forms (the matrix of forms of the connection), and (3.1.1) can then be

written as
(Vu)* =dv“+2w%vﬁ. (3.1.2)
B

Let 7 be an arbitrary holomorphic vector bundle on X. The choice of a basis e: C* = 7
of 7 allows us to think of 7" as being defined by a constant vector space (C*), and the
above remarks apply: connections on 7 correspond, via (3.1.2), with (n x n)-matrices of
differential forms on X. If w,. is the matrix of the connection V in the basis e, and if
f: C" —=7 is another basis of 7, with matrix A € GL,(0) (where A = e~1f), then (3.1.2)

Vo =ed(e o)+ ewee_lv

=fATMAF )+ FA T w A
=fdf v+ f(AT1dA + A0, A)f M.

Comparing this with (3.1.2) in the basis f, we find that
wr=A"1dA+A w,A. (3.1.3)

If, further, (x’) is a system of local coordinates on X, which defines a basis (dx’) of QL ,
we set

wg = Z I's; dx’
13
and we call the holomorphic functions ng the coefficients of the connection. Equation (3.1.2)

can the be written as
(Viv)* =00+ T%vh. (3.1.4)
B
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The differential equation Vv = 0 of horizontal sections of 7 can be written as the linear
homogeneous system of first-order partial differential equations

ov* ==Y Ia.vh. (3.1.5)
p

3.2. With the notation of (3.1.2), and using Einstein summation notation, we have that
VVu = V((dv® + wgvﬁ)ea)
=d(dv® + wgvﬂ)ea —(dv® + wgvﬁ) Aol ey
:dwg-vﬁ-ea—a)g/\dvﬁ-ea—dva/\wz -ey—wg/\wz'vﬂey
= (dwz —wg /\wg)vﬁey.
The curvature tensor matrix is thus
a _ a a Y
Rﬁ—dwﬁ+;wy/\wﬁ, (3.2.1)
which we can also write as
R=do+wAw. (3.2.2)
Equation (3.2.1) gives, in a system (x’) of local coordinates,
pij YJi® Bi (3.2.3)

R =Y. Rj dxt Adad .

a _(A.T® _A.T® arTY _17Y 1Y
{R = (0,74, - 9;T%)+(T 4T 7 T%)
Bij

The condition Rgij = 0 is the integrability condition of the system (3.1.5), in the clas-
sical sense of the word; it can be obtained by eliminating v® from the equations given by
substituting (3.1.5) into the identity 0;0;v% = 8;6,v*.

1.4 n'-order differential equations

4.1. The solution of a linear homogeneous nt!-order differential equation

dr n dnfi
—y= i(x)— 4.1.1
FrrE ML @D
is equivalent to that of the system
4=y, for 1<i<n);
dx i =i (or 1<i<n); (4.1.2)
wxn = Zizlai(x)yrwlfi

of n first-order equations.

By (3), this system can be described as the differential equation of horizontal sections
of a rank-n vector bundle endowed with a suitable connection, and this is what we aim to
further explore.
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4.2. Let X be a non-singular complex-analytic variety of pure dimension 1. Let X, be the
n'M infinitesimal neighbourhood of the diagonal of X xX, and p1 and ps the two projections
from X, to X. We denote by 71 ; the injection from X; to X}, for [ <k.

Let Q" be the n'h tensor power of the invertible sheaf Q (for n € 7). If I is the ideal
that defines the diagonal of X x X, then I/I? = Q3, canonically, and

"t =, (4.2.1)
If . is an invertible sheaf on X, then we denote by P"(.%) the vector bundle
P (L) =(p1)+pyZ (4.2.2)

of nt-order jets of sections of .Z. The I-adic filtration of p 5-Z defines a filtration of P"(.Z)

for which

GrP"(¥)=GrP"(0)®.¥ w2
Gr'P"(¥)=0%® ¥  (for0<is<n). o

Recall that we define, by induction on n, a differential operator of order <n as being a
morphism A: .# — .4 of abelian sheaves such that

{A is O-linear forn=0;

[A, f]is of order < m for every local section f of @ for n=m+1.

For every local section s of ., pjs defines a local section D"(s) of P"(.Z) (4.2.2). The
C-linear sheaf morphism D": ¥ — P"(¥) is the universal differential operator of order
< n with domain .Z.

Definition 4.3.

() A linear homogeneous n™-order differential equation on .Z is an Ox-homomorphism
E: P"(¥)— Q%" ®.% that induces the identity on the submodule Q®" ® % of P"(.Z).

(i) A local section s of .Z is a solution of the differential equation E if E(D"(s)) = 0.

In fact, I have cheated with this definition, in that I have only considered equations
that can be put in the “resolved” form (4.1.1).

4.4, Suppose that . =@, and let x be a local coordinate on X. The choice of x allows us to
identify p*(@) with 6'%*%1 with the arrow D* becoming
D*: 6 — P*(©) = 6"
f = @ flosi<k-
The choice of x also allows us to identify Q! with @, so that the n"-order differential equa-
tion can be identified with a morphism E € Hom(6'%"] ©), and, as such, has coordinates

(bi)o<i<n With b, = 1. The solutions of E are then exactly the (holomorphic) functions f
that satisfy

i bi(x)dLf =0  (with b, =1). (4.4.1)
i=0
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The existence and uniqueness theorem for solutions of the Cauchy problem in (4.4.1)
implies the following.

Theorem 4.5. (Cauchy). Let X and .Z be as in (4.2), and let E be an n'"-order differential
equation on . Then

(i) the subsheaf of £ given by solutions of E is a local system L of rank n on X ; and
(ii) the canonical arrow D" 1: LE — P~1(.%) induces an isomorphism

6 oc LE = P 1)

In particular, it follows from (4.5.i1) and from (2.17) that E defines a canonical connec-
tion on P""1(.¥), whose horizontal sections are the images under D of solutions of E.

4.6. To a differential equation E on ., we have thus associated

a) a holomorphic vector bundle 7 endowed with a connection (which is automatically in-
tegrable) on the bundle P*1(¥) ; and

b) a surjective homomorphism A: 7 — % (by i =0 in (4.2.3)).

Furthermore, the solutions of E are exactly the images under A of the horizontal sections
of 7. This is just another way of expressing how to obtain (4.1.2) from (4.1.1).

4.7. Let 7 be a rank-n vector bundle on X, endowed with a connection with covariant
derivative V. Let v be a local section of 7, and w a vector field on X that doesn’t vanish
at any point. We say that v is cyclic if the local sections (V) (v) of ¥ (for 0 < i < n) form
a basis of 7. This condition does not depend on the choice of w, and if f is an invertible
holomorphic function, then v is cyclic if and only if fv is cyclic. In fact, we can show, by
induction on i, that (ng)i(f v) lies in the submodule of 7 generated by the (V,,)/(v) (for
0<sj<1i).

If . is an invertible module, then we say that a section v of 7 ® % is cyclic if, for every
every local isomorphism between £ and @, the corresponding section of 7 is cyclic. This
applies, in particular, to sections v of Hom(7,.£) =7V ® .Z.

Lemma 4.8. With the hypotheses and notation of (4.6), A is a cyclic section of Hom(V,.%).

Proof. The problem is local on X; we can reduce to the case where . = @ and where there
exists a local coordinate x.
We use the notation of (4.4). A section (%) of P" 1(@) = 6'%"1! is horizontal if and
only if it satisfies
{axfizfi“ (for0<i<n-2)
0uf™ V=~ Sl bif.
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This gives us the coefficients of the connection: the matrix of the connection is

0 -1 0 0 0
0 0 -1 o0 0
0 0 o0 -1 0
(4.8.1)
0 -1
p0 pl ... ... pn2 pn-l
In the chosen system of coordinates, A = e°, and we calculate that
Vil=e'  (forO0<i<n-1)
which proves (4.8). O

Proposition 4.9. The construction in (4.6) establishes an equivalence between the follow-
ing categories, where we take morphisms to be isomorphisms:

a) the category of invertible sheaves on X endowed with an n™-order differential equation

(4.3) ; and

b) the category of triples consisting of a rank-n vector bundle V' endowed with a connection,
an invertible sheaf ., and a cyclic homomorphism A: V — Z.

Proof. We will construct a functor that is quasi-inverse to that in (4.6). Let 7 be a vector
bundle with connection, and A a homomorphism from 7 to an invertible sheaf .. We
denote by V the local system of horizontal sections of 7. For every @-module .#, we have
(2.17)

Homg(V,.#) = Hom¢(V, #).

In particular, we define a map yk from 7 to P*(.%) by setting, for any horizontal section v
of 7,
Y*() =D*A@)). 4.9.1)

Lemma 4.9.2. The homomorphism A is cyclic if and only if
Yn—I: 7/ —>Pn_1($)

is an isomorphism.

The problem is local on X. We can restrict to the case where . = @ and where we
have a local coordinate x. With the notation of (4.4), the morphism y* then admits the
morphisms 0.1 = Vi (for 0 < i < k) as coordinates. For 2 = n -1, these form a basis of
Hom(7,0) if and only if y”‘l is an isomorphism.
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For k =1, the diagram

/ \ 499)

Py — s Pl(p)

commutes; if 1 is cyclic, then this, along with (4.9.2), implies that y"(v) is locally a direct
factor, of codimension 1 in P"(¥), and admits w®*" ® ¥ = Ker(7,-1,,) as a complement.
There thus exists exactly one ntP-order differential equation

E:P" (L) - Q%" e ¥

on .Z such that Eoy™ =0.

By (4.9.1), if v is a horizontal section of 7, then ED" Av = Ey"v =0, and so Av is a solu-
tion of E. We endow P" 1(.%) with the connection (4.6) defined by E. If v is a horizontal
section of 7, then y*~1(v) = D" 1 Av, where Av is a solution of E, and " 1(v) is thus hori-
zontal. We thus deduce that y?~1 is compatible with the connections. A particular case of
(4.9.3) shows that the diagram

14 —> P L(Y)

N A

commutes, whence we have an isomorphism between (7,.%, A1) and the triple given by (4.6)
applied to (%, E). The functor
v, Z,A)—(Z,E)

is thus quasi-inverse to the functor in (4.6). O
4.10. We now summarise the relations between two systems (7,.Z,1) and (Z,E) that

correspond under (4.6) and (4.9).
We have homomorphisms y*: 7 — P*(.%), such that

(4.10.1) y*(v) = D*Av for v horizontal ;

(4.10.2) Y° =2 and 747" =y ;

(4.10.3) Y"1 is an isomorphism (A is cyclic) ;
(4.10.4) Ey*=0; and

(4.10.5) A induces an isomorphic between the local system V of sections of 7 and the local

system 2% of solutions of E.
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I.5 Second-order differential equations

In this section, we specialise the results of (4) to the case where n = 2, and we express
certain results given in R.C. Gunning [11] in a more geometric form.

5.1. Let S be an analytic space, and let ¢: X9 — S be an analytic space over S that is
locally isomorphic to the finite analytic space over S defined by the Gg-algebra Gg[T1/(T?).

The fact that the group PGLy acts sharply 3-transitively on P! has the following in-
finitesimal analogue.

Lemma 5.2. Under the hypotheses of (5.1), let u and v be S-immersions of X into IF%, ie.

Xo #; Pé.

Then there exists exactly one projective transformation (S-automorphism) of [P}q that sends
u tov.

Proof. The problem is local on S, which allows us to suppose that Xs is defined by the
Og-algebra Os[TI(T?), and that u(Xs) and v(Xs) are contained inside the same affine
line, say, Aé. By translation, we can assume that u(0) = v(0) = 0. We must then prove
the existence and uniqueness of a projective transformation p(x) = (ax + b)(cx + d) that
satisfies p(0) = 0, with first derivative p’(0) # 0 and given second derivative p”(0). We
have that b =0, and p can be written uniquely in the form

x
1-fx

=ex+efx® modxd.

px)=e (for e £0)

The claim then follows immediately. O

5.3. By (5.2), there exists exactly (up to isomorphism) one pair (u,P) consisting of a pro-
jective line P on S (with structure group PGL2(0g)) and an S-immersion u of Xy into P.
We call P the osculating projective line of Xo.

Let X be a smooth curve. Let Xy the second infinitesimal neighbourhood of the diago-
nal of X x X, and let g1 and g2 be the two projections from Xg to X.

The morphism q1: X9 — X is of the type considered in (5.1).

Definition 5.4. We define the osculating projective line bundle of X, denoted by Pyg, to be
the osculating projective line bundle of q;: X2 — X.

By definition, we thus have a canonical commutative diagram

Xo — Pyg

N l (5.4.1)
X
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and, in particular, Pi; is endowed with a canonical section e, which is the image of the
diagonal section of X9, and we have that

" Qp iy = Q. (5.4.2)
5.5. If X is a projective line, then pr;: X x X — X is a projective bundle on X such that

Py can be identified with the constant projective bundle of fibre X on X endowed with the
inclusion homomorphism of X into X x X, i.e.

X9 — X xX

pry
q1

X

In this particular case, we have a canonical commutative diagram

P

3

!

Now let X be an arbitrary smooth curve.

—

>

Definition 5.6. (Local version). A projective connection on X is a sheaf on X of germs of
local isomorphisms from X to P!, which is a principal homogeneous sheaf (i.e. a torsor)
for the constant sheaf of groups with value PLG2(C).

If X is endowed with a projective connection, then every local construction on P! that
is invariant under the projective group can be transported to X; in particular, the con-
struction in (5.5) gives us a morphism y that fits into a commutative diagram:

X3
Y
)L \ Py (5.6.1)
!
b's

It is not difficult to show that such a morphism y is defined by a unique projective
connection (a proof of this will be given in (5.10)), and so Definition (5.6) is equivalent to
the following.

Definition 5.6 bis. (Infinitesimal version). A projective connection on X is a morphism
y: X3 — Py, that makes the diagram in (5.6.1) commute.

Intuitively, giving a projective connection (the infinitesimal version) allows us to define
the cross-ratio of 4 infinitesimally-neighbouring points, and we then know how to define
the cross-ration of 4 neighbouring points (the local form of (5.6)).
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5.7. Set Q%" = (Q}()m (4.2). The sheaf of ideals on X3 that defines X5 is canonically
isomorphic to Q®3, and is annihilated by the sheaf of ideals that defines the diagonal.
Also, if A is the diagonal map, then, by (5.4.2), we have that

*_ %1 ~ 0l
Ay Qb g =0

We thus deduce that the set of X-homomorphisms from X3 to P that induce the canonical
homomorphism from Xz to Py is either empty, or a principal homogeneous space for

HomX(A*y*Q},tg/X,Q%) =Homx (Q!, Q%) =H(X,Q%?).
If we replace X by a small enough open subset, then this set is non-empty:

Proposition 5.8. Projective connections of open subsets of X form a principal homoge-
neous sheaf (i.e. a torsor) for the sheaf Q®2.

Proof. If n is a section of Q%2 and Y1: X3 — Py is a projective connection, then the con-
nection yg = y1 +7 is defined, for any function f on Py, by

yof =yif +n-e*df (5.8.1)

(modulo the identification of Q®3 with an ideal of Ox,). O

5.9. Let f: X — Y be a homomorphism between smooth curves endowed with projective
connections yx and yy, and suppose that f is a local isomorphism (i.e. df # 0 at all points).
Set

0f = f*yy —yx € [(X,0%2).

For a composite map gof: X £, vz , we trivially have that

O(gof)=0(f)+f"0(g),

1 . (5.9.1)
whence 0(f ") = —f76(f).

Suppose that X and Y are open subsets of C, and endowed with the projective connec-
tion induced by that of P1(C). Denoting by x the injection from X into C, we then have
that
f’(f’”/G) _ (f///2)2 q ©9

e x4,

To prove this, we identify, using (5.5), the projective double tangent bundle to X or Y
with the constant projective bundle. The morphism 6f : Pz x — Pigy induced by f can be
written as

of = (5.9.2)

Sf: (x,p)— (f(x),f(x)+ f'(x)(p—x) )

1- %(f”(x)/f’(x))(p —x)
Consider the diagram
X3 s Y3

! {

of
Ptg,X S Ptg,Y
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Then 6(f) describes the lack of commutativity of the diagram, i.e. the difference between
the jets

2 3
(.5 +€) — (f(x), F2)+ f(x)e + f”(x)% + f”’(x)%) (mod. &4 = 0)

and
f'(x)e
(x,x+e) (f(x), [+ 1- %(f"(x)/f’(x))e)
2 1
= (f(x), f@) +f (e + f”(x)% + Z(f”(x)Z/f’(x))ES) .
We thus have that

Q(f) - (%f”/(x)— if”(x)z/f’(x)) dx®3df®_1,

and (5.9.2) then follows.
Equation (5.9.2) shows that 60 is the classical Schwarz derivative of f.

If a map f from X c C to P1(C) is described by projective coordinates f = (g,4), then

g g g g"6 g g2 g g2 2
hoh ( RoR"e || B R2 ) )
o(f)= 5 (5.9.3)
g &
h R
To prove (5.9.3), the simplest method is to note the following. ’ p. 34

(i) The right-hand side of (5.9.3) is invariant under a linear substitution of constant
coefficients L acting on g and A: the numerator and denominator det(L)?.

(i1) The right-hand side of (5.9.3) is invariant under the substitution

(g,h)— (g, Ah).

Denoting the determinant of ( Z b ) by det(a,b), we have that

d

det(g,(1)") det(Ag,Ag' +1'g)

= A%det(g,g")

det(Ag,(1g)"/2) A2 det(g, g"/2) + A1 det(g, g")

det(Ag,(1g)"/6) A2 det(g, g"'/6) + A1 det(g, g"/2)

+(AN"/2)det(g, ")

det((1g)',(1g)"/2) A2det(g’,g"/2) - (AL"/2) det(g, ")

+(A)2 det(g, g") + A1 det(g, g"/2).

Git commit: 50¢2259 27 of 93


https://github.com/thosgood/translations/commit/50c2259

Chapter I. Dictionary

The new denominator D, (resp. numerator N,) is thus given in terms of the old
denominator D (resp. numerator N) by

D,=A*D
(172 dete, 8"/2)+ (1"122) det(g, &)
Ny =2A*N + 1% det(g, g")- +( —(A"120)det(g, g") + (A'/1)? det(g, g") + (A’//l)det(g,g"))
- (2071 det(g, &"12)+ (A'/2)? det(g, )

and N,l/D,l =N/D.

With these variance properties agreeing with those of the left-hand side of (5.9.3), it
suffices to prove (5.9.3) in the particular case where 2 = 1. The equation then reduces
to (5.9.2).

We will only need to use the fact that 6(f) can be expressed in terms of cross-ratios:
we have, for Z; ~ Z,

(f(Z1),[(Z2),[(Z3), [ (Z4))

~1=0(f)21~Z2)Z3 = Z4) + O(Z; - 2)°). 5.9.4
(Z1,Z9,73,7.4) (fNZ1—-Zo)Z3—Z4)+O(( ) ( )

5.10. The differential equation 8(f) = 0 (for f: X — P1(C) with non-zero first derivative)
is a third-order differential equation. It thus admits oco® solutions, locally, and these so-
lutions are permuted amongst themselves by the projective group (since the group transi-
tively permutes the Cauchy data: (5.2)). The set of solutions is thus a projective connec-
tion (the local version, (5.6)). This construction is inverse to that which associates, to any
projective connection in the sense of (5.6), a projective connection in the sense of (5.6bis).

5.11. Let X be a smooth curve, .Z an invertible sheaf on X, and E a second-order ordinary
differential equation on .. We have seen, in (4.5), that E defines a connection on the
bundle P1(Z) of first-order jets of sections of ., and we obtain from it a connection on

2
APH D)= 20N 2)=0' 0 22

If X is a compact connected curve of genus g, then the bundle Q! ®.#%2 is thus neces-
sarily of degree 0, and we have that

deg(X)=1-g.

Let V be the rank-2 local system of solutions of E; we have (4.5) that 6 @ V = P1(.%),
and the linear form A: P1(¥) — % defines a section A of the projective bundle associated
to the vector bundle P1(.%).

Locally on X, V is isomorphic to the constant local system C2; the choice of an isomor-
phism o: V — C? identifies 1o with a map Moo from X to PL(C); by (4.8), the differential
of this map is everywhere non-zero, and so 1¢ , allows us to transport the canonical pro-
jective connection of P1(C) to X. This connection does not depend on the choice of o, and
so the differential equation E defines a projective connection on X.

Proposition 5.12. Let .Z be an invertible sheaf on a smooth curve X. The construction in
(5.10) gives a bijection between
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a) the set of second-order ordinary differential equations on £ ; and

b) the set of pairs consisting of a projective connection on X and a connection on QL(Z®2).

Proof. The problem is local on X; we can thus suppose that X is an open subset of C, and
that .Z = 0. An equation E can then be written as

E: y" +a(x)y’ +b(x)y=0.

If we identify P1(.¥) with 62, then the matrix of the connection (5.10) defined by E on
A2P1( L) ~ @ is then —a(x)tr M, where M is the matrix in (4.8.1).

Let ¢ be the identity map from X, an open subset of P1(C), to itself endowed with
the projective connection defined by E. Identifying Q with @ by means of the given local
coordinate, we then have that

1 1 5 ,
0(p) = 3b 12(a +2a’). (5.12.1)

Indeed, if f and g are two linearly independent solutions of E, then the map with projec-

tive coordinates
(f,8): X - PY(C)

belongs to the projective connection. We have that

f'=~Gf'+b/)
f/l/:_a(_afl_bf)_bfl_alfl_blf
=(@®-d - b)f' +(ab-b)f.

Equation (5.9.3) gives (using the same notation for determinants as before)

_det(f,f")(§(a® —a' —b)det(f, ") + 3bdet(f, ) - (30)* det(f, )

0(¢p)

det(f,f")?
2%(a2—a'—b)+—b——az
_1 _l 2 li
3b 12(a +2a’)

We conclude by noting that (a,b) is uniquely determined by (-a, %b - 1—12((12 +2a')), and
that, for any holomorphic function g on an open subset U of C, there exists a unique
projective connection on U satisfying 0(¢) = g, for ¢ belonging to the connection (same
proof as for (5.10), or (5.8)). O

I.6 Multiform functions of finite determination

6.1. Let X be a non-empty connected topological space that is both locally path coPnected
and locally simply path connected, and let xo be a point of X. We denote by 7: X, — X
the universal covering of (X, x¢), and by Xy the base point of X .
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If .% is a sheaf on X, then we pose:

Definition 6.2. A multivalued section of .% on X is a global section of the inverse image
7*F of F on Xy,.

If s is a multivalued section of .% on X, then a determination of s at a point x of X is
an element of the fibre .Z(,) of .# at x that is an inverse image of s under a local section
of 7 at x. Each point in 771(x) thus defines a determination of s at x. We define the base
determination of s at xy to be the determination defined by Xy. We define a determination
of s on an open subset U of X to be a section of .# over U whose germ at every point of U
is a determination of s at that point.

Definition 6.3. We say that .% satisfies the principle of analytic continuation if the set
where any two local sections of .% agree is always (open and) closed.

Example 6.4. If .% is a coherent analytic sheaf on a complex-analytic space, then .# sat-
isfies the principle of analytic continuation if and only if .% has no embedded components.

Proposition 6.5. Let X and xy be as in (5.1), and let .% be a sheaf of C-vector spaces on X
that satisfies the principle of analytic continuation. For every multivalued section s of %,
the following conditions are equivalent:

(i) the determinations of s at xo generate a finite-dimensional sub-vector space of Fy, ;
and

(ii) the subsheaf of .7 of C-vector spaces generated by the determinations of s is a complex
local system (1.1).

Proof. 1t is trivial that (ii) implies (i). We now prove that (i) implies (ii). Let x be a point of
X at which the determinations of s generate a finite-dimensional sub-vector space of .%,,
and let U be a connected open neighbourhood of x over which X xo 18 trivial: ("W U),7) =
(U x I,pry) for some suitable set I. We will prove that, over U, the determinations of s
generate a complex local system. Each i € I defines a determination s; of s, and, over U,
the vector subsheaf of .%# generated by the determinations of s is generated by the (s;);cr;
if this sheaf is constant, then the hypotheses on x implies that it is a local system. We
have:

Lemma 6.6. If a sheaf .7 of C-vector spaces on a connected space satisfies the principle
of analytic continuation, then the vector subsheaf of .7 generated by a family of global
sections s; is a constant sheaf:

The sections s; define
a:cV -7z

with the image being the vector subsheaf ¢ of .% generated by the s;. If an equation
Y ; Ais; = 0 between the s; holds at a point, then it holds everywhere, by the principle of
analytic continuation.

The sheaf Ker(a) is thus constant subsheaf of C”, and the claim then follows.

We conclude the proof of (6.5) by noting that, by the above, the largest open subset of X
over which the determinations of s generate a local system is closed and contains xo. [
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Definition 6.7. Under the hypotheses of (6.5), a multivalued section s of .% is said to be
a finite determination if it satisfies either of the equivalent conditions of (6.5).

6.8. Under the hypotheses of (6.5), let s be a multivalued section of finite determination
of .%. This section defines p.39

a) the local system V generated by its determinations ;

b) a germ of a section of V at xg, say, vg, corresponding to the base determination of s ;
and

¢) an inclusion morphism 1: V — %,

The triple consisting of Vy,, vg, and the representation of 71(X,x0) on V,, defined
by V (1.4) is called the monodromy of s. The triple (V,Vy, 1) satisfies the following two
conditions.

(6.8.1) vg is a cyclic vector of the 71(X,x¢)-module V,, i.e. it generates the 71(X,x0)-module
Vio-

This simply means that V is generated by the set of determinations of the unique
multivalued section of V with base determination vg.

(6.8.2) A:V,, — F, is injective.

6.9. Let Wy be a finite-dimensional complex representation of 71(X,xp), endowed with a
cyclic vector wg. The multivalued section s of .7 is said to be of monodromy subordinate
to (wo,vp) if it is the finite determination, and if, with the notation of (6.8), there exists
a homomorphism of 71(X,xg)-representations of Wy in V,, that sends wq to vo. Let W be
the local system defined by Wy, and let w be the unique multivalued section of w of base
determination wy. It is clear that, under the hypotheses of (6.5), we have

Proposition 6.10. The function A — AMw) is a bijection between the set Hom¢(W,.%) and
the set of multivalued sections of ¥ with monodromy subordinate to (Wy,wo).

Corollary 6.11. Let X be a reduced connected complex-analytic space endowed with a base

point xg. Let Wy be a finite-dimensional complex representation of m1(X,xo) endowed with

a cyclic vector wg, and W the corresponding local system on X, with W =0 ®c W being the |p. 40
associated vector bundle, and w the unique multivalued section of # of base determination

wo. Write #'V be the dual vector bundle of W . Then the function

A= Aw),

from T(X, #V) to the set of multivalued holomorphic functions on X of monodromy subor-
dinate to (Wo,wy), is a bijection.

Corollary 6.12. If X is Stein, then there exist multivalued holomorphic functions on X of
any given monodromy (Wy,wg).
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Chapter I1

Regular connections

II.1 Regularity in dimension 1

1.1. Let U be an open neighbourhood of 0 in C, and consider an n'"-order differential
equation

n-1 .
y™ 4 > ai(x)y? =0 (1.1.1)
i=0
where the a; are holomorphic functions on U \ {0}. We classically say that 0 is a regular
singular point of (1.1.1) if the functions x"'a;(x) are holomorphic at 0. If this is true,
then, after multiplying by x", we can write (1.1.1) in the form

d)\" dy
— b; — =0 1.1.2
(xdx) y+Y, L(x)(xdx) y (1.1.2)
where the b;(x) are holomorphic at 0.

In this section, we will translate this idea into the language of connections (cf. (1.4)),
and we will establish some of its properties.

The results in this section were taught to me by N. Katz. They are either due to N. Katz
(see, most notably, [14, 15]), or classical (see, for example, Ince [13], and Turrittin [25, 26]).

1.2. Let K be a (commutative) field, Q a rank-1 vector space over K, and d: K — Q a
non-trivial derivation, i.e. an non-zero additive map that satisfies the identity

d(xy) = xdy + ydx. (1.2.1)

Let V be an n-dimensional vector space over K. Then a connection on V is an additive
map V: V — Q®V that satisfies the identity

V(xv)=dx-v+xVuv. (1.2.2)
If 7 is an element of the dual QV of Q, then we set
0:(x)=(dx, 7)€ K, (1.2.3)

V.:(v)={dv,1)€V. 1.2.4)
We thus have that
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(1.2.5) 0; is a derivation;
(1.2.6) V. (xv)=0;(x)-v+xV,;v; and
(1.2.7) Vi, (v)=AV,v.
Let v € V. We can easily show that the vector subspace of V generated by the vectors
v,V,0,Ve, Vi, Ve, - Vo

(where 7; # 0 in Q) does not depend on the choice of the 7; # 0, and does not change
is we replace v by Av (for some A € K*). Furthermore, if the last of these vectors is a
linear combination of the preceding vectors, then this vector subspace is stable under
derivations. We say that v is a cyclic vector if, for 1 € Q, the vectors

Viv  (for0<is<n)
form a basis of V.

Lemma 1.3. Under the above hypotheses, and if K is of characteristic 0, then there exists
a cyclic vector.

Proof. Let t € K be such that d¢ #0, and let 7 = ¢/dt € QY. Then 8,(¢t*) = kt*.

Let m < n be the largest integer such that there exists a vector e such that the vectors
die (for 0 < i <m) are linearly independent. If m # n, then there exists a vector f that is
linearly independent of the d:e. For any rational number A and integer %, the vectors

de+Atkf)  (for0<i<m)
are linearly dependent, and their exterior product w(A, k) is thus zero. We have that

die+ Atk fy=0dle+ Y RItLIf.

O<ks<i

From this equation, we obtain a finite decomposition

w(/l’k): Z Aatkakbwa’b
O<asm

0<b

where w, 3 is independent of A and %. Since w(4,%) = 0 for all A € Q, and since
wA,k) =) A%wq(k)
where wy (k) = t*9(L kP w, ) = t*w), (k), we have that w,(k) = w/,(k) = 0. Since
Wl (B)=Y RPwyp=0
for all k2 € Z, we have that w, ; = 0. In particular,
W1m :e/\aie/\.../\é’r"_le/\f=0,
and f is then linearly dependent of the 6ie (for 0 < i < m), which contradicts the hypothe-

sis. Thus m =n, and so e is a cyclic vector O
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1.4. Let @ be a discrete valuation ring of equal characteristic 0, with maximal ideal m,
residue field £ = @/m, and field of fractions K. Suppose that & is endowed with a free
rank-1 0-module Q along with a derivation d: & — Q that satisfies

1.4.1. There exists a uniformiser t such that dt generates Q.

(For less hyper-generality, see (1.7)).
If ¢1 is another uniformiser, then ¢; = at for some a € *, and, by hypothesis, da is a
multiple of d¢, i.e. da = Ad¢. We thus have that

dt1 =adt+da-t =(a+At)de
and so

1.4.2. For every uniformiser t, dt generates Q.

We denote by
v:K"—7Z

the valuation of K defined by @; we also denote by v the valuation of Q ® K defined by the
lattice Q. If ¢ is a uniformiser, then

v(w) = v(w/d?).
If f e K* with f =at™ (for a € ©), then
df =da-¢" +nat" 'dt
and thus p. 44
(1.4.3) v(df)<v(f)-1;and
(1.4.4) v(f)#0 = v(df)=v(f) -1

In particular, d is continuous and extends to d: 6" — Q", and the triple (¢",d,Q")
again satisfies (1.4.1).

Lemma 1.5. If O is complete, then the triple (O,d,Q) is isomorphic to the triple (E[[t]], 0, k[[£]]).

Proof. The homomorphisms
Gr(d): m/m™*! —m1Oo/m'Q
induced by d are linear and bijective (1.4.4). Since @ is complete, d: m — Q is surjective,

and Ker(d) = k. This gives us a field of representatives that is annihilated by d, and the
choice of a uniformiser ¢ gives the desired isomorphism k[[#]] = ©. O

1.6. If an @-algebra @' is a discrete valuation ring with a field of fractions K’ that is
algebraic over K, then the derivation d extends uniquely to d: K’ — Q®p K'. Let e be the
ramification index of &' over @, and let t’ be a uniformiser of ©'. We set

Q' =1t 1Qes0".

We can easily show, using (1.6), that the triple (6',d,)’) again satisfies (1.4.1).

1.7. We will mostly be interested in the following examples. Let X be a non-singular
complex algebraic curve, and let x € X. We choose one of the following:
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(1.7.1) @ = O, x (thelocal ring for the Zariski topology), Q2 = (Qﬁf Ic )x, and d = the differential

’

(1.7.2) O = Oy xan (the local ring of germs at x of holomorphic functions), Q2 = (Q}(an/c)(x),
and d = the differential ; or

(1.7.3) the common completion of (1.7.1) and (1.7.2).

1.8. Under the hypotheses of (1.4), let V be a finite-dimensional vector space over K, and
Vo a lattice in V, i.e. a free sub-G-module of V such that KV, = V. For every homo-
morphism e: 6" — V, we define the valuation v(e) of e to be the largest integer m such
that e(0") c m™Vy. If Vy and V7 are two lattices, then there exists an integer s that is
independent of e and n and is such that

lvo(e) —vi(e)l <. (1.8.1)

Theorem 1.9. [N. Katz]. Under the hypotheses of (1.4), and with the notation of (1.8), let V
be a connection (1.2) on a vector space V of dimension n over K. Then one of the following
conditions is satisfied:

~

a) For any lattice Vo in V, any basis e: K" =V of V, any differential form with a simple
pole w and T = 0™l e Qg, the numbers —v(Vie) are bounded above ; or

b) There exists a rational number r > 0, with denominator at most n, such that, for any Vy,
e, and T as above, the family of numbers

I—U(V.i[e)—ril
is bounded.

Conditions a) and b) of (1.9) are more manageable in a different form:

Lemma 1.9.1. Let Vy, 1, and e be as in (1.9). Then, for any given value of r, the bound b)
is equivalent to _
[sup(-vVie)—ri| < C™. (1.9.2)

Js<i

The bound a) is equivalent to the same bound (1.9.2) for r = 0.

Proof. Going from (1.9) to (1.9.2) is clear, as is the converse for r = 0. So suppose that
(1.9.2) holds true for r > 0 and some value Cg for the constant. We have

—vVie—ri<Cy. (a)
We immediately see that there exists a constant % such that
—vVM(Vie)< —vVie+kn.

Thus
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—Co+r(i+n)s su —vVJe
P T
Jjsi+n

=sup(sup—vV{e,—vVie +kn)
jsi

<sup(Cy +ri, —vVie +kn)
and, if —-Cy +r(i+n)>Cq+ri,i.e. if n >2Cy/r, then we have
—vVie=(-Co—kn—rn)+ri. (b)
The inequalities (a) and (b) then imply the inequality of the form (1.9):

|-vVie—ri|<Co+kn+rn.

Lemma 1.9.3. Let (Vy,10,e0) and (V1,71,e1) be two systems as in (1.9). Then

. . ,
Isup(—01V41e1) - sup(—voV%eo)l <C*.
j<i j<i

Proof. 1t suffices to establish an inequality like (1.9.3) when we change only one of the
data Vy, 79, or e. The case where we change only the reference lattice V; follows from
(1.8.1).

We will systematically use the fact that, for f € K, we have, by (1.4.3),

00y, f) = v(f) (1.9.4)

(using the notation of (1.2.3)).
If e and f are two bases, then e = fa for some a € GL,(K), whence

J

. i\ .
VWhZOWmVHm
and, by (1.9.4), ) .
v(Vi(e)) = infu(V]f)+C™
J<i
whence _ _
sup(—vVZe) —sup(—vV.if) < C.
j<i j<i

Reversing the roles of e and f, we similarly have that

sup(—vVif) - sup(—vV{e) <t

J<i J<i

whence the inequality (1.9.3) for a change of basis.
If T and w are vectors as in (1.9), then o = f'1, with f invertible, whence

Vo=fV, (with fe@*)
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and we can show by induction that
Vi = Z(ij{ (with ¢; €0).
J<i
From this we deduce that

Vi (e) = infuVi(e),
Jjsi

whence . .
sup(—vVZ(e)) < sup(—vVi(e)).

Jsi Jsi

Reversing the roles of o and 7, we thus conclude that

sup(—vVy(e)) = sup(—vV (e)). (1.9.5)

j<i j<i
O

By (1.9.1) and (1.9.3) it suffices, to prove (1.9), to prove an upper bound of the form
(1.9.2) for one choice of (Vy,1,e).

Lemma 1.9.6. Under the hypotheses of (1.9), let e: K™ — V be a basis of V, t a uniformiser,
o a differential form presenting a simple pole (i.e. a basis of t71Q), set T =w 1 € Q, and
let T = (T'%) be the connection matrix in the bases e and w. Let s and (r;)1<j<n be rational
numbers, and set r; j = s +r; —rj, and suppose that

i -
—v(I) <7y

Finally, let ¥ € M,(k) be the matrix whose coefficients are “t"i Fj. mod m”, i.e.
o {o if —o(%) <ri;;
T, modm if —u(TY) =7y
Suppose that s <0, or that y is not nilpotent. Then the upper bound (1.9.2) is satisfied

for r = supfs, 0}.

Proof. Let N be an integer such that the r;N are integers, and set &' = G(/t). Let K’
be the field of fractions of K, v: K'* — %Z the valuation of K’ that extends v, and A the
diagonal matrix with coefficients being the ¢77.

On @', let o' be the basis of Q® K’ given by the inverse image of w, let 7’ be the
corresponding basis of Q'Y ® K/, and let e’ = eA be a new basis of V' = Vo K'. In these
bases, the connection matrix is

I'=A"'TA+A 1o, A.
The matrix A~1d,/A has coefficients in @', and so either
(a) s<0, and I" has coefficients in &’ ; or

(b) s>0, —v(I") = s, and the “most polar part” y of I’ is not nilpotent, so that —u('%) = ¢s.
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By the definition of Q' (1.6), w’ presents a simple pole. In case (a), we thus conclude by
induction on ¢ that
v(Vf,,e’) =0.

We can prove by induction on m that, in the basis e’,

vi= Y (@™ A0l
O<ks<n

where A; is the algebraic sum of the products of at most m —i—1 factors af ,I'. In particular,
Ve =T"" +Ap

and, in case (b),

—v(V,e') =ms.

This satisfies (1.9.2) on 6’ (for suitable bases), and (1.9.6) then follows from (1.9.3). O
Theorem (1.9) follows from the following proposition and from (I.1.3).

Proposition 1.10. Under the hypotheses of (1.9), let X be a basis of QV, t a uniformiser,
set T =tX, and let v be a cyclic vector (1.2) of V. Set

Vv = Z siViv
i<n

V;Lv = Z biViv.

i<n
Then the bound (1.9.2) holds true for
r = sup{0,sup{-v(b;)/n — i}
= sup{0,sup{-v(a;)/n—i}—1}.
The same conclusion holds for a cyclic vector v of VV.

This proposition gives us a procedure for calculating r for a given vector bundle V with
a connection defined by an n'? order differential equation (cf. (I.4.8)).

Proof. We have the identities
tVx)" - Z bi(tVX)i =" (VSLK - ZainX)
IV =Y a7V = (V=Y b V).
From these identities, we see that

a;=8&n,i+t Zgj,ibj, v(gji)=zi-n
j=i
bi=hni+y hjiaj, vlhij)=n—j
j=i
and, for i =0,
sup{0, sup{-v(b )1} = sup{0,sup{-v(a;) — (n - j}}.

j=i j=i
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The two expressions given for r thus agree. A
If v € V is a cyclic vector, then the matrix of the connection, in the bases (Viv)o<i<n of
V and 7 of QV, is

0o 0 0 0 - bo
1 0 o O - b1
0 1 0 O
I'=
1 0 bpo
0 -+ o - 1 by

IfveVvY is a cyclic vector, then the matrix of the connection, in the basis of V' given by the
dual of (Viv)o<i<n and the basis 7 of QV 9 K, is

o 1 0 O 0
O 0 1 O
O 0 o0 1
r=-
0 1
0 Bl ... ... pn-2 pn-1

It remains only to apply (1.9.6). ForveV, wetaker;=-riands=r. Forve V", we
take r; =ri and s =r. In the first (resp. second) case, if s = r > 0, then the matrix y is of
the type

O 0 0 o0 *
1 0 0 O *
0 1 0 0
Y=
1 0 =
0 v eee e 1 %

with one of the coefficients of the last column being non-zero (resp. of the type given by the
transpose of this). The coefficients are those of the characteristic polynomial of y, which
is thus not nilpotent for s > 0. O
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Definition 1.11. Under the hypotheses of (1.9), we say that the connection V is regular if
condition a) of (1.9) is satisfied.

Theorem 1.12. [N. Katz]. Under the hypotheses of (1.9), we have the following:

(i) For the connection V to be regular, it is necessary and sufficient for V to admit a basis
e such that the matrix of the connection, in this basis, is a matrix of differential forms
presenting, at worst, simple poles.

(ii) For the connection V to be irregular, and to satisfy a bound of the form (1.9.2) for
r=al/b >0, it is necessary and sufficient for V to admit a basis e (after a change of
rings from @ to 0' = G(¥/t), and for the natural valuation, with values in Z, of ¢')
such that the matrix of the connection, in this basis, presents a pole of order a+1, and
for the polar part of order a + 1 of this matrix (which is in M,,(k) and determined up
to a scalar multiple) to be non-nilpotent.

Proof. By extension of scalars, the number r such that V satisfies (1.9.2) is multiplied by
the ramification index. This leads us to the case where b = 1. Conditions (i) and (ii) are
then sufficient, by (1.9.6). Conversely, let v be a cyclic vector (1.3), ¢ a uniformiser, and
7€ QV of valuation 1. Then it follows from the proofs of (1.9.6) and of (1.10) that the basis
e; =t"Viy (for 0 <i<dimV) satisfies (i) or (ii). O
Proposition 1.13.

(i) For every horizontal exact sequence
VvV
if the connections on V' and V" are regular, then the connection on V is regular.

(it) If the connections on V1 and Va are regular, then the natural connections of

p
Vi®Vy, Hom(Vi,Vy), Vlv, /\Vl,
are regular.

(iti) If ©' is a discrete valuation ring with field of fractions k' that is algebraic over the
field of fractions K of ©, and if V' =V ®g K', then the connection on V' is regular if
and only if the connection on V is regular.

Proof. Claim (iii), already utilised in (1.12), follows for example from the calculation in
(1.10) and from the fact that the inverse image of a differential form presenting a simple
pole again presents a simple pole.

Claim (ii) follows immediately from criterion (i) in (1.12).

Claim (i) implies that, for every short exact sequence

0-V -v-V"-0,
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V is regular if and only if V' and V" are regular. After an eventual extension of scalars,
we choose bases e’ and e” of V' and V" (respectively) satisfying (i) or (ii) in (1.12). Lift e”
to a family of vectors ef of V. For large enough N, the basis e’ U N eq of V will satisfy
(1) in (1.12) if ¢’ and e” satisfy (i) in (1.12), and will satisfy (ii) in (1.12) in the contrary
case. O

1.14. Let S be a Riemann surface, p € S, and z a uniformiser at p. We denote by j
the inclusion of S* = S\ {p} in S. We say that a (holomorphic) vector bundle on S* is
meromorphic at p if we have the data of

(i) a vector bundle V on S* ; and

(i) an equivalence class of extensions of V to a vector bundle on S, with two extensions
V1 and Vs being equivalent if there exists an integer n such that z"V; c Vo cz7"V;
J+V.

Such a bundle defines a vector space Vx over the field of fractions K of the local ring
Op,s. We talk of a basis of V to mean a basis that extends to a basis of one of the permis-
sible extensions of V. It is clear that V admits bases of this type on a neighbourhood of p.
A connection V on V is said to be meromorphic at p if its coefficients (in any basis of V)
are meromorphic at p. Such a connection defines a connection (1.2) on Vg (cf. (1.7.2)). We
say that a connection V on V is regular at p if it is meromorphic at 0 and if the induced
connection on Vi is regular in the sense of (1.11), i.e. if there exists a basis of V close to p
in which the matrix of the connection presents at most a simple pole at p (1.12).

1.15. Let D be the open unit disc
D={z:]z] <1}

and let D* = D\ {0}. The group 71(D*) is cyclic, generated by the loop ¢ — Ae2™ (for
0 <t <1). The fundamental groupoid is thus the constant group Z. It acts on any local
system on D*. Using the dictionary (I1.2), every vector bundle V with connection is thus
endowed with an action of the local fundamental group Z. The generator T of this action
is called the monodromy transformation.

1.16. Let V be a vector bundle on D, and V a connection on V|D* that is meromorphic at 0.
If e (resp. eg) is a basis of V in which V is represented by I'1 € QYEnd(V|D*)) (resp. I's),
then the difference I'; —I'g is holomorphic at 0. Thus the polar part of I' does not depend
on the choice of e.
Suppose that I'; presents only a simple pole at 0, and thus has “polar part” equal to

some element y; in

1

H° ((—91/91) ®End(V)) :

z
The “residue” map H°((1/2)Q1/Q1) — C then associates to y; an endomorphism of the fibre
Vo of V at 0. We call this endomorphism the residue of the connection at 0, and denote it
by

Res(T';) € End(V)).
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Theorem 1.17. Under the hypotheses of (1.16), the monodromy transformation T extends
to an automorphism of V whose fibre at 0 is given by

To = exp(—2miRes(I)).

Proof. We can take V = 0"; the differential equation for the horizontal sections is then
0,v=-TIv,
and the differential equation for a horizontal basis e: 6™ — V is thus
0,e=-Toe. (1)

In polar coordinates (r,6), .
z=re'
dz =rie’?do + dreie,
and this equation gives
Oge =—irloe.

SetI' = % +1I'1, where I'y is constant and I'; is holomorphic. The above equation can then
be rewritten as _
dpe = —(ie Ty +irl'y)e.

The monodromy transformation at (r,0) is the value at (r,0 + 27) of the solution of this
differential equation which is the identity at (r,0). As r — 0, the aforementioned solution
tends to the solution of the limit equation

dpe = —ie Tyoe. (2)

We thus deduce that T has a limit value as z — 0, for 0 fixed, and that this value
depends continuously on 6. In particular, T is bounded near 0, and thus extends to an
endomorphism T of V on D. We conclude that T has a limit value as z — 0; this value,
given by integrating (1), depends only on I'g. To calculate this limit value, it suffices to
calculate it for an arbitrary connection I'' that has the same residue as I

For example, we can prove:

Lemma 1.17.1. Let V be the connection on " given by the matrix U - dZ—Z for some U €
GL,,(C). Then the general solution of the equation Ve =0 is

e=exp(—logz-U)f = 2 U. f

and thus the monodromy is the automorphism of O™ given by the constant matrix exp(—27wiU).

Corollary 1.17.2. Under the above hypotheses, the automorphism exp(—2miRes(I')) of the
fibre of V at 0 is the limit of the conjugates of the monodromy automorphism.

Note that it is not true in general that Ty is conjugate to T, for x close to 0. For
example, if V is the connection on G2 for which

o R e 9 = i )
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then the general horizontal section is

u=a

v=azlogz+bz

and the monodromy transform is

1 2miz
]

However, it follows from 1.17.2 that T and Ty have the same characteristic polynomial.
See also 5.6. O

1.18. Let f be a multivalued function on D*. Let D; be the disc D* minus the “cut”
R NnD*. We say that f is of moderate growth at 0 if all the determinations of f on D1
grow as 1/r" for some suitable n:

f<Alz|™.

Here we allow n to vary with the determination. It is evident, however, that, for f of
moderate growth and of finite determination, there exists some n that works for all the
determinations. The fact that f is of moderate growth also implies that the function
f(e%™2) is of at most exponential order in each vertical strip.

If f is a multivalued section of a vector bundle V on D* that is meromorphic at 0, then
we say that f is of moderate growth at 0 if its coordinates, in an arbitrary base of V near
0, are of moderate growth.

Theorem 1.19. Let V be a vector bundle on D* that is meromorphic at 0, endowed with a
connection V. Then the following conditions are equivalent:

(i) V is regular; and

(ii) the (multivalued) horizontal sections of V are of moderate growth at 0.

Proof. (i) = (ii). Choose, near to 0, an isomorphism V ~ @", under which the differential
equation for the horizontal sections is of the form

0,v=Tv,

where I' has at most a simple pole at 0. We then have, for [z| <1< 1,
k
10,v] < — vl
|z|

and, on D (1.18), this inequality integrates, for |z| < A, to

1
lv] < 7 sup lv].
2|7 z1=1
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(i1)) = (i). Let T be the monodromy transformation of V, and let U € GL,,(C) be a matrix
such that exp(27iU) is conjugate to T'. Let Vj be the vector bundle 6™ endowed with the
regular connection with matrix

=—.
z

The bundles V and V; have the same monodromy. By the dictionaries in 1.1 and 1.2, they
are thus isomorphic as bundles with connections on D*. Let

¢: VolD* = VID*

be an isomorphism. It suffices to prove that ¢ is compatible with the structures on Vj and
V of bundles that are meromorphic at 0; this is the case if and only if ¢ is of moderate
growth at 0. Let e be a (multivalued) horizontal basis of Vo|D*, and let f be a (multivalued)
horizontal basis of V|D*.

Vo — V

T
or — o"

The morphism f is, by hypothesis, of moderate growth. The morphism e ! has horizon-
tal sections of the regular bundle V) as its coordinates, and is thus of moderate growth.
The morphism v that makes diagram (i) commute is horizontal with respect to the usual
connection on @”, and is thus constant. The composite ¢ = fye™! is thus of moderate
growth. O

Corollary 1.20. Let Vi and Vy be vector bundles on D* that are meromorphic at 0, and
endowed with regular connections V1 and Vg (respectively). Then every horizontal homo-
morphism ¢: Vi — Vg is meromorphic at zero. In particular, V1 and Vy are isomorphic if
and only if they have the same monodromy.

Proof. Indeed, ¢, thought of as a section of Hom(V7,V3), is horizontal, and thus of moder-
ate growth, since the connection on Hom(V7, V?) is regular. O

1.21. Let X be a smooth algebraic curve over a field & of characteristic 0, and V a vector
bundle on X endowed with a connection

Let X be the smooth projective curve given by the completion of X, and x € X \ X a “point
at infinity” of X. The local ring 0,_ , endowed with

d: Oy, — Q1

satisfies (1.4.1), and V induces a vector space Vx endowed with a connection, in the sense
of (1.2), over the field of fractions K of 0,_, (which is equal to the field of functions of X in
the case when X is connected). We say that the connection on V is regular at x, if this
induced connection on Vi is regular in the sense of (1.10).

Git commit: 50¢2259 44 of 93

’p. 57


https://github.com/thosgood/translations/commit/50c2259

Chapter II. Regular connections

If X is an arbitrary curve that contains X as a dense open subset, and if S c X\ X,
then we say that the connection V is regular at S if it is regular at all points of the inverse
image of S in X (which makes sense, since the normalisation of Yl can be identified with
an open subset of X).

Finally, we say that the connection V is regular if it is regular at all points at infinity
of X.

1.22, If £ = C, then every vector bundle V on X can be extended to a vector bundle on the
completed curve X. If V; and Vs are two extensions of V, and if ¢ is a uniformiser at a
point x4, € X \ X, then there exists some N € N such that, in a neighbourhood of x.,, the
subsheaves V; and Vy of the direct image of V satisfy

tNV1 cVyc t_NV1.

The bundle V2" is thus canonically endowed with a structure that is meromorphic at
every Xoo € X \ X.

If V is endowed with a connection, then we can immediately see (I.12) that (V,V) is
regular at x, € X \ X, in the sense of (1.21), if and only if (V@ V) is regular at x,, in the
sense of (1.14).

[Translator] Theorem 1.23 and Proposition 1.24 have been removed from this edition,
due to the following comment from the errata:

I thank B. Malgrange for having shown me that the “theorem” in (I1.1.23) is
false. We incorrectly suppose, in the proof, that the vector field T has no poles.
The statement of (11.1.23) was used in the proof of the key theorem (11.4.1), and
only there.

I1.2 Growth conditions

2.1. Let X* be a separated scheme of finite type over C. By Nagata [20] (see also EGA II,
2nd edition), X* can be represented by a dense Zariski open subset of a scheme X that
is proper over C (here, proper = complete = compact). Furthermore, if X; and X9 are two
“compactifications” of X*, then there exists a third compactification X3 along with two
commutative diagrams

X* —— X3

X*— X;
We can take X3 to be the scheme-theoretic closure of the diagonal image of X in X7 x Xo.
This makes schemes over C much more well behaved at infinity than analytic varieties

are. Often, an algebraic object or construction with respect to some scheme X* can be seen
as an analogous analytic object or construction, plus a “growth condition at infinity”.

2.2. Let X be a separated complex-analytic space, and Y a closed analytic subset of X. Let
X*=X\Y,andlet j: X* — X be the inclusion morphism of X* into X. In what follows,
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X is seen as a “partial compactification” of X*, with Y being the “at infinity”. We will not
lose much generality in supposing that X* is dense in X.

2.3. Suppose that X* is smooth, and that X admits an embedding into some C” (or, more
generally, into some smooth analytic space). If j; and jo are embeddings of X into C"*,
then the two Riemannian structures on X* induced by C"i, say jjg and j;, satisfy the
following:

For every compact subset K of X, there exist constants A,B > 0 such that
j18<Aj;g<Bjsg <Bjig. ()
on KnX*.

To see this, we compare j;g with j;g, where j3 is the diagonal embedding of X into
C™*n2_ Locally on X, we have js = a-j;, where a: C** — C*1*"2 is a holomorphic section
of pr;, and the claim then follows.

The compactification X of X* thus defines an equivalence class under (*) of Rieman-
nian structures on X *.

Now suppose only that X* is smooth. A Riemannian structure g on X* is said to
be adapted to X if, for every open subset U of X that admits an embedding into C”,
the restriction g|lU N X™ is in the class described above, with respect to UnX* — U.
This condition is local on X. Using a partition of unity, we can show that there exist
Riemannian structures on X* that are adapted to X; these form an equivalence class
under ().

2.4. We situate ourselves under the hypotheses of (2.2). We have multiple ways of defining
the distance from a point of X* to the infinity Y.
2.4.1. Suppose that Y is defined in X by a finite family of equations f; = 0. We set

di(x) =Y fi@)fi(x).

If the functions d’(n) and d7(n) are obtained by this procedure, then we have:

For every compact subset K of X, there exist constants A1,As >0 and p1,p2 > 0 such that,
forall xe X*,
d'l(x) < Ald’l'(x)’01

df(x) < Agdy(x)°2. M)

Indeed, let (f/ = 0) and (f/" = 0) be two systems of equations for Y. It suffices to verify
(+*M) locally on X. Locally, by the analytic Nullstellensatz, we know that, for large enough
N, the f! N (resp. f L.”N) are linear combinations of the ! (resp. f/), and (+M) then follows
formally.

2.4.2. Suppose that X admits an embedding j: X — C". Let U be a relatively compact
open subset of X. In U, we set

da(x) =d(j(x),j(Y nU))

Git commit: 50¢2259 46 of 93

p. 62


https://github.com/thosgood/translations/commit/50c2259

Chapter II. Regular connections

where d is the Euclidean distance in C".
We can show, as in (2.3), that, if d’2 and d’2’ are obtained by this method, with respect
to two different embeddings, then we have:

For every compact subset K of U, there exist constants A,B > 0 such that, for all xe KnX¥,

dj(x) < Adj(x) < Bdj(x). (*xR)

Furthermore, it follows immediately from the Lojasiewicz inequalities [18, Th. 1, p. 85]
that the “distances at infinity” (2.4.1) and (2.4.2) are equivalent in the sense of (xM).

Definition 2.5. Under the hypotheses of (2.2), a norm | x| on X* is said to be adapted to
X if it is a function from X* to R* such that, for every open subset U of X on which Y is
defined by a finite family of equations (f; = 0), and for every compact subset K of U, there
exist constants A1,A9 >0 and p1, p2 > 0 such that, for all x € KnX*, we have

W+ 1) <4 (L A@FA@)”
Y fitofi(x) < Ag(1+ x]) 2.

These conditions are local on X. We can show, using a partition of unity, that there
always exist norms on X* that are adapted to X. These form an equivalence class under
the equivalence relation

For every compact subset K of X, there exist constants A1,As >0 and p1,p2 > 0 such that,
forallxe KnX¥,
(1 +[lxll) < Ay (1 + [lx]| ;)P (*"M)

fori=12.

Definition 2.6. A function f on X* is said to be of moderate growth along Y if there exists
anorm | x| on X* that is adapted to X and such that, for all x € X*,

If ol < ™|l

This condition is local on X.

2.7. More precise information about the structure at infinity of X* is necessary in order
to reasonably define what a multivalued function with moderate growth at infinity on X*
is.

The fundamental example is that of the logarithm function. Denote by D* the univer-
sal covering of the punctured disc. At an arbitrary point of D*, the set of determinations
of log: D* — C is not bounded. We only have a bound

|log(2)| < A(1/|z|)*

in a subset of D* where the argument arg(z) of z is bounded.
The delicate results of Lojasiewicz used below will only be essential in what follows for
trivial cases (cf. (2.20)).
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2.8. In [17], Lojasiewicz proves results which are more precise than (2.8.2) given below.

2.8.1. Let X be a separated analytic space. In the following, we understand “semi-analytic
triangulation of X” in the following weak sense: a semi-analytic triangulation of X is a
set 7 of closed semi-analytic subsets of X (the simplices of the triangulation) such that

(a) 7 is locally finite and stable under intersection; and

(b) for every o € .7, there exists a homeomorphism y between ¢ and a simplex of the form
A,, such that

(b1) the graph I' c R x X of y is semi-analytic, and even semi-algebraic in the first
variable; and

(b2) y sends the set of faces of A, to the set of 7 € .7 contained in 0.

2.8.2. Let X be separated analytic space, and .% a locally finite set of semi-analytic subsets
of X. Then, locally on X, there exists a semi-analytic triangulation .7 of X such that every
F € .7 is the union of the simplices of the triangulation that it contains.

Definition 2.9. Under the hypotheses of (2.2), a subset P of a covering 7: X* — X* of
X" is said to be vertical along Y if there exists a finite family of compact semi-analytic
subsets P; of X such that the P; \'Y are simply connected, and lifts P; of the P;\Y on X*
such that
PP
12

29.1.If T isa semi-analytic triangulation of X' that induces a semi-analytic triangulation
of Y, then a subset P of X* is vertical if and only if it is contained in the union of a finite
nubmer of lifts of open simplices of 7.

2.9.2. If X is a finite union of open subsets U;, then, for a subset P of X* to be vertical,
it is necessary and sufficient for P to be a union of subsets P; c 7~ 1(U;) that are vertical
along Y nU;.

2.9.3. If U is an open subset of X, and P is a vertical subset of X*, then, for every compact
subset K of U, P nn~Y(K) is vertical in 77 1(U) along U NY.

Definition 2.10. Under the hypotheses of (2.2), let 7: X* — X*, and let f be a function
on X*. We say that f is of moderate growth along Y if, for every norm ||x|| on X* that is
adapted to X, and for every vertical subset P of X*, there exist A, N > 0 such that, for all
x€eP,

If (@) < AQ+IxDY.

This condition is of a local nature on X.
Example 2.11. Let X be the disc, X* the punctured disc, and X* the universal covering

of X*. The multivalued functions on X* (or functions on X*) defined by z — z” (for p € C),
and also z — logz, are of moderate growth at the origin.
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Lemma 2.12. Under the hypotheses of (2.2), let V be a coherent analytic sheaf on X*, and
71 and V3 extensions of V to a coherent analytic sheaf on X. Then the following conditions
are equivalent.

(i) There exists an extension V' of ¥V on X, as well as homomorphisms from 7' to 71 and
to V5.

(it) There exists an extension V" of V on X, as well as homomorphisms from 71 and from
Voto V.

(iit) The two previous conditions are locally satisfied on Y.

Proof. To prove that (i) < (ii), we take
V= eV’

where
V' =1 N 7.

If (i) is locally true, then a global solution is given by the sum of the images of 77 and 75
in j.7, where j is the inclusion of X* into X. O

2.13. We say that two extensions 7] and 72 of 7 are meromorphically equivalent if the con-
ditions of (2.2) are satisfied; we say that a coherent analytic sheaf on X* is meromorphic
along Y if it is locally endowed with an equivalence class of extensions of 7" to a coherent
analytic sheaf on X. If there exists an extension of 7 on X that is, locally on Y, mero-
morphically equivalent to the pre-given extensions, then this extension is unique up to
meromorphic equivalence; we then say that 7 is effectively meromorphic along Y. I do not
know if there exist coherent analytic sheaves on X* that are meromorphic along Y but
not effectively meromorphic along Y.

Let 7 be a coherent analytic sheaf on X* that is meromorphic along Y'; a section v €
HO(X*,7) is said to be meromorphic along Y if, locally on X, it is defined by a section of
one of the pre-given extensions of 7. The information of the sheaf j7°7 on X of sections
of 7 which are meromorphic along Y is equivalent to the information of the meromorphic
structure along Y of 7.

2.14. Suppose that X* is reduced, and let 7 be a vector bundle on X* which is mero-
morphic along Y. We will define an equivalence class of “norms” on 7. The “norms” in
question will be continuous families of norms on the 7 (for x € X*). If v is a continuous
section of 7, then |v| is a positive function on X *, which is zero at exactly the points where
v =0. Two norms |v|; and |v|g will be said to be equivalent if we have the following:

2.14.1. For any norm ||x| on X*, and any compact subset K of X, there exist A1,A9,N1,Ng >

0 such that N
[vl1 <A1+ llxID) Hvl2

vl < A1+ lxD™N2 vl

onKnX*.
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2.15.1. If 7V = 0™, then we set [v| =) |v;].

2.15.2. Let x €Y, and let 75 be a pre-given extension of 7 on a neighbourhood of x.
Then there exists an open neighbourhood U of x, along with w: 73 — 0", such that w is a
monomorphism on U NnX*. We set

[v]w = o)

inUnX*.
2.15.3. For x and 7} as in (2.15.1), there exists a neighbourhood U of x, and an epimor-

phism 1: 6™ — 71 on U. We set

lvly= inf |w|

n(w)=v

inUnX*.
2.15.4. We now compare (2.15.2) and (2.15.3). Consider U along with the meromorphic
homomorphisms

o" Ly Lom
defined on U \Y, with 1 an epimorphism and w a monomorphism. The meromorphic
homomorphism wn is such that its kernel and image are locally direct factors. This still
holds true in the scheme Spec(0, x)\Y,. We thus easily deduce that, for every holomorphic

function f on U that vanishes on Y, there exists N > 0, and open neighbourhood U; c U
of x, and some a: 6™ — ©" such that

naw = .
Let K be a compact subset of U;. It is clear that there exists M > 0 such that
lon@)| < C** (1 + lx™ vl
la)| < C*(1+ M ]

on K, and thus
vl < C*(L+ 2™ vl 6))

oly <@+ =™ FN vl @)

on K.

We can apply (2) to a finite family of functions f; that generates an ideal of definition
of Y.

By (2.4) and (2.5), there exists M’ such that

SirNi<cte@+ ™ 3)
i
on K, and it thus follows that, in a small enough neighbourhood of x, [v], and |v|; are

equivalent, in the sense of (2.14.1). The equivalence (2.14.1) is of a local nature on X. We
can thus prove, by using a partition of unity, the following proposition:

Proposition 2.16. Under the hypotheses of (2.14), there exists exactly one equivalence
class (2.14.1) of norms on V which are locally equivalent (in the sense of (2.14.1)) to the
norms (2.15.2) and (2.15.3).

Git commit: 50¢2259 50 of 93

p. 67


https://github.com/thosgood/translations/commit/50c2259

Chapter II. Regular connections

We say that the norms whose existence is guaranteed by (2.16) are moderate.

Definition 2.17. Under the hypotheses of (2.14), let |v| be a moderate normon 7, 7 : X* -
X* a covering of X*, and v a continuous section of 7*7. We say that v is of moderate
growth along Y if |v| is of moderate growth along Y (2.10).

In the particular case where 7 is the identity, we can instead use Definition 2.6. This
is the case in the following well-known proposition, which shows that the knowledge of
moderate norms on 7 is equivalent to the knowledge of the meromorphic structure of 7
along Y.

Proposition 2.18. Under the hypotheses of (2.14), for a holomorphic section v of V over
X* to be meromorphic along Y, it is necessary and sufficient for it to be of moderate growth
along Y.

Proof. The claim is local on X, and we can reduce, by (2.16) and (2.15.2) to the classical
case where 7' =0. O

Proposition 2.19. Consider a commutative diagram of separated analytic spaces

X — X1 <"1

L
)}5 — Xy <— Y,
where Y, is closed in X;, and X = X;\Y;, and thus Y1 = F1(Yo).
Consider the hypotheses:
(a) There exists a subset K of X1 that is proper over X9 and such that f(K1)> X_g
(b) f is proper and induces an isomorphism X = X;.
It is clear that (b) = (a). We have
(i2) If x| is @ norm on Xg adapted to Xo, then ||f(x)| is a norm on Xik adapted to X7.

(ip) Conversely, if (a) is satisfied, and if || x| is a function on X; such that || f (x)|l is a norm
on Xik, then ||x|| is @ norm on X;.

(i) In particular, if (b) is satisfied, then the norms on X] = X adapted to X1 or Xz agree.
Let 7y : 5(2* — X be a covering, and my: ),ﬂ* — X7 its inverse image over X].
(iiy) If P is a subset of XV1* which is vertical along Y1, then f(P) is vertical along Y.

(iip) Conversely, if (a) is satisfied, then every vertical subset of sz* is the image of a vertical
= %
subset of X1 .

(ii¢) In particular, if (b) is satisfied, then the subsets of le* = ng* which are vertical along
Y1 or Yo agree.
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Let 73 be a vector bundle on X, that is meromorphic along Ys, and let 71 be its inverse
image. The inverse images of the pre-given extensions of %2 define a meromorphic structure
along Y1 on 71, and we have

(iiiy) The inverse image of a moderate norm on 73 is a moderate norm on 71.
(iiip) Conversely, if (a) is satisfied, then a norm on ¥ is moderate if its inverse image is.

(iiic) In particular, if (b) is satisfied, then the moderate norms on 71 = V3 adapted to X1 or
X agree.

Proof. We trivially have that (i) + (i) = (i¢), (ia) + (i) = (i), (iiia) + (iip) = (iie),
and almost trivially that (i,) = (i) and (i5) + (iiiy) = (iip).

If Y, is defined by equations f; = 0, then Y is defined by the inverse image of the f;,
and (i,) follows from Definition 2.5 (along with (2.4.1)).

By (2.15.2) and (2.16), we can reduce to proving (iii,) in the trivial case where 7' = 0.

Finally, if .% is a semi-analytic triangulation of the pair (X9,Y5), then the f~1(¢) (for
o € 9) form a locally finite set of semi-analytic subsets of X1, and, by 2.8.2, there exists,
locally on X1, a semi-analytic triangulation .77 of the pair (X1,Y7) such that

Voe. 4 3J1e€ Py suchthat f(o)cT.

Claims (ii,) and (ii,) thus follow immediately. O

Remarks 2.20.

(1) Let X =D™"™ and X* = (D*)" x D™; then Y is a normal crossing divisor in X. On
the universal covering X* of X*, the functions arg(z;) (for 1 <i < n) are defined. It
is clear that a subset P of X* is vertical along Y if and only if its image in X is
relatively compact and if the functions arg(z;) (for 1 <i <n) are bounded on P.

(i1)) Hironaka’s resolution of singularities, along with (ii.) of (2.19), allows us, in the gen-
eral case, to make explicit the idea of vertical subsets, starting from the particular
case of (i).

2.21. Proposition 2.19 allows us to pursue the programme of (2.1). So let X * be a separated
scheme of finite type over C, and X a proper scheme over C that contains X* as a Zariski
open subset. If .7 is a coherent algebraic sheaf on X*, then we know (EGA 1, 9.4.7) that .%
can be extended to a coherent algebraic sheaf .77 on X. The various sheaves ﬂf‘n define
on 72" (effectively) the same meromorphic structure along Y = X \ X*.

We further immediately deduce, from [GAGA], the following:

Proposition 2.22. Under the hypotheses of (2.21), the functor ¥ — %" induces an equiv-
alence between the category of coherent algebraic sheaves on X* and the category of coher-
ent analytic sheaves on (X *)?™ that are effectively meromorphic along Y.

Definition 2.23. Let X* be a separated scheme of finite type over C, and let X be as in

(2.21). Let 7: X* — (X*)2 be a covering of (X*)®*, and ¥ an algebraic vector bundle on
X*.
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(i) A norm on X* is defined to be a norm on (X *)?" that is adapted to X2" (2.5).

(ii) A vertical subset of X* is defined to be a subset of X* that is vertical along Y = X \ X *
(2.9).

(iii) A moderate norm on ¥ is defined to be a moderate norm on 72" with respect to the
meromorphic structure at infinity of 72" (2.16).

(iv) A continuous section v of 7*7 is said to be of moderate growth if it is of moderate
growth along Y (2.17).

By (2.19), these definitions do not depend on the choice of compactification X of X ™.
We can also immediately deduce, from (2.18) and [GAGA] (as in (2.22)), the following:

Proposition 2.24. Let X be a separated scheme that is reduced and of finite type over
C, and let V be an algebraic vector bundle on X. Then a holomorphic section v of V3" is
algebraic if and only if it is of moderate growth.

Problem 2.25. Let X = G/K be a Hermitian symmetric domain (with G a real Lie group,
and K a compact maximal subgroup), and I" an arithmetic subgroup of G. The quotient
I'\G/K is then naturally a quasi-projective algebraic variety [2]. Is it true that a subset
P of G/K is vertical (2.23) if and only if it is contained in the union of a finite number of
Siegel domains?

I1.3 Logarithmic poles

This section brings together some constructions that are “local at infinity” of which we will
later have use.

Definition 3.1. Let Y be a normal crossing divisor in a complex-analytic variety X, and
let j be the inclusion of X* = X \Y into X. We define the logarithmic de Rham complex
of X along Y to be the smallest sub-complex Q5 (Y) of j.Q%. that containing Q5 that is
stable under the exterior product, and such that df/f is a local section of Q}( (Y) for all
local sections f of j.(25 that are meromorphic along Y.

A section of j*Qg(* is said to present a logarithmic pole along Y if it is a section of
QLY.

Proposition 3.2. Under the hypotheses of (3.1),

(i) For a section a of j*QI;‘,* to present a logarithmic pole along Y, it is necessary and
sufficient for a and da to present at worst simple poles along Y.

(ii) The sheaf Q}( (Y) is locally free, and

p
QE(Yy = A QR (V).
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(iii) If the pair (X,Y) is a product (X,Y)=(X1,Y1) x(X2,Y9), i.e. if
X=X1><X2 and Y=X1 XYQUXZXYL

then the isomorphism between Q. and the external tensor product Q. MK Q%. (de-
1 2
fined by pr; Q5. ®pryQ%.) induces an isomorphism
1 2

Oy, (Y1) K QY (Ya) = Q3 (V).

(iv) Let Y; be a normal crossing divisor in X; (for i =1,2), and f: X1 — X2 a morphism
such that f1(Ys) = Y1. Then the morphism f*: f*((j2)«Q%.) — (j1)+ Q% induces an
2 1

“inverse image” morphism

f*: £ Q%, (Ya) — Qk (Y1)

Proof. Claim (iv) is trivial, given the definition. Let D be the open unit disc, and D* =
D\ {0}. To prove (i), (ii), and (iii), we can assume that X is the polydisc D", and that
X* =D xD"* and Y =U;<;<; Y;, where Y; = pri‘l(O). Under these hypotheses, we
have

Lemma 3.2.1. The shean}((Y) is free, with basis (dz;/z;)1<i<k U (d2z)r<j<n-

Proof. Indeed, every section of j.O%. that is meromorphic along Y can be written locally

asf=g- H?:l zfi with g invertible, and

k
df/f =dglg+)_ kidzi/z;
i=1

is a linear combination of the proposed basis vectors, which are clearly independent. [

From this lemma, we immediately deduce (ii), (iii), and the necessity of the condition
in (i).

Let a be a section of j . Q?(* satisfying the condition of (i). To prove that « is a section of
fo* (Y, it suffices (since this sheafis locally free) to prove this outside of a set of complex
codimension = 2. This allows us to suppose that the hypotheses of (3.2.1) are satisfied,
with 2 = 1. The form « can thus be written in the form a = @ + a2 Adz1/z;1 in exactly one
way, with the forms a1 and ag being such that they do not contain any dz; term.

The hypotheses imply that

® a9 is holomorphic;
® zja; is holomorphic; and
* zida =z1daj +dag Adz; is holomorphic.

From this,
dziAa1=d(z1 Aay)+z1da —dag Adzy

is holomorphic, and thus so too is a1, which proves (i). O
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Variants 3.3.

3.3.1. Let f: X — S be a smooth morphism of schemes of characteristic 0, or a smooth
morphism of analytic spaces, and let Y be a relative normal crossing divisor in X. Defini-
tion 3.1 still makes sense, and defines a sub-complex Q% ((Y) of j.Q%. ¢ (where j is the
inclusion j: X* = X \Y — X). Proposition 3.2 still holds true, mutatis mutandis. Forming
the complex Q% (Y) is compatible with any base change, and with étale localisation on
X.

3.3.2. Let f: X — S be a morphism of smooth analytic spaces, 0 a point of S, and Y a
normal crossing divisor in X. Let S* =S\ {0}, and X* =X \Y, and let j be the inclusion
of X* into X. Suppose that

(a) dim(S)=1;

() FIf71(S*) is smooth, and Y n f~1(S*) is a relative normal crossing divisor in f~1(S*);
and

© Y > £ 0).

We can then define the complex Q}(/s (Y) as the image of j «Q%. in Q5 (Y).

Locally, close to 0 and f ~1(0), we can find coordinate systems (z;)o<i<n on X, and z on
S, such that z(0) =0, such that zo f = H?:o zfi (for £ <n and e; > 0), and such that Y can
be described by the equation Hﬁzozi =0 (for £ <[ <n). In such a coordinate system, the
sheaf Q:)l(/s (Y) is free, with basis given by (dzi/zi)1<;<; U(d2;)i<j<p. In Q%(/S (Y), we have
the equation

k
df/f = Z eidzi/zi =0.
=0

We thus deduce that (2%( /S (Y) is locally free, that

p
A Qs (V) = Q8 (), (3.3.2.1)
and that the sequence
sl I ol 1
0— f"Qg(0) — Qx(Y) — Qx,s(¥Y)—0 (3.3.2.2)

is exact and locally split. This will play a key role in (IL.7), in the following form:

Lemma 3.3.2.3. Every vector field vy on S that vanishes at 0 can be locally lifted to a
vector field v on X satisfying
(v,Q%(Y)) < Ox.

Indeed, the transpose of the direct monomorphism f* in (3.3.2.2) is an epimorphism.

3.3.3. The reader can translate (3.3.2) into the setting of a morphism f: X — S of schemes
of finite type over C that satisfies the conditions analogous to (3.3.2.a,b,c).

3.4. Let Y be a normal crossing divisor in S. Elocally on X, we can write Y as a sum
of smooth divisors Y;. We denote by Y? (resp. Y?) the union (resp. disjoint sum) of the
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p-fold intersections of the Y;; the Y?, thus locally defined, glue to give a subspace Y? of
X, and the Y? glue to give the normalised variety of Y”. We have Y° =Y? = X, and we
set Y =Y. Let a: Y? — X be the projection.

If, to each point y € Y?, we associate the set of p germs of the local components of Y at
a(y) that contain the image in X of the germ of the neighbourhoods of Y in Y?, then this
defines a local system £, on Y? of sets with p elements.

Denote by €? the rank-1 local system

€p = ;\ng

on YP. We have that (e?)®2 = C. IfY is the sum of smooth divisors (Y;);cs, then the choice
of a total order on I trivialises the €P.

3.5. Denote by Wn(QE( (Y)) the smallest sub-@-module of (23( (Y) that is stable under the
exterior product with the local sections of Q5 and that contains the products

dfl/fll\.../\dfk/fk

for & < n, and local sections f; of j*@’)*(* that are meromorphic along Y. Then the W,, form
an increasing filtration of Q5 (Y) by sub-complexes, called the weight filtration. We have
that

Wr(Q% (Y) A W5 (Q%(Y)) € Wy ym(Qx (YD), (3.5.1)

Locally on X, we can write Y as a finite sum of smooth divisors (Y;);c; defined by
equations ¢; = 0. Let g be an injection of [1,n] into I, let e(q) be the corresponding section
eq() A... Aeg(n) of €” on the component Y, = Ni<;<p Yq() of Y”, and let aq: Yy — X be the
projection.

The map pg from ng to W”/W”_l(Q§(+n(Y>) given by

a—dtg)/tgA... ANAEgm)/tgm) N (3.5.2)

does not depend on the choice of the ¢;, since, if t; are a different choice, then the d¢;/¢; —
dti/t, = d(¢;/t))/t;/t;) are holomorphic, and po(a) - py(a) € W”_l(Qf;;rn(Y)). Similarly,
poltgay - B) =0, and po(dty;) A B) =0, and so pg factors through

p1:(ag):Qy — WW"HQE™(Y)).
The trivialisation e(q) of €"|Y, identifies p1 with
p2: (ag):Qy, (€M-nl— Gr)! (Qx (¥)).
Finally, the sum of the morphisms pg for the different ¢ defines a morphism of complexes
p: a.Q5, (@©-n] — Gry (Qx (V). (3.5.3)

This morphism, defined locally by (3.5.2), glues to give a morphism of complexes on X.

Proposition 3.6. The morphisms (3.5.3) are isomorphisms.
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Proof. If the pair (X,Y) is a product (X,Y) = (X1,Y71) x (X9,Y9), i.e. if
X=X1><X2 and Y=X1 XYQUXZXYl,

then the weight filtration on Q5 (Y) is the external tensor product, via (3.2.iii), of the
weight filtrations on the Q% (Y;). We thus have

Gr" (Q% (V)R G (Qf, (Vo)) = G (Qx (V). (3.6.1)

The isomorphisms _ _ .
Y*= [] YPRYY

p+q=n
"= [] #Xe?
p+g=n
induce an isomorphism
;G*Q%p(ep)[—p]ﬁé‘,a*Q%q@q)[—q] = ;G*Q%n(en)[—nl (3.6.2)

Further, via (3.6.1) and (3.6.2), we have
p1Xpa =p. (3.6.3)

For p to be an isomorphism, it is thus sufficient that the p; be isomorphisms. Since the
problem is local on X, this allows us to restrict to the trivial case where dim(X) = 1. O

3.7. The isomorphism inverse to p is called the Poincaré residue
Res: GrnW(Qé’{ Y))— Q’%n(e”)[—n]. (3.7.1)
We will only need the case where p = 1, which gives
Res: Q% (Y) — Oy. (3.7.2)
If 7 is a vector bundle on X, then the morphism (3.7.2) extends by linearity to
Res: Q3 (Y)(¥) — Oy ® 7. (3.7.3)
For each smooth component Y; of Y, this gives

Resy, : Q% (Y)(¥) = V1Y;. (3.7.4)

3.8. Under the hypotheses of (3.1), let 7, be a vector bundle on X *, endowed with an
integrable connection V. Suppose that 7, is given as the restriction to X* of a vector
bundle 7 on X. Locally on X, the choice of a basis e of 7 allows us to define the “connection
matrix”

T € j. Q. (End(¥)). (3.8.1)

A change of basis e — ¢’ modifies I' by addition of a section of Q}((Enda/)) (1.3.1.3). Thus
the “polar part of I'””
I'e j.Q%. (End(%))/ Q% (End(¥)) (3.8.2)
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depends only on 7 and on V. We say that the connection V has at worst a logarithmic pole
along Y if, in every local basis of 7, the connection forms present at worst a logarithmic
pole along Y. In this case, the residue of the connection I' along a local component Y; of Y
is defined (3.7.4)

Resy,(I') € End(71Y;) (3.8.3)

and it depends only on 7 and on V. More globally, if i: ¥ — X is the projection of the
normalisation of Y onto X, then the residue of the connection along Y is an endomorphism
of i*V

Resy(I) € End(i * 7). (3.8.4)

3.9. We place ourselves under the hypotheses of (3.8), and make the following additional
hypotheses:

a) Y is the sum of smooth divisors (Y;)1<i<, (Which is always the case locally). For P c
[1,n], we set Yp =(N;ep Y; and Y}, = Yp \U;gp Y.

b) The connection on 7" has at worst a logarithmic pole along Y.

The dual of the vector bundle Q}( (Y) is the bundle le((—Y) of vector fields v on X that
satisfy

3.9.1. For P c[1,n], v|Yp is tangent to Yp.

If a vector field v satisfies (3.9.1), and if g is a section of 7, then V,(g) is again a
regular section of 7. Its restriction to Yp depends only on g|Yp and on the image of v in
T}((—Y) ® Oy,. If s is a local section of the evident epimorphism from TA%((—Y) ® Oy, to its
image in the tangent bundle to Yp, then Vg,)(g) defines a connection ;V on 7/|YIQ. There
is a Lie bracket defined, by passing to the quotient, on T%(—Y} ® Oy,. The connection ;V
is integrable if s commutes with the bracket; it presents at worst a logarithmic pole along
YpnUiepr Y.

An easy calculation shows the following:

Proposition 3.10. Under the previous hypotheses, and with the above notation,
(1) [Resy,(I),Resy,(ID]=00nY;NY;; and
(ii) if i € P, then ;VResy,(I) =0 on Y},

We deduce from (3.10.ii), for P = {i}, that the characteristic polynomial of Resy,(I') is
constant on Y;.

We can also deduce (3.10) from the following proposition, which can be proven similarly
to (1.17):

Proposition 3.11. Let 7 be a vector bundle on X =D", let Y = {0} xD" !, and X* =X \Y,
and let T be an integrable connection on V|X* presenting a logarithmic pole along Y. Let
T be the monodromy transformation of V'|X* defined by the positive generator of 11(X*) =
m1(D*) = Z (cf. (1.15)). Then the horizontal automorphism T of V|X* can be extended to an
automorphism of V, again denoted by T, and

T|Y =exp(—2miResy(I)).
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3.12. Let X be a complex-analytic variety, Y a normal crossing divisor in X, and j: X* =
X \Y — X the inclusion. For a vector bundle 7 on X, we denote by jTj*7 the sheaf of
sections of 7 over X* that are meromorphic along Y.

Locally on X, Y is the union of smooth divisors Y;, and we define the pole-order filtra-
tion P of j2j*0 = j2Ox+ by the equation

Pr R 0)= Y. 0) (n; + 1Y) (3.12.1)

neAy

where
Ar={(n))1X;n; <-k and n; >0 for all i}.

This construction can be made global, and endows jT0x+ with an exhaustive filtration
such that P* =0 for & > 0.

Let 7 be a vector bundle on X, and I' an integrable connection on 7|X* presenting a
logarithmic pole along Y. We define a filtration P, again called the pole-order filtration, of
the complex j3'j* Q5 (V) = jTQ%. (V) by

POk . (1) = PF P (jPox ) Qf 0. (3.12.2)
From the fact that I' presents at worst logarithmic poles along Y, we deduce that
a) the filtration P in (3.12.2) is compatible with the differentials; and
b) QYY) isa sub-complex ofjf‘Qs(*(V).
Furthermore,

¢) the operators d are Ox-linear on the complexes Grf,( j{?Q;ﬁ(V)); and

d) the filtration P induces the Hodge filtration F on Q% (Y)(¥) by the stupid trunca-
tions o>, whence we have a morphism of filtered complexes

Q% (V)),F) = (j2Q%-(7),P). (3.12.3)

Proposition 3.13. With the hypotheses and notation of (3.12), if the residues of the con-
nection T along all the local components of Y do not admit any strictly positive integer as
an eigenvalue, then

(i) the morphism of complexes (3.12.3) is a quasi-isomorphism; and
(ii) more precisely, it induces a quasi-isomorphism

Grr (Qx (V)(¥)) — Grp (j2Q%. (V). (3.13.1)

Proof. It suffices to prove (ii), which also implies that, for each p, Gr’lg( JeQ%.(M)Iplis a
resolution of Qé} YHY7).
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First reduction (Extensions). If 7 is an extension of bundles with connections
satisfying (3.13), as in
00—V -7-7"-0

then the lines of the diagram

0 —> GI‘FQ&(Y)(V’) — Grr Q5 (V) —> GTFQE(<Y>(7/’,) — 50

! | !

0 —> GTP.].?QS(*(V,) — GrpjTQB(* ) — GI'PJ'I:!QA;(*(VH) S 0

are exact. For (3.13.1) to be a quasi-isomorphism, it thus suffices to prove the anal-
ogous claim for 7' and 7.

Second reduction (Products). Suppose that (X,Y) is the product of (X1,Y7) and
(X2,Y9), and that 7 is the external tensor product 7 = 7; X7, of bundles 7; with
connections satisfying the hypotheses of (3.13) on (X;,Y;).

The isomorphism (3.2.iii) identifies the Hodge filtration of Q% (Y) with the external
tensor product of the Hodge filtrations of the Q% (Y;), whence the evident isomor-
phism

Grr (Q, (YD 04)) R Grp (Q, (Y2)(52)) = Grp (Q3 (V)(1)). (3.13.2)

The evident isomorphism
m e Mmee o~ me
identifies the filtration P of ji'Q%. with the external tensor product of the filtrations
P of the j'Q%.. We thus have
Grp (j7 Q. 00) K Grp (770, (7)) = Grp (/7 Qk- (7). (3.13.3)

The morphism (3.13.1) can be identified, via (3.13.2) and (3.13.3), with the external
tensor product of the analogous morphisms for 77 and 7;. Since the complexes in
question have Ox-linear differentials (3.12.d), to prove that is a quasi-isomorphism,
it suffices to prove the analogous claim for 7; and 7.

Case of constant coefficients. We first prove (3.13.ii) in the case where the fol-
lowing conditions are satisfied:

(3.13.4) X is the open polydisc D";
(3.13.5) Y =Us<i<k Yi, with ¥; = pr;1(0); and

(3.13.6) 7 is the constant vector bundle defined by a vector space V, and the connection
is of the form

withI'; e End(V) and I'; =0 for i > &.
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Since the connection is integrable, the I'; pairwise commute, and there exists a finite
filtration G of V that is stable under the I';, and such that dimGrg(V) < 1. By the
first reduction, we can assume that V = C, in which case the I'; can be identified
with a scalar y;. The bundle 7 with connection is then the external tensor product
of the bundles (0, y;dz/z) on D. The second reduction allows us to assume that n = 1.
Ifk=0,ie. if Y =@, then Q5 (Y) =j§‘(23(* and F=P.Ifk=1,1i.e. if Y ={0}, then

a) PI(jPQ%.(¥) =0 for i >-1;

b) P~1(jRQ%. (7)) is equal to 0 if p = 0, and to QL (Y)(¥) if p=1;

¢) Gry(jmQ%.(¥)) is the complex

1 _o,+y 1 1
6% ~6 /-0
z 22 /z

and if y — 1 # 0 then Coker(d) =0 and Ker(d) =7 = Q())( Y'Y(7¥); and
d) Grp"(j3'Q%. (7)), for n >0, is the complex

1 1,04y 1 /1

Zn+l z_n Zn+2 Zn+l :
This satisfies (3.13.ii) case by case.

General case. Since the problem is local, we can suppose that conditions (3.13.4)
and (3.13.5) are satisfied, and it suffices to prove that the germ at 0 of (3.13.1) is a
quasi-isomorphism.

For 0 < |¢| <1, let 7 be the bundle with connection given by the inverse image of 7
under the homothety H; with ratio . As ¢t — 0, the 7 “tend” to the constant vector
bundle 7 defined by the fibre V; of 7 at 0, endowed with a connection satisfying
(3.13.4), (3.13.5), and (3.13.6).

More precisely, let H and i; be the morphisms

H:D"xD—D": (x,t)—t-x

i;:D"—>D"xD: x— (x,t).
Then H; = Hoi;. The inverse image of the connection V on 7 is V1 on H*v|H1(X*).
The corresponding relative connection (relative to pry) extends to H*(¥)|X* x D. If
we set 7; = i; H*V, then, for ¢ # 0, we have an isomorphism of bundles with connec-

tions
V. =2H; (V). (3.13.7)

For ¢ = 0, we have an isomorphism of vector bundles
Vo=Hy(V)=0x ®c Vo (3.13.8)

and the connection on 73| X * satisfies (3.13.4), (3.13.5), and (3.13.6).

The relative version of (3.12) gives a morphism of filtered complexes

@: (Qxpp Y x DYH*V),F) — (jRQ%. ., (H*V),P). (3.13.9)
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The associated graded complexes are flat over D (via pry), and their homogeneous
graded components are coherent, and the differentials are Ox «p-linear. We already
know that i Gr(¢p) is a quasi-isomorphism. It thus follows that iy Gr”(¢) (the arrow
(3.13.1) for %) is a quasi-isomorphism near to 0, for ¢ small enough. Since the 7
are isomorphic to one another, close to 0, for ¢ # 0 (3.13.7), i} GrP(¢) is a quasi-
isomorphism near to 0, which proves .

O

Corollary 3.14. Let X be a smooth scheme over C, Y a normal crossing divisor in X, j the
inclusion of X* = X \Y into X, V a vector bundle on X, and I' an integrable connection on
V|X* that presents a logarithmic pole along Y. Suppose that the residues of the connection
along Y do not admit any strictly positive integer as an eigenvalue. Then

(i) the homomorphism of complexes
i Q7)) — j Q5% (V)
induces an isomorphism on the cohomology sheaves (for the Zariski topology); and

(ii) more precisely, i is injective, and there exists an exhaustive increasing filtration of the
complex Coker(i) whose successive quotients are acyclic complexes whose differentials
are linear.

Proof. The filtration P of (3.12) has an evident algebraic analogue, which also satisfies
conditions a) to d) of (3.12). The corollary follows from the statement, which is more
precise than (ii), saying that the complexes

G' =Grb (. Q%) / Q% (Y)D)
are acyclic. These complexes have Ox-linear differentials, and, by (3.13), the (GH™ are
acyclic. By the flatness of Oxan over Ox, the G* are thus acyclic, which finishes the proof.
O
Corollary 3.15. Under the hypotheses of (3.14), we have
H* (X, Q5% (V)(¥)) = H* (X *,Q%. (7).

Proof. Since the morphism j is affine, we have
R"j.Q%.(7)=0 fork>0

and so

H*(X,/.Q%- () = H (X", Q%. ().
Also, by (3.14.1), we have

H* (X, Q5% (Y)(7)) = H* (X, /.Q%- (7))
whence the corollary. 0
Remark 3.16. It is easy to generalise (3.13) and (3.14) to the relative situation, where

f: X — S is a smooth morphism (with S an analytic space, or scheme of characteristic 0),
and Y is a relative normal crossing divisor.
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I1.4 Regularity in dimension n

[Translator] The proof of Theorem 4.1 has been replaced with the proof given in the errata,
which also cites the following:

N. Katz. The regularity theorem in algebraic geometry. Actes du Congrés
intern. math. 1 (1970), 437-443.

Note that pages 87 and 88 are thus missing from this translation.

Theorem 4.1. Let X be a complex-analytic space, Y a closed analytic subset of X such that
X* =X\Y is smooth, X' the normalisation of X, and Y' the inverse image of Y in X'. Let
V be a vector bundle on X* that is meromorphic along Y, and let V be a connection on V.
Then the following conditions are equivalent:

(i) there exists an open subset U of Y' that contains a point of each codimension 1 com-
ponent of Y', and an isomorphism ¢ from a neighbourhood of U in X' to U x D (where
D is the unit disc) that induces the identity map from U to U x {0}, such that, for all
u € U, the restriction of ¢*V to {u} x D is regular at 0;

(ii) for every map ¢: D — X with ¢~ 1Y) = {0}, the inverse image of V under ¢ is regular;
and

(iit) the (multivalued) horizontal sections of V are of moderate growth along Y.

By (i), these conditions hold “in codimension 1 at infinity” on the normalisation of X.
If Y is a smooth normal crossing divisor in X, then the above three conditions are also
equivalent to the following:

(iv) for all y €Y, there exists an open neighbourhood U of v, and a basis e: 0% —V of ¥
on U\Y that is meromorphic along Y, such that the connection matrix (which is a
matrix of differential forms) presents at worst a logarithmic pole along Y.

Proof. We will use constructions (5.1) to (5.5); the reader can verify the lack of circularity.
The theorem is local along Y, which allows us to suppose that

a) the meromorphic structure of 7 along Y is defined by a coherent extension 7 of the
vector bundle 7 on X; and

b) there exists a resolution of singularities 7: X; — X such that X; is smooth, 7 is proper,
a~1(X*) = X*, and such that Y7 = X; \ 77 1(X*) is a normal crossing divisor in X7.

We can think of 7" as a vector bundle with integrable connection on X| = a1(X*), and
7 as its canonical extension on X 1. The vector bundle 7 = 7.V is a coherent extension of
7 on X. We will show that conditions (i), (ii), and (iii) are all equivalent to the following:

(v) The extensions ¥ and ¥, of V are meromorphically equivalent.
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First we prove that (i) = (v). If X is of dimension 1, then this is a consequence of
(1.20). Let u be the identity map from 7|X* to 7|X*. We need to show that, for every
open subset W c X, for every linear form w € H*(W,7V), and for every local section e €
HO(W,VO), the function f = (w,u(e)) is meromorphic along Y N W.

Suppose that X is smooth, that Y is a smooth divisor in X, and that X; = X. The fact
that f is meromorphic follows from the already discussed dimension 1 case, and from two
applications of the following lemma (once to show that f is meromorphic along U, and
once again to show that f is meromorphic along Y).

Lemma 4.1.1. Let f be an analytic function on D1\ ({0} x D™). Suppose that there exists
a non-empty open subset U of D™ such that, for all u e U, f|(D* x{u}) is meromorphic at 0.
Then there exists some n such that f has a pole of order at most n along {0} x D™.

Proof. Let F,, c D™ be the set of u such that f|D* x {u} presents at worst a pole of order n
at 0. Let

Ak(u)sz(z,u)zkdz.

Then Aj(u) is holomorphic, and F,, is defined by the equations Ax(u) =0 for £ = n. By
hypothesis, the union of the closed subsets F',, has an interior point. By Baire, there exists
some n such that F,, has an interior point, and A(«) is thus zero on an open subset (and
thus everywhere) for all £ = n. But then f has at worst a pole of order n along {0}xD™. O

To pass from here to the case where X is normal, we note that the above conditions are
then satisfied outside of a subset Z of Y of codimension = 2 in X. We conclude by noting
that a function f on X \'Y which is meromorphic along Y outside of Z is meromorphic
along Y. Indeed, the proof of (4.1.1) shows that, locally on Y, the product of f with a
high enough power g* of a function that vanishes on Y is holomorphic on X \ Z, and this
product extends to a holomorphic function on X.

In the general case, we note that condition (i) (resp. (v)) is equivalent to condition (i)
(resp. (v)) on the normalisation of X.

It is trivial that (ii)) = (i), and it follows from (1.19) that (iii) = (i).

Under the hypotheses of (iv), and for X; = X, it is clear that (v) = (iv); by (5.5.1),
(v) = (iii); since the inverse image of a differential form that presents at worst a simple
pole also presents at worst a simple pole, (iv) = (ii). Under these hypotheses, claims (i)
to (v) are thus equivalent.

It follows from (2.19) and from the above that (v) = (iii). To prove that (v) = (ii), we
can either use (1.19) and (2.19) to show that (iii) = (ii), or we can note that condition (ii)
for 7 on X* c X is equivalent to condition (ii) for 7717 on X* c X;. Conditions (i), (ii),
(>iii), and (v) are thus equivalent. In particular, condition (v) is independent of the choice
of X1; we thus deduce that, under the hypotheses of (iv), (iv) < (v), and this finishes the
proof. O

We note that the above proof already contains the essential part of the proof of (5.7)
and (5.9) (the existence theorem).

Definition 4.2. Under the hypotheses of (4.1), we say that (¥,V) is regular along Y if any
of the equivalent conditions of (4.1) are satisfied.
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Proposition 4.3. With the hypotheses and notation of (2.19), let 7 be a vector bundle on
X that is meromorphic along Y, endowed with an integrable connection. Then

(a) if V is regular, then f*V is regular; and

(b) if condition (2.19.a) is satisfied, and if f*V is regular, then V is regular.

Proof. By (2.19), this is clear from (4.1.iii). O

Proposition 4.4. Let 7 be a vector bundle on a smooth separated complex-algebraic vari-
ety X. Let X be a compactification of X, so that V®" is meromorphic along Y = X \X. Let
V be a connection on V'@, Then the following conditions are equivalent:

(1) V3@ is regular along Y; and

(ii) for every smooth algebraic curve C on X (and locally closed in X), V'|C is regular
(1.21).

If X is normal, then the above two conditions are also equivalent to the following:

(iit) V is algebraic, and, for every generic point n of a codimension 1 component of Y,
there exists an algebraic vector field v on a neighbourhood of n, with v transversal to
Y (so that the triple (Gy,0,0,) satisfies (1.4.1)), such that ¥ induces, over the field
of fractions K of 0, endowed with 0,, a vector space with regular connection, in the
sense of (1.11); and

(iti’) idem. for every field v of this type.

Proof. We have (ii) = (4.1.i) = (4.1.ii) = (ii). Also, (4.1.iv) implies that V is meromor-
phic in codimension 1 on X, and thus meromorphic, and thus algebraic (by [GAGA]). We
thus have

(iit") = (i) = (4.1.1) = (4.1.iv) = (i1).

O

Definition 4.5. Under the hypotheses of (4.4), we say that (7,V) is regular if any of the
equivalent conditions of (4.4) are satisfied.

If (7,V) is a vector bundle with integrable algebraic connection on X, then it is clear, by
(4.4.11), that the regularity of V is a purely algebraic condition, independent of the choice
of compactification. We can, in many different ways, define regularity when X is a smooth
scheme of finite type over a field % of characteristic 0. For example, we can take (4.4.ii) or
(4.4.1ii) as a definition. We will restrict ourselves in what follows to the case where 2 = C.
By the Lefschetz principle, this does not reduce the level of generality.

Proposition 4.6. Let X be a (smooth) complex-algebraic variety.

(i) If V! =V — V" is a horizontal exact sequence of vector bundles with integrable con-
nections on X, and if V' and V" are regular, then V is regular.
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(ii) If 71 and V5 are vector bundles with regular integrable connections on X, then 71 ® 75,
Hom(71, %), V,¥, and NP 71 are all regular.

(iii) Let f: X — Y be a morphism of smooth schemes over C, and V a vector bundle with
integrable connection on Y. If V is regular, then f*V is regular. Conversely, if f*V is
regular and f is dominant, then 7 is regular.

Proof. Claims (i) and (ii) follow immediately from the definition, by (4.4.ii) and (1.13). It is
clear, by (4.4.ii1), that regularity, being satisfied in codimension 1 at infinity, is a birational
notion. This allows us to replace “f is dominant” in (iii) by “f is surjective”. We then apply
(4.4.11) and (1.13.ii1) by noting that, for f surjective, for every curve C on Y, there exists a
curve C’ on X such that f(C")>C. O

I1.5 Existence theorem

5.1. Let D be the open unit disk, D* =D\ {0}, X =D"*™ Y, = pri’l({O}), and Y = U;‘:l Y;.
Set X* =X \Y =(D*)* x D™. We have

11X =m (D" =2" (5.1.1)

via the identification 71(D*) = Z from (1.15). We denote by T; the element of the abelian
group 71(X ™) that corresponds, by (4.1.1), to the i-th basis vector of Z”.

A local system 7 on X* is said to be unipotent along Y if the fundamental group
m1(X*) acts on this local system (I.1.5) by unipotent transformations. We will use the
same terminology for when 7 is a vector bundle endowed with an integrable connection on
X" (via the dictionary in (1.2.17)). Since 71(X*) is abelian, generated by the “monodromy
transforms” T';, it is equivalent to ask for the T'; to act unipotently.

In the following proposition, we denote by || || an arbitrary norm on X* with respect to
Y, for example
izl 1 Izl 1
zll = or |z|l= .
d(z,Y) [T} Izl

Proposition 5.2. With the notation of (4.1), let V' be a vector bundle with integrable con-
nection on X* that is unipotent along Y. Then

(a) There exists a unique extension ¥ of the vector bundle ¥ to a vector bundle on X that
satisfies the following conditions:

(i) Every (multivalued) horizontal section of V has, as a multivalued section of V
on X*, a growth of at most G((log |x|)¥) (for large enough k) near every compact
subset of Y.

(it) Similarly, every (multivalued) horizontal section of ¥V has a growth of at most
O((log lxID%) (for large enough k) near every compact subset of Y.

(b) The combination of conditions (i) and (ii) above is equivalent to the following condi-
tions:
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(i) The matrix of the connection of ¥, in an arbitrary local basis of ¥, has at worst a
logarithmic pole along Y.

(it) The residue Res;(I') of the connection along Y; (for 1 <i <n) is nilpotent.

(c) Let e be a (multivalued) horizontal basis of V. Then the sections of ¥V over X can be
identified with the sections of 7 over X* whose coordinates in the basis e are (mul-
tivalued) functions with growth at most G((log|x|)*) (for large enough k) near every
compact subset of Y.

(d) Every~horizontal morphism f: Vi — V5 can be extended to f: 73 — Va. The functor
V — V is exact, and compatible with ®, Hom, AP, ...

We call 7 the canonical extension of 7.
Proof. —

(a) Let e: @™ — ¥ be a (multivalued) horizontal basis of 7, and 7] an extension of 7. Con-
dition (i) implies that e: 6™ — 7;|X* has growth @((logllxll)k). Condition (ii) implies
that the dual basis e’: 6" — 7| X* has growth at most @((log | x[)*). If 71 and ¥ are
two extensions of 7 satisfying (i) and (ii), then the identity map i of 7 fits into the
commutative diagram

HIX* — HIX*
1] i
@n J— @n
By hypothesis, e ! and e, and thus i, have growth G((log|x|)*), and so i is regular,

and so i1 is also regular: the identity of 7 extends to an isomorphism between 7; and
V. This proves the uniqueness of 7.

(b) Let 7 be a vector space endowed with a unipotent action of 71(X*), and let —27iU; be
the nilpotent determination of the logarithm of the action of T}, i.e.
1 «UI-Tyk

= — 5.2.1
YT omi k ( )

Let 7 be the vector bundle on X defined by 7, and endowed with the connection

matrix d
r=yYu, = (5.2.2)
2
The (multivalued) horizontal sections of 7% are of the form
v(2) = exp (- Y_(logz;)U;) (vo). (5.2.3)

The exponential series reduces here to a finite sum, and thus to a polynomial in the
logz;.
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The vector bundle 770 satisfies (i), (i1), (iii), and @v). Furtller, if eg is a basis of 7,
then the relation between the coordinates of a section v of 7 in the basis e, or in the
horizontal basis e; given by (5.2.3), is given by

eg =exp(X? ,(logz)U;)e1
e1 =exp (Xl (ogz)U;)eo

and (c) is satisfied. Finally, 7, is an exact functor in 7, and its construction is compat-
ible with ®, Hom, A?, .... Given the dictionary in (I.1.2), this proves (a), (c), and (d),
and shows that (1)+(@i) = (iii)+(iv).

(c) Let 771 be an extension of 7 satisfying (iii) and (iv). To prove (i), we reduce to the case
where 77 ~ 0" is free. Let I be the connection matrix, and write

d .
T=YTo; =t +T"=T"+T"
2

with [y ; constant, and I’ holomorphic. Let e be a (multivalued) horizontal basis for
the connection I (which is of the type considered in (b)). If a-e is a (multivalued)
horizontal basis for I', then

V(a-e)=da-Ve+a-Ve=0
whence the bound
ldal < C*lal(loglz1)"*.
This proves that 7; satisfies (i), and (ii) follows by considering 7;".
O

5.3. If we do not suppose 7 to be unipotent along Y, then it is still possible to “make” an
extension of 7 on X, but its construction, which is much more arbitrary, depends on the
choice of a section 7 of the projection of C to C/Z. Choosing 7 is equivalent to choosing a
logarithm function: we set

(1
log,(x) =2mit (2_m logz) .

One of the least bad choices is
O<sR() <1 (5.3.1)

Proposition 5.4. (Manin [19]). Let T be as in (5.3), and let V be a vector bundle with an
integrable connection on X*. Then there exists a unique extension V(1) of the vector bundle
¥ to a vector bundle on X that satisfies the following conditions:

(i) The connection matrix of ¥, in an arbitrary local basis of V(T), presents at worst a
logarithmic pole along Y ;

(ii) The residue Res;(I') of the connection along Y; (for 1 <i < n) has eigenvalues in the
image of T.
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The extension V(1) of ¥ is functorial and exact in V.
(We note that the construction of V(1) is not, in general, compatible with ®.)

Proof. For every homomorphism A: 71(X*) — C*, let U, ; (or simply U,) be the vector
bundle @ on X endowed with the connection matrix

-1 dz;
I'y=) —og, MT;))—.
=1 27ti( 0gr MT:)) zi

By construction, U, satisfies (i) and (ii), and admits 1 as its monodromy.
Let 7 be an arbitrary vector bundle with integrable connection on X*. Then 7 admits
a unique decomposition

V=PUrX*" e
A

with 7} unipotent along Y. The direct factor (U} |X*)® %) of 7 is the largest sub-bundle of
7 on which the T; — A(T';) are nilpotent. The extension (cf. (5.2))

7, =@Ure7 (5.4.1)
A

of 7 satisfies (i) and (ii), and is exact and functorial in 7.

To prove that the extension problem has only one solution, it suffices to prove this
locally on Y outside of a subset of codimension = 2 in X. With the notation of (5.1), this
allows us to reduce to the case where n = 1. So let 7' be an extension of 7 satisfying (i) and
(ii). By (3.11), the monodromy transformation T extends to an automorphism of 7'. The
characteristic polynomial of 7' is constant; the vector bundle 7’ thus decomposes uniquely
into its T-stable vector sub-bundles on which an endomorphism (7 — 1) is nilpotent (i.e.
the generalised eigenspaces of T'). We can thus write 7’ uniquely as

7/,=®U;L®7//{
A

with 7//1’|X * unipotent along Y. By construction, 7//1’ satisfies (iii) and (iv) of (5.2), and so,
by (5.2), ¥] = 7). We thus have that 7' = 7(1) (5.4.1). O

Remarks 5.5. —

() If we define 7 by (5.3.1), then 7 (1) satisfies (5.2) (c). We also call this extension the
canonical extension of 7.

(ii) An extension of the form 7(r) has the property that, in a suitable basis of 7 (1), the
connection matrix takes the form

d .

r=yr=
i 2

where the I'; are connection matrices that commute pairwise.

Corollary 5.6. (N. Katz). Let 7 be a vector bundle on the unit disc D, and I" a connection on
V|D* whose matrix presents a simple pole at 0. Suppose that, for any distinct eigenvalues
a and B of Res(I'), we have a — € Z. Then the monodromy transformation T is conjugate,
in the linear group, to exp(—2mi Res(I)).
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Proof. By (5.4), 7 is of the form 770(1) for some suitable 7; we conclude by direct calcula-
tion (1.17.1). O

Proposition 5.7. Let X be a complex-analytic space, Y a closed subspace of X such that
X* =X\Y is smooth, jthe inclusion of X* into X, and V a vector bundle with integrable
connection V on X*. We denote by e a horizontal (multivalued) basis of ¥, and by |- | a
norm on X* with respect to Y. Then

(i) There exists exactly one meromorphic structure on V along Y with respect to which V
is a regular connection.

(ii) Let V be the subsheaf of j.V consisting of sections whose coordinates in the basis e
have growth of at most G((log || x])*) ~(for large enough k) along Y. Then V is a coherent
analytic sheaf on X; the extension V of V defines the meromorphic structure in (i).

Proof. Both claims (i) and (ii) are local on X. By Hironaka [12], we can assume the ex-
istence of a resolution of singularities 7: X; — X such that 771(Y) is a normal crossing
divisor and 7 is an isomorphism over X*. Let 7; be the canonical extension (5.5.1) of ¥ to
X1. By (5.5.1) and (2.19), we have that ¥ = 7,%;. By Grauert’s finiteness theorem (for a
projective morphism), 7 is thus coherent analytic.

For the meromorphic structure along 7~ 1(Y) defined by 73, the connection V is regular.
Since this structure is the inverse image of that defined by 7, we conclude, by (4.3) that
V is regular with respect to the extension 7. Finally, suppose that V is regular for the
meromorphic structure defined by an extension 7’. We see, by (4.1.iii) applied to the dual
bundle, and by (5.2.c), that %7’ and 771 define the same meromorphic structure along
7~ 1(Y). Claim (i) then follows. O

Corollary 5.8. Let X and Y be as in (5.7). If a vector bundle V on X* =X \Y ad-
mits an integrable connection, then it admits a coherent extension on X; in particular, if
codimx(Y') =2, then j.V is coherent.

It immediately follows from (5.7) and (2.22) that:

Theorem 5.9. Let X be a (smooth) complex algebraic variety. Then the functor V — 73"
gives an equivalence of categories between

(i) the category of algebraic vector bundles on X endowed with a regular integrable con-
nection; and

(ii) the category of holomorphic vector bundles on X" endowed with an integrable con-
nection.

If X is connected and endowed with a base point xg, then Theorem 5.9 gives a purely
algebraic description of the category of complex finite-dimensional representations of the
(usual) fundamental group 71(X,xg).

We can modify the above proof of Theorem 5.9 so that it no longer uses Lojasiewicz
[17].
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Theorem 5.9 is local on X for the Zariski topology. We thus do not lose any generality
in supposing that X admits a normal projective compactification X.

Let us prove fully faithfulness: a horizontal morphism f: 72" — #2" is identified with
a horizontal section of Hom(7',#)". By (4.1.iii), f is of moderate growth at infinity, and
is thus algebraic (2.24). In fact, it even suffices to show that f is of moderate growth in
codimension 1 at infinity, and this does not require Lojasiewicz.

Finally, by Hironaka [12], we can take X to be smooth, and such that Y = X \ X is
a normal crossing divisor. Locally, the situation is then isomorphic to that which was
studied in (5.4). A choice of 7 as in (5.3) thus gives us an extension % of ¥ to a vector
bundle on X. With respect to %< the connection of 7 is meromorphic and regular along
Y.

By [GAGA], the bundle 77; and the connection V are both algebraisable, and this solves
the problem in question.

I1.6 Comparison theorem

6.1. Let X be a smooth scheme of finite type over C, and 7" a vector bundle on X endowed
with a regular integrable connection. We denote by V the local system of horizontal sec-
tions of 72" on underlying the topological space X, of X2". By the Poincaré lemma (1.2.19),
we have

H'(Xq,V) = H (Xd, Q%an (V) (6.1.1)

where the right-hand side denotes the hypercohomology of the analytic de Rham complex.
We also have an arrow
H'(X, Q% (7)) — H* (X, Qxan (7)) (6.1.2)

from the algebraic hypercohomology to the analytic hypercohomology.

Theorem 6.2. Under the hypotheses of (6.1), the arrow (6.1.2) is an isomorphism.

The proof that we will give for this theorem is basically a simplification of the proof that
Grothendieck [9] uses for the particular case where 7 is the structure sheaf & endowed
with the natural connection. It will be the subject of (6.3) to (6.9).

We note, first of all, as in loc. cit., that (6.2) is equivalent to the following particular
case.

Corollary 6.3. Under the hypotheses of (6.1), with X affine, we have

H'(I'(X,Q% () = H(Xa, V).

Proof. If X is affine, then Hq(X,Qf((V)) =0 for ¢ >0, and so
HP(X,Q% (7)) = HP(I'(X,Q% (V)

and so (6.2) is synonymous with (6.3). But then, if (6.2) is true when X is affine, then we
see, as in loc. cit., via the Leray spectral sequence for an open cover applied to the two
sides of (6.1.2), that (6.2) is true in the general case. O
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6.4. This reduction to the affine case shows that we do not lose any generality in supposing
that X admits a compactification j: X — X with X complete. By Hironaka’s resolution of
singularities [12], we can thus choose X such that

a) X is smooth; and

b) X is the complement in X of a normal crossing divisor Y equal to a union of smooth
divisors: Y = UleYi.

The morphism ; is then an affine morphism; the morphism j*" is then a Stein mor-
phism, i.e. the inverse image of a (small) Stein open subset of X is a Stein open subset of
X. Thus

R'j,QF()=0 fori>0 (6.4.1)
R 205 (7)=0  fori>0 (6.4.2)

from which it formally follows that
H'(X, /. Q5 (V) = H (X, Q% (V) (6.4.3)
H* X a1, /2 Qan (7)) = H' (X1, Qan (V). (6.4.4)
Lemma 6.5. Let .% be a quasi-coherent algebraic sheaf on a proper scheme X over C. Let
€: X — X be the canonical continuous map, and . °" = Oxan ®.+gy €* F. Then

H'X,7#)=H (Xq,F).

Proof. By (EGA 1, 9.4.9), the sheaf .% is the filtrant inductive limit of its coherent alge-
braic subsheaves:
F = @ﬁl

The inverse image and tensor product functors commute with inductive limits, and so
gran _ 1z oran
F =lim 7.

If X is a compact topological space, then the functors H:(X,—) commute with filtrant
inductive limits (T.F. II, 4.12, p. 194), and so

limH* (X, 7™ = H' (Xq, 7). (6.5.1)
Similarly (loc. cit.),
limH*(X, %) = H"(X, 7). (6.5.2)

By GAGA, we have that
H (X, 7)) = H (Xq, ™)

and (6.5) then follows by comparing (6.5.1) and (6.5.2). O
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6.6. Under the hypotheses of (6.5), every differential operator D: .% — ¢ between coher-
ent algebraic sheaves extends uniquely to a differential operator D?": 2" — @32 To
construct D?", we factor D as

F N pNg Ly

where L is linear. Note that (PN (%))2® = PN(#2"), and set D?* = 2" oJN-

The same construction applies to a differential operator D:.# — ¢ between quasi-
coherent algebraic sheaves, and gives D?": .#2" — @22  We can also define D?" in the
quasi-coherent case by passing to the inductive limit from the coherent case.

If K is a complex of quasi-coherent sheaves on X, with X a proper scheme over C, and
with the differentials of K being differential operators, then

H*(X,K) = H*(Xq,K?"). (6.6.1)
Indeed, we have a morphism of spectral sequences of hypercohomology
Efq =HYX,K?)=>H'(X,K)
EP? = HY(Xg,(K*™") = H' (X g, K*")

and we conclude by applying (6.5) to the terms E;.

6.7. The complex [j.Q%(7)]*" is exactly the sheaf of sections of Q%..(¥) that are mero-
morphic along Y; we denote this by ji'Q5 (7). The arrows in (6.4.3), (6.4.4), and (6.6.1) for

jTQB‘,an (7) fit into a commutative diagram

H*(X,j: Q%)) s VX950
(6.6.1)l~
H* (X, /2 Qan (1)) D (6.7.1)

|

[H] (Xclaj*Qxan(V)) (m) [H] (XCI;QXan(y)) (m) H (Xcl’7/)

To prove (6.2), it thus suffices to prove that the arrow @) is an isomorphism. More
precisely:

Proposition 6.8. The morphism of complexes
jTQB(an (7/) g J* Q}(an(y)

induces an isomorphism on the cohomology sheaves.

The GAGA theorems have thus allowed us to reduce a global algebraic/analytic com-
parison problem to a local meromorphic/essential singularity comparison problem.

Let 75 be an extension of the algebraic vector bundle 7 to a vector bundle on X such
that, with respect to 7, we have:
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6.8.1. the connection on V presents at worst a logarithmic poly along Y, and the residues
of the connection along the components of Y never have positive integer eigenvalues.

We can take 7 to be the canonical extension (5.6) of 7. By (3.13), the complex
TP Qan (V) Qan Y (F0)
is acyclic. The claim of (6.8) is equivalent to the acyclicity of the analogous complex
J« Q%an (VY Q5%an (Y ) (30). (6.8.2)

If we take 7 to be an extension of the type 7(r) (cf. (5.4)), then we can locally put 7
into a canonical form (5.6.ii), and it then remains to prove the following lemma.

Lemma 6.9. Let I'q,...,T',, € GL4(C) be matrices that commute with one another, and that
do not have any positive integer eigenvalues. Let X = D"*™ X* =(D*)* xD™, j: X* < X,
and Y =X \X*, and let T be the connection on 6% =¥ given by

Then the complex of sheaves
K =j.Q%.)/QxYYV)

is acyclic at 0.

Proof. Let F be a filtration on C? such that the successive quotients F*/F*1 are of dimen-
sion 1 for 0 <i <d, and such that the I'; are compatible with F'.

It suffices to prove that Grr(K) is acyclic, and this leads us to reduce to the case where
d =1. We set y; =T; (so that y; € C\N¥). The complexes QY (V) and j. Q5. (V) are then
morally tensor products of analogous complexes for n + m = 1. This suggests to consider
first of all the case where n = 1 and m = 0. The global sections of the complexes in question
are then

V=d+ydz/z

(a) functions on D differential form with a simple pole at 0

V=d+ydz/z

(b) functions on D* differential form on D*.

We write functions and differential forms as Laurent series. A morphism r of com-
plexes that is a left inverse to the inclusion i: (a) — (b) is then a morphism that sends f
d d S “ . ,, .

(resp. f<7) to g (resp. g7), where g is given by “forgetting the polar part” of f, i.e.

f:Zanzn - g= Zanzn'
n

n=0

We have that roi =1d, and Id—ior=VH + HV, where

H(Zanz”) =Y anly+n) "

n<0
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The same formulas still make sense for the morphism of complexes of germs of sections at
0,1i.e.
i0: (Qx(0Y(7))g — (J«Qx+(¥))g

and show that i( is a homotopy equivalence.

We deal with the general case by transposing the fact that a tensor product of homo-
topy equivalences is again a homotopy equivalence.

We will write a germ at 0 of a section of j.Q5%.(¥) (where 7 = 0) in the form

dz?
a= Z apQ —szQ.
Pc[1,m] 2
Qcln+1,n+m]

We have

n+m
da = Z d;a
i=1

dz:
d;a= dzi/\ai+ﬁ/\)/i a.
2

These decompositions exhibit j.Q%.(¥) as an (n + m)-complex, of which Q% (Y)(¥) is an
(n + m)-complex.

We can expand the coefficients ap g into a Laurent series
L e
apg = Z CLP QZ*.

LeznxNm

We then set ,
ri(apg) = Z ap Qzﬁ fori<n
;=0

£ ¢
rlapQ)= ), apgz-
feNnxNm

dz? Q .
ril@)=) rilapg)—5dz® foris<n
PQ z

dzP Q
r@)=) rlapg)—5dz®.
PQ 2
We can show that

(a) r; is an endomorphism of complexes;
(b) the r; commute pairwise, and their product is r; and
(¢) ris aretraction of (. Q%. (7))o to (Q%(Y)(#))o.

We further set p
Hi(apg)= ), a},Q(Yi +£i)_1z£ fori<n

£,<0
P dzP\{i} Q
Hi(a) = iez}’)(_l) pHi(aP,Q)Wdz

where kp = |PN[1,i—1]].
We can show that
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d) 1-r;=d;H; +H;d;;
(e) diHj+dei:0fori¢j; and
® 1-r;,=dH; +H;d.

Since 1 is homotopic to r;, it is also homotopic to the composition r of the r;, and r
is an inverse up to homotopy of the inclusion morphism i of (Q5 (Y)(7))o into j.Q%.(¥).
This finishes the proof of (6.9) and thus of (6.2) O

Corollary 6.10. Let X be a smooth scheme of finite type over C, Y a normal crossing divisor
on X, V a vector bundle on X, and T a regular integrable connection on the restriction of V'
to X* =X \Y. Suppose that T presents a logarithmic pole along Y, and that the residue of
I" along the components of Y does not have any positive integer eigenvalues. Then, denoting
by V the local system defined by ¥ on X, we have

H* (X, Q% (Y)(¥) = H (X, V).

cl’

Proof. This follows immediately from (3.15) and (6.2). O

Corollary 6.11. Under the hypotheses of (6.10), with X affine, we have

H'(T(X, Q% (Y)(7) = H(X 3, V).

cl’

In other words, to calculate the cohomology of X* with coefficients in V, it suffices
to consider the complex of algebraic differential forms on X* with coefficients in 7" that
present only a simple logarithmic poly along Y. We suppose here that X, and not only X*,
is affine.

6.12. I do not have any satisfying relative analogue to (6.2). The main difficulty is that, for
a smooth morphism f: X — S of smooth schemes of finite type over C, the sheaves R!f.C
(calculated in the transcendent topology) are not in general locally constant, and thus do
not have vector bundles with integrable connections as algebraic analogues. It is easy,
however, to make the above results more complicated by adding “generic parameters”.

Theorem 6.13. Let f1: X1 — S1 be a smooth morphism between smooth schemes of finite
type over C. Then there exists a Zariski dense open subset S of S1 such that the morphism
f: X — S induced by f1 by the base change from S1 to S satisfies the following condition.

For any vector bundle with regular integrable connection 7 on X, defining a local sys-
tem V on X, we have that

(i) the sheaves RIf2(V) are local systems on S, and their construction is compatible
with any base change;

(ii) the sheaves Rif, (Q%,5(V)) and Riffn(Q&an/San(V)) are locally free and of finite type,

and their construction is compatible with any base change; and
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(iii) the canonical maps
0§ @R fIM(V) = R f27 (Qiangan (1) <= R Q7)™
are isomorphisms.

More precisely, we have:

Proposition 6.14. Let f: X — S be a morphism between smooth schemes of finite type
over C, admitting a compactification X

X‘—)X

\ / (6.14.1)

that is proper and smooth over S, and such that there exists a relative normal crossing
divisor Y c X of which X is the complement.
Then the conclusions of (6.13) are satisfied by f.

We prove first of all that (6.14) implies (6.13). In (6.13), we can reduce to the case
where S1 is irreducible, with generic point 7.

6.15. Suppose first of all that (f1), admits a compactification

(Xl)n c > )_(r]

\ / (6.15.1)

Spec(k(n))

with )_(,, proper over k(n). This is the case if (X1), is quasi-projective, or even, by Nagata
[20], just separated.

By Hironaka’s resolution of singularities applied to the scheme )_(,, over the field k(n),
there thus exists another compactification (6.15.1) of (X1), induced by the previous one
by blowing up, and this time with 7,] smooth and (X1); being the complement in )_(,, of
a normal crossing divisor. Given the syllogisms of EGA IV on lim of schemes, there thus
exists a Zariski open S of S along with a commutative diagram

X118 ‘;) X

fi/

—1 —
satisfying the hypotheses of (6.14) and such that f (1) = X,,. So, in this case, we can
conclude by (6.14).

6.16. In the general case, let % = (U;) be a finite cover of X by open subsets that are com-
pactifiable in the above sense, and let S be the intersection of the open subsets constructed
in (6.15) with respect to the compactifiable morphisms

Uj,n...nU;, — S1. (6.16.1)

Git commit: 50¢2259 77 of 93

p. 107


https://github.com/thosgood/translations/commit/50c2259

Chapter II. Regular connections

We have the conclusions of (6.13) for the morphisms induced from the morphisms in
by restriction to S. The Leray spectral sequence for the cover % thus tells us, for f: X =
X11S — S, that

(a) f satisfies (6.13.i) and (6.13.iii), after any base change; and

(b) the sheaves R'f, Q%,5(V) are coherent, and this remains true after any base change
T-S.

Finally, it is clear that (a)+(b) = (6.13.ii).

6.17. We now prove (6.14). Under the hypotheses of (6.14), the pair (X,Y) is C®-locally
constant on S. We can show this by lifting vector fields on S to vector fields on X tangent
Y. Claim (i) of (6.13) then follows.

By (1.2.28), the morphism

OF @R fAV = R f2" Qs (V™)) (6.17.1)

is an isomorphism, and this remains true after any base change.
To finish the proof, it remains to show that the sheaves R'f, (Q%,5(¥)) are coherent,
and satisfy . .
R'f. (Qxs(7)™ = R Qs (V™M)

and that these two properties remain true after any base change.
The proof is parallel to that of (6.13):

(a) Let % be the canonical extension (5.5) of 7 to X. By (3.16), the injection
@: Q;—(/S (7)) — j« Q% (V)
is a quasi-isomorphism, and so too is

T O

g (V™) = P an gan (V)

this remains true after any base change. The finiteness theorem (EGA III, 3.2.1) then
implies that, after any base change, the sheaves

RIT, (5, (1)) = RL. (Qis V)

are algebraically coherent. Proceeding as in (6.7), this time using the relative variants
of GAGA, we can reduce (6.14) to the following lemma:

Lemma 6.18. The morphism of complexes
m e . .
Jx ann/gan(y) J x ann/gan(y)

induces an isomorphism on the cohomology sheaves, and this remains true after any base
change.
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Proof. This is a local problem on X, and we treat it by putting 7 into a canonical form
(5.6.11) and repeating the proof of (6.9). O

6.19. The example that follows shows that algebraic vector bundles with irregular in-
tegrable connections can give rise to horrible pathologies. Let X be a smooth separated
complex algebraic curve, 7 a vector bundles of dimension n with a connection on X, and
V the local system on X defined by 72". Then

1BR) = 2 (=1 dimH (Xa, Qxan (1)
=Y (-1 dimH (X, V)
=n-x(Xq).

We also define (cf. (6.20.1))

xor(¥) =Y (1) dimH' (X, Q5 (7).

Proposition 6.20. Under the above hypotheses,
(i) the vector spaces H' (X , Q% (V) are of finite dimension; and
(ii) the following conditions are equivalent:

(a) the connection on V is regular;
(b) H*(X,Q% () = H (X, Qxan(V));
(©) xpr") = xprO).

We have that (a) = (b), by (6.2), and that (b) = (¢). B
Let j: X — X be the smooth projective completion of X. For x € Y = X \ X, pick, in a
neighbourhood U of x,

(a) a vector field 7 that disappears simply at x, with inverse a form with residue equal to
1 at x; and

(b) a section v of 7 such that the Viv (for 0 <i <n) form a basis of 7 on U \ {x}.
Let VIv = Z;‘:’OlaiViv. Set
1,(7) =sup{0,sup{-vx(a;)}}.
By (1.10), i.(7) = 0 if and only if 7 is regular at x.
Lemma 6.21. —
(i) The non-negative integer i,(¥') does not depend on the arbitrary choices (a) and (b).
(ii) There exist extensions V1 and Vs of V to X' = X U {x} such that

() Y1 <V and dim((72)/(F1)x) = ix(V);
(B) V¥ € Qy ((xh)(75); and
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(y) for every k>0, V induces a bijection
GrV: T4 (kx)/74((k — 1)x) = Q3 ({xh) (Fa(R2))/ Qs ({xh) (B — )xc).

We prove first of all that (6.21.ii) implies (6.21.1) and (6.20). By (6.21.ii), for each x € Y
we have extensions 71 and 72 of 7 to X U {x} that satisfy (a), (), and (y). These extensions
glue to give extensions 7] and 7% of 7 to X. By (f), we have complexes

Ki: (kYY) — Q}T(Y)(Vz(kY)) (for £ = 0).
By (y), the complex K}, 1/K}, is acyclic, and
HX,Kp+1) — HX,Ky)

whence _ _
H(X, Ko) = limH(X, K)
= H(X, lim K},)
=HX, j. Q%))
= HX,Q5%().

This isomorphism proves (6.20.1). Furthermore, by (a), we have that

AR = (X, 70) ~ (X, Qx (V) ©73)
= XX, 7))~ (X, QY)Y ® 1) — (X, QY ) @ 76/74)

= dim 71 - (x(X,0) - (X, Q%)) - L i)

=ny(X)- Y ix(¥)
x€Y

whence

AR = xpr(V) = Y ix(V). (6.21.1)
xeY

This equation shows that (6.20.c) = hyperref[11.6.20](6.20.a). It also shows that the sum
of the i,(7) is independent of the arbitrary choices used for each of the i,(7), whence
(6.21.1).

6.22. We now prove (6.21.i1). Let e be the basis (Viv)()skn of 7, and denote again by 7 the
unique extension of 7 to X U {x} such that e extends to a basis of 7. Let I be the matrix of
the connection in this basis of 7, and in the basis of Q%{ dual to 7. We will show that

(n+D)Wy) 2 V) for almost all n € Z. (6.22.1)

By direct calculation, from the fact that the matrix of I' has only one column of coeffi-
cients presenting poles

0 0 0 - ap
1 0 0 - a

r=(o 1 o :
0 0 1 apq
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we see that
dim ((n + D)Wy + Wy Wy) = (V).

On the other hand,

[(n+ D)Wy : | i= dim ((m + D)W/ (n + D) ¥y N ¥
= —dim (¥x/(n + D) ¥x) N W)
=—vydet(n +1I).

For almost all n,
—vedet(n +T1') = —vyPepar(l',—n) =i, (V)

and (6.22.1) then follows by comparison. Let z be a uniformiser at x, and set 71 = 7 (Nx)
and e; = z Ne. In this new basis, the matrix of the connection is [';1 == N, so that, for
large enough N, we have, for all n <0,

(n+T D)) 2 (M)

We define 75 by the formula
(M) ) = T1((M)())-

Since 77 c ¥, conditions (a) and (B) of (6.21) are satisfied, and V; sends 77(kx) to 7a(kx)
(for £ = 0). Finally, Gr”*(V) from (6.21) can be identified with the fibre at x of I'i-%k:71(n)—
¥5(n). This morphism is surjective, since

(I'1 = R)M) ) © Py

and
(T'1 =) P + D) 2 T1(M ) = F2)(x)-

This finishes the proof of (6.21) and (6.20).

I1.7 Regularity theorem

7.1. In [8], PA. Griffiths proves the regularity theorem below in the particular case of
a generically smooth projective morphism f: X — P!, and for constant coefficients. The
principle of his method is to directly estimate the order of growth of the horizontal sections
of Rf.Q% ¢, and to apply the criterion of (4.1.iii). His method, suitably generalised, allows
us to prove (7.9), but obtaining (7.11) seems more difficult. Analogous results, expressed
in the language of functions in the Nilsson class, can be found in [22].

In [14], K. Katz gives, in the case of constant coefficients, an “arithmetic” proof of (7.9).
The method followed here is also equally due to him. It was rediscovered independently
by the author.

7.2. The purely algebraic construction, recalled in (7.6), of the Gauss—Manin connection
is due to Katz—Oda [15].
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7.3. Let f: X — S be a continuous map between topological spaces, and % = (U;);c; an
open cover of X. We set A,, =[0,n], and, for 0 € Hom(A,,,I), we denote by j, the inclusion
of Uy =Ni<n Uy into X. For % a sheaf on X, we denote by f.(Uy,.%) the sheaf

(Fio)sieT

on S. The sheaves

feU, F) D) = [1 F£WU,%
oeHom(A,,I)

on S form a simplicial system of sheaves, functorially in .%#. If K is a bounded-below
complex of sheaves on X, then we denote by f.(%,K) the simple complex associated to
the double complex of the f.(%,K™)(A.,), in which we take the first differential to be that
induced by the functoriality of the differential d of K, i.e.

d=d' +d"=f.(U,d)+(=1"Y (-1)'0;. (7.3.1)

If I is totally ordered, then we denote by f.(%,alt,K) the sub-complex obtained by
restricting to the strictly increasing maps o € Hom<(A,, 1), i.e.

fo@,alt, K= Y [T FUsK™.

n+m=koeHom«(A,,I)
The following are well known:
7.3.2. The inclusion of f.(%,alt,K) into f.(%,K) is a homotopy equivalence.
7.3.3. If, for any n and any o, we have
Ri(fjo)«j K" =0  (fori>0)

then . .
H'f(U,K)=R'f.K.

7.4. Let K and L be complexes on X. For each i, let u; be the morphism of complexes
u;: K|\U; — L|U; (7.4.1)
and, for each pair (7, ), let H;; be a homotopy
u—uj=dH;j+H;;d (on U; nU;). (7.4.2)

Suppose that
Hij+Hj, = Hip. (7.4.3)

From this data, we obtain a morphism of complexes
u: f«(%,K)— f«(%,L) (7.4.4)
as the sum of the morphisms of graded objects
ul =feUq,ug0): f+Uq,K")— fu(Uy, L")
uy =" [1 Hiwo: f+Us, K — ] fo@,L" .

0oT=0 0pT=0
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We note why u =« + u” commutes with d =d’ +d"”. We have
[w,dl=[u1,d1+[u1,d"1+[us,d'1+[us,d"].

The bracket [©1,d'] is zero, since the u; are morphisms of complexes. The equation
[ug,d”1=0 is synonymous to (7.4.3). Finally, [u1,d"] = —[ug,d'] by (7.4.2).

7.5. Let (u});e; and (H;J.)i,jg be another system satisfying (7.4.1), (7.4.2), and (7.4.3), and
let H; be a homotopy
u;—ui:dHi+H,~d. (7.5.1)

Suppose that
Hl‘+Hij:H£j+Hj (on UiﬂUj). (7.5.2)

We then have
v -u=dH+Hd

with the homotopy H having non-zero coordinates given by
Hy): f+Ug, K™) = fulq, L"7Y.
Similarly, by (7.5.1) and (7.5.2), respectively,
ui-u1=d'H+Hd'
ub—ug=d"H+Hd".
Equation (7.4.3) implies that H;; = 0. The morphism (7.4.4) thus induces a morphism

U a1t (or, simply, u)
wale: f+(%,alt,K) — f.(%,alt,L). (7.5.3)

Similarly, under the hypotheses of hyperref[I1.7.5.1](7.5.1) and (7.5.2), u,}; and u; 1 are
homotopic.

7.6. Let f: X — S be a smooth morphism between smooth schemes of finite type over C,
¥ a vector bundle with integrable connection on X, and V the corresponding local system
on X", Further, let v be a vector field on S, % = (U;);c; an open cover of X, and v = (v;);er
a family of vector fields v; on the U; that lift v.

Since v; lifts a vector field on S, the Lie derivative

Ly Uy (V) = Qx5 (V)
is defined. It commutes with the exterior differential:
d,%,1=0. (7.6.1)

The vector fields v; —v; (on U; nUj) are vertical (i.e. linear forms on Q%(/S)' They thus
define contractions .
(v; —vj): Qg(/S(V) — Qé’(;s(V)

and Cartan’s homotopy formula is then

2y, —fvj =do((v; —v;)L)+; —vj)ed. (7.6.2)
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Furthermore,
(v,-—vj)L+(vj—vk)L=(v,-—vk)L. (7.6.3)

The construction in (7.4) then gives us a morphism
O0W): [, Q%)) — fulU,QVx,s(V)).

By (7.5), the %”i(e(g)) depend only on v, and not on the choice of lifts v; (take H; = (vg -
v;)L). If S is separated, and if % is an open affine cover of X, then (7.3.3) we have

AU Qs (V) = R Qg (V)

and 7" (0(v)) is an endomorphism of R’ f, Q%,5(7) that depends only on v.
If 7 is regular, if V is the local system on X?2" that it defines, and if conditions (i), (ii),
and (iii) of (6.13) are satisfied, then be denote by V the Gauss—Manin connection on

(R £ (@500 = R 5 Qganygon (1) = R F2V) O Gon.

Proposition 7.7. (Katz—Oda [15]). Under the hypotheses of (7.6), with X and S separated,
and U affine, if V is regular, and if the hypothesis of (6.14) is satisfied, then the endomor-
phism A (6()) of R f.Qy (V) “agrees” with the endomorphism V, of (R f.Q5,s (V)™
Proof. Let € be the continuous identity map from X2 to X. If % is a Stein open cover of
X2 and v a family of holomorphic liftings of v, then the construction in (7.4) gives us an
endomorphism 62™() of R f2™(Qan gan (¥))-

Similarly, let G, be the sheaf of C* functions with complex values on S, Q;O’X/S(V)
the complex of relative C* differential forms on X with values in 7, % an open cover of X,
and v a family of C* liftings of v. Then the construction in (7.4) gives us an endomorphism
6°() of R f2(Q2 5,5 (V).

These endomorphisms do not depend on the choice of %, nor on the choice of v, and
are compatible with the inclusions

ERI Q1) — R Qyanygan (1)) — RIFQ 3 (4))

R f2(V)®¢c Ogan —— RIf2(V) @ O
It thus suffices to show that 8°°(v) agrees with the Gauss—Manin connection. To calculate
0*°(v), we can take % = {X}, and v = {vo} to be a C* lifting of v, and work with the complex
f«(%,alt, Q2 5 (V). We have

f* (% ,alt, Q;O,X/S(V)) = f*(Q:)o,X/S(V))

and 6(v) is exactly the Lie derivative along vo, which evidently induces V, on the cohomol-
ogy. O
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7.8. Let f: X — S be a smooth morphism between smooth schemes of finite type over C,
and 7 a vector bundle with integrable connection on X. The lecture will find in Katz—Oda
[15] a proof that the construction in (7.6) always gives an integrable connection, said to be
Gauss-Manin, on the quasi-coherent sheaves R’ f, Q%,5(¥). We will not use this fact.

Theorem 7.9. Let f: X — S be a smooth morphism between smooth schemes of finite type
over C satisfying the conclusions (i), (ii), and (iii) of (6.3). If V is a vector bundle with
regular integrable connection on X, then the Gauss-Manin connection on R' f(Q% (V) is
regular.

By (4.6.1i1), it suffices to prove (7.4) after having replaced S by a Zariski dense open.
By (6.13) and the definition (4.4.iii) of regular connections, it suffices to consider the case
where S is separated and of dimension 1.

If % = (U;)jer is a finite open cover of X, then there exists a Zariski dense open subset
S; of S such that, for j an inclusion morphism

j: Uirﬂ...ﬂUip‘—>X,

the Og,-modules _
R(f )7 Q% (WISt (7.9.1)

are locally free. The Leray spectral sequence for % thus induces a spectral sequence of
locally free Og,-modules with connections, with the differentials dg being horizontal. By
(4.6.1), it suffices to show that the Gauss—Manin connections on the Og,-modules (7.9.1)
are regular. This allows us to assume that f factors through a proper morphism. By
further shrinking S, and using the resolution of singularities, we see that this leads us
to the crucial case where the following conditions are satisfied (cf. the proof that (6.14) =
(6.13)).

7.9.2. S is the complement, in a smooth projective curve S, of a finite set T of points; X

is the complement, in a smooth proper scheme X, of a normal crossing divisor; f is the
- = = —1

restriction to X of a morphism f: X — S such that Y > f~1(T); f "(S) is smooth over S,

and Y n?fl(S) is a relative normal crossing divisor on S.
X —X4+—Y D

R

< T

We denote again by 7 a locally free extension of 7 to X satisfying the following two
conditions:

7.9.3. The matrix of the connection of 7|X presents at worst logarithmic poles along Y.

7.9.4. The residues of the connection along the components of Y n f~1(S) do not have any
strictly positive integer eigenvalues.

The hypothesis of (7.9.4) guarantees (3.14.1) that

R (@} 155 (V) = R Q55 (V)). (7.9.5)

Git commit: 50¢2259 85 of 93

p. 118

’ p. 119


https://github.com/thosgood/translations/commit/50c2259

Chapter II. Regular connections

Denote by Ré(?) the locally free module over S given by the quotient of R f, (Q;?/g(YXY/))

((3.3.3) and (3.3.2)) by its torsion sub-sheaf. Let V be the local system on X" defined by
V7. By (6.14), we have that o .
Ry(f)*" =R'fI"V ®c Ogan.

Lemma 7.10. The Gauss—-Manin connection on Ré(?)IS presents at worst a simple pole at
each point teT.

Proof. Let t € T, and let v be a vector field on S defined on a neighbourhood of ¢ that
vanishes simply at ¢. It suffices to show that the endomorphisms (7.6) 7'0(v) =V, of the
sheaves Rf)( IS extend to endomorphisms of the sheaves R(i)( ).

Let % = (U;);e1 be an open affine cover of X. By (3.3.2.3) (or, rather, its variant (3.3.3)),
we can lift v to a family v of vector fields v; on the U; such that

(vi,Q;7<Y>) cOy,. (7.10.1)
From (7.10.1), we can extract the fact that
viLQ;T(Y) c Q;T<Y> (on Uj) (7.10.2)
since Q%(Y) = AP QIY(Y). The Lie derivative satisfies
Ly, =do(v;L)+(;L)od

and we also have that
zvig;?m c Q;7<Y> (on U;). (7.10.3)

Since Q.E/§<Y> is a homomorphic image of Q.Y<Y> (3.3.2), we have that

(v; — Uj)I_Q;—(/§<Y> c Q;?/g(Y) (onU; nU;) (7.10.4)
.SBUL.Q;?@(Y) c Q;?@(Y) (on U;). (7.10.5)

By (7.9.3), V,,,(¥) € ¥; this, combined with (7.10.4) and (7.10.5), gives us that

(v, - UJ')I_Q;—(/§<Y>(7/) c Q;T/§<Y>(7/) (on U;nUj) (7.10.6)
Zviﬂ;?/g(Y)O/) c Q;?/g(Y)(V) (on U;). (7.10.7)

The general construction (7.4) associates to £, and to (v; —v;). an endomorphism
() of R* f*(Q;?/g(Y)(V)). This endomorphism is compatible, via (7.9.5), with the endo-
morphism of the same name of R*f..(Q%,4(7)). By (7.7), it can be identified with V,,. This
proves (7.10), and finishes the proof of (7.9). O

The following variant of (7.9) can be proven in the same way as (7.10).

Proposition 7.11. Let D be the unit disc, D* = D\{0}, X a smooth analytic space,
f: X — D a proper morphism, Y a normal crossing divisor of X such that Y > f~1(0),
X*=X\Y, ¥V a vector bundle on X, T an integrable connection on V|X* satisfying (7.9.3)
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and (7.9.4), and V the corresponding local system on (X*)®®. Suppose that f|f 1(D*) is
smooth, and that Y N f~1(D*) is a relative normal crossing divisor. Set

R{(f) =R'f.Q%,p, (Y)I)NT
where T is the torsion at {0}. Then
R.(/)ID* = Rf.V &cOp-

and the corresponding connection on R(i)(f )ID* presents at worst a simple pole at 0.

Git commit: 50¢2259 87 of 93


https://github.com/thosgood/translations/commit/50c2259

Chapter III. Applications and examples

Chapter III

Applications and examples

IT1.1 Functions in the Nilsson class

1.1. Let X be a non-singular complex algebraic variety that is connected and endowed
with a base point xo. We denote by X the universal covering of (X, x¢), and by X the base
point of X. Suppose that we have a given complex representation Wy of finite dimension d
of m1(X,x0) endowed with a cyclic vector wy. We denote by W the corresponding local
system (I.1.4), and by # the algebraic vector bundle with regular integrable connection
endowed with an isomorphism of 71(X,x)-representations (I1.5.7)

Wiy = W.

Finally, we denote by w the multivalued horizontal section of 72" with base determina-
tion wy.

Definition 1.2. A section of an algebraic vector bundle 7 on X is said to be in the Nilsson
class if it is a multivalued holomorphic section of finite determination that is of moderate
growth at infinity (I11.2.23.iv).

If 7 = 0, then we speak of functions in the Nilsson class.

The two following theorems will be proven simultaneously in (1.5). The first says that,
for a function of finite determination, various variants of the “moderate growth at infinity”
condition are equivalent.

Theorem 1.3. Let s be a multivalued holomorphic section of finite determination of an
algebraic vector bundle on X. Then the following conditions are equivalent:

(i) sisin the Nilsson class; and

(ii) the restriction of s to every (locally closed) smooth algebraic curve along X is in the
Nilsson class.

If X is a Zariski open subset of a compact normal variety X, then the two conditions above
are also equivalent to the following:
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(iii) every irreducible component of X \ X of codimension 1 in X contains a non-empty
open subset U along which s is of moderate growth.

In the above, we do not lose any generality in supposing, in (iii), that X UU < X is
smooth, and that U is a smooth divisor there. Unlike (i), conditions (ii) and (iii) do not
make any reference to the theory of Lojasiewicz. It follows from (iii) that, if codim(X \ X) >
2, then a function of finite determination is automatically in the Nilsson class.

For X of dimension 1, the following theorem is due to Plemelj [23].

Theorem 1.4. Let 7 be an algebraic vector bundle on X. The “evaluation at w” function,
that sends each (algebraic) f € Hom(# ,V) to the section f(w) of 7®™ gives a bijection be-
tween Hom(#',7) and the set of sections of ¥ in the Nilsson class that are of monodromy
subordinate to (Wy, wg).

1.5. Here we prove (1.3) and (1.4). We have already seen (in (I.6.11)) that the function
E,: f — f(w) identifies Hom(# 2™, 73") with the set of multivalued holomorphic sections
of 72" of finite determination with monodromy subordinate to (Wp,wg). It thus remains
to prove that f is algebraic if and only if f(w) satisfies (1.3.i) (resp. (1.3.ii), resp. (1.3.ii1)).

By (I1.4.1.iii), the “section” w of # is in the Nilsson class, so that, if f is algebraic, then
f(w) satisfies (1.3.i). Trivially, (1.3.1)) = (1.3.i1) and (1.3.1) = (1.3.iii).

Let e: ©% — # be a multivalued basis of # consisting of determinations of w. Since
W is regular, e”! is of moderate growth at infinity. For f: #2 — 72 the f(e;) are
determinations of f(w). From this, and from the equation f = fee™!, we deduce that

a) if f(w) satisfies (1.3.ii), then the restriction of / € H*(Hom(#/,¥%)?") to any curve is of
moderate growth; and

b) if f(w) satisfies (1.3.iii), then f is of moderate growth near a non-empty open subset of
each irreducible component of X \ X of codimension 1.

By (I1.4.1.1), under each of these hypotheses, f is algebraic.

Corollary 1.5. Under the hypotheses of (1.4), if X is affine, with coordinate ring A, and
if V is of rank m, then the set of sections of V' in the Nilsson class that are of monodromy
subordinate to (Wy,wq) is a projective A-module of rank dm.

Remark 1.6. A meromorphic function in the Nilsson class is, by definition, a section of
some sheaf @(D), for D a sufficiently positive divisor, in the Nilsson class (where O(D) is
the sheaf of meromorphic functions f such that div(f) = —D). It follows from (1.5) that the
set of meromorphic functions in the Nilsson class that are of monodromy subordinate to
(Wo,wq) is a vector space of dimension d over the field of rational functions on X.

1.7. Let f: X — S be a smooth morphism, with S smooth. By (1.4), the set of relative
differential p-forms on X that are in the Nilsson class and of monodromy subordinate to
(Wy,wo) can be identified with the space

HO (S, Ker (d: Q% s(#") — £.Q% 507 ))).

p
X/S X/S
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Let U’ be a dense Zariski open subset of S such that, over U’, f is locally C®-trivial.
The homology groups H,(X 2", W) then form a local system 7 on U'.

We denote by (—,—) the pairing of sheaves on a small enough dense Zariski open subset
UcU'(11.6.13)

A eKer(d: fLQ8 (W)= FLORH ) — A oRP f.Qy s(# )
— A RPN 0O
— 0",

We define a period of a closed relative p-form « in the Nilsson class of the type consid-
ered above to be any multivalued function on U of the form (A, a), with A a multivalued
(horizontal) section of /7. A period is thus a multivalued function of finite determination
that is of monodromy subordinate to .7#°. Theorem 1.4 and Theorem I1.6.13 thus give us
the theorem essentially equivalent to that of (I1.7.4).

Theorem 1.8. Under the hypotheses of (1.7), the periods of a closed relative differential
p-form on X in the Nilsson class are functions in the Nilsson class on a suitable dense
Zariski open subset of S.

II1.2 The monodromy theorem (by Brieskorn)

The proof of the monodromy theorem given in this section is due to Brieskorn [5].

2.1. Let S be a smooth algebraic curve over C, induced by a smooth projective curve S by
removing a finite set T' of points. For ¢ € T', the local monodromy group at t, or the local
fundamental group of S at t, is the fundamental group of D \ {¢}, where D is a small disc
centred at ¢t. This group is canonically isomorphic to Z, and we call its canonical generator
the monodromy transformation.

If 7 is a local system of C-vector spaces on S, then the local monodromy group at ¢ acts
on V|(D\{t}). If 7 is the complexification of a local system of Z-modules of finite type, then
the characteristic polynomial of the monodromy transformation has integer coefficients.

Recall that a linear substitution is said to be quasi-unipotent if one of its powers is
unipotent. A local system of C-vector spaces on S is said to be quasi-unipotent (resp.
unipotent) at infinity if, for all ¢ € T, the corresponding monodromy transformation is
quasi-unipotent (resp. unipotent).

Example 2.2. Let X = SLa(R)/SO2(R) be the Poincaré half plane, and I' a torsion-free
discrete subgroup of SLg(R) such that I'\SLo(R) is of finite volume. We then know that
I'\X is an algebraic curve, with fundamental group I'. Each finite-dimensional complex
representation p of I' thus defines a local system V,, on I'\X (and conversely). For V, to
be unipotent at infinity, it is necessary and sufficiently for p(y) to be unipotent for every
element y of " that is unipotent in SLa(R).

Theorem 2.3. Let S be as in (2.1), let i be an integer, and let f: X — S be a smooth

morphism. Suppose that R f.C is a local system (i.e. that it is locally constant) (IL.6.13).
Then R!f,C is quasi-unipotent at infinity.

Git commit: 50c2259 90 of 93

p. 125

p. 126


https://github.com/thosgood/translations/commit/50c2259

Chapter III. Applications and examples

The proof relies on (I1.7.4) and on the following theorem of Gelfond ([6] or [2]):
(%) If @ and exp(2wia) are algebraic numbers, then a is rational.
An immediate corollary of () is:

(=) If N is a matrix with entries in a subfield K of C, and if, for every embedding oK — C,
the characteristic polynomial of exp(2wic(IN)) has integer coefficients, then exp(2miN) is
quasi-unipotent.

Indeed, let a be an eigenvalue of N in an extension K’ of K. For every embedding o of
K' into C, exp(2mio(a)) is algebraic. We thus deduce first of all that a is algebraic, since
otherwise g(a) could take any non-algebraic value. Then (*) implies that «a is rational, so
that the eigenvalues exp(27ia) of exp(27iN) are roots of unity.

Proof of Theorem 2.3. By shrinking S if necessary, we can assume that . = R f, Q% 18
locally free.

Let K be a subfield of C such that f, X, S, §, and the points of T' are all definable over
K, i.e. all come from extension of scalars gg: K — C of

fo: Xo—So and TocSyK).

The Gauss—Manin connection on %) = R f,, Q‘;(O /So is regular (I1.7.4). There thus exists

an extension of %’6’ to a vector bundle on Sy such that the connection has at worst a simple
pole at each ¢ € Ty. Let N; be the matrix of the residue of the connection at ¢ € T in a
basis of (J);.

For every embedding o: K — C, fj defines, by extension of scalars,

fio): Xy = Sw)

and Hy) = Ri(f(g))*Qk( St is induced by extension of scalars from .77j. By (I1.1.17.1),

exp(2wio/N;) has the same characteristic polynomial as the local monodromy transforma-
tion at t acting on R'(f(5))«C. Thus exp(2nio/N;) has a characteristic polynomial with
integer coefficients, and, by (), exp(27iN;) is quasi-unipotent, whence Theorem 2.3. [
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\chapter{Introduction}
\label{0}
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If $X$ is a (non-singular) complex-analytic manifold, then there is an equivalence between the notions of
\begin{enumerate}[a)]
  \item local systems of complex vectors on $X$ ; and
  \item vector bundles on $X$ endowed with an integrable connection.
\end{enumerate}

The latter of these two notions can be adapted in an evident way to the case where $X$ is a non-singular algebraic variety over a field $k$ (which we will take here to be of characteristic $0$).
However, general algebraic vector bundles with integrable connections are pathological (see \hyperref[II.6.19]{(II.6.19)});
we only obtain a reasonable theory if we impose a ``regularity'' condition at infinity.
By a theorem of Griffiths \cite{8}, this condition is automatically satisfied for ``Gauss-Manin connections'' (see \hyperref[II.7]{(II.7)}).
In dimension one, this is closely linked to the idea of regular singular points of a differential equation (see \hyperref[I.4]{(I.4)} and \hyperref[II.1]{(II.1)}).

In Chapter~I, we explain the different forms that the notion of an integrable connection can take.
In Chapter~II, we prove the fundamental facts concerning regular connections.
In Chapter~III, we translate certain results that we have obtained into the language of Nilsson class functions, and, as an application of the regularity theorem \hyperref[II.7]{(II.7)}, we explain the proof by Brieskorn \cite{5} of the monodromy theorem.

These notes came from the non-crystalline part of a seminar given at Harvard during the autumn of 1969, under the title: ``Regular singular differential equations and crystalline cohomology''.

I thank the assistants of this seminar, who had to be subjected to often unclear talks, and who allowed me to find numerous simplifications.

I also thank N.~Katz, with whom I had numerous and useful conversations, and to whom are due the principal results of section~\hyperref[II.1]{(II.1)}.


\section*{Notation and terminology}
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Within a single chapter, the references follow the decimal system.
A reference to a different chapter (resp. to the current introduction) is preceded by the Roman numeral of the chapter (resp. by 0).

We will use the following definitions:
\begin{enumerate}[({0.}1)]
  \item\label{0.1}
    \emph{analytic space}:
    the analytic spaces are complex and of locally-finite dimension.
    They are assumed to be $\sigma$-compact, but not necessarily separated.
  \item\label{0.2}
    \emph{multivalued function}:
    a synonym for multivalued function --- for a precise definition, see \hyperref[I.6.2]{(I.6.2)}.
  \item\label{0.3}
    \emph{immersion}:
    following the tradition of algebraic geometers, immersion is a synonym for ``embedding''.
  \item\label{0.4}
    \emph{smooth}:
    a morphism $f\colon X\to S$ of analytic spaces is smooth if, locally on $X$, it is isomorphic to the projection from $D^n\times S$ to $S$, where $D^n$ is an open polydisc.
  \item\label{0.5}
    \emph{locally paracompact}:
    a topological space is locally paracompact if every point has a paracompact neighbourhood (and thus a fundamental system of paracompact neighbourhoods).
  \item\label{0.6}
    non-singular (or smooth) \emph{complex algebraic variety}:
    a smooth scheme of finite type over $\Spec(\mathbb{C})$.
  \item\label{0.7}
    (complex) \emph{analytic manifold}:
    a non-singular (or smooth) analytic space.
  \item\label{0.8}
    \emph{covering}:
    following the tradition of topologists, a covering is a continuous map $f\colon X\to Y$ such that every point $y\in Y$ has a neighbourhood $V$ such that $f|V$ is isomorphic to the projection from $F\times V$ to $V$, where $F$ is discrete.
\end{enumerate}


\renewcommand{\thechapter}{\Roman{chapter}}

\chapter{Dictionary}
\label{I}
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In this chapter, we explain the relations between various aspects and various uses of the notion of ``local systems of complex vectors''.
The equivalence between the points of view considered has been well known for a long time.

We do not consider the ``crystalline'' point of view;
see \cite{4,10}.


\section{Local systems and the fundamental group}
\label{I.1}

\begin{rmenv}{Definition 1.1}
\label{I.1.1}
  Let $X$ be a topological space.
  A \emph{complex local system} on $X$ is a sheaf of complex vectors on $X$ that, locally on $X$, is isomorphic to a constant sheaf $\mathbb{C}^n$ (n$\in\mathbb{N}$).
\end{rmenv}

\begin{rmenv}{1.2}
\label{I.1.2}
  Let $X$ be a locally path-connected and locally simply path-connected topological space, along with a basepoint $x_0\in X$.
  To avoid any ambiguity, we point out that:
  \begin{enumerate}[a)]
    \item The fundamental group $\pi_1(X,x_0)$ of $X$ at $x_0$ has elements given by homotopy classes of loops based at $x_0$;
    \item If $\alpha,\beta\in\pi_1(X,x_0)$ are represented by loops $a$ and $b$, then $\alpha\beta$ is represented by the loop $ab$ obtained by juxtaposing $b$ and $a$, in that order.
  \end{enumerate}

  Let $\scr{F}$ be a locally constant sheaf on $X$.
  For every path $a\colon[0,1]\to X$, the inverse image $a^*\scr{F}$ of $\scr{F}$ on $[0,1]$ is a locally constant, and thus constant, sheaf, and there exists exactly one isomorphism between $a^*\scr{F}$ and the constant sheaf defined by the set $(a^*\scr{F})_0 = \scr{F}_{a(0)}$.
  This isomorphism defines an isomorphism $a(\scr{F})$ between $(a^*\scr{F})_0$ and $(a^*\scr{F})_1$, i.e. an isomorphism
  \[
    a(\scr{F})\colon \scr{F}_{a(0)} \to \scr{F}_{a(1)}.
  \]
  This isomorphism depends only on the homotopy class of $a$, and satisfies $ab(\scr{F}) = a(\scr{F})\cdot b(\scr{F})$.
  In particular, $\pi_1(X,x_0)$ acts (on the left) on the fibre $\scr{F}_{x_0}$ of $\scr{F}$ at $x_0$.
  It is well known that:
\end{rmenv}

\begin{itenv}{Proposition 1.3}
\label{I.1.3}
  Under the hypotheses of \hyperref[I.1.2]{(1.2)}, with $X$ connected, the functor $\scr{F}\mapsto\scr{F}_{x_0}$ is an equivalence between the category of locally constant sheaves on $X$ and the category of sets endowed with an action by the group $\pi_1(X,x_0)$.
\end{itenv}
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\begin{itenv}{Corollary 1.4}
\label{I.1.4}
  Under the hypotheses of \hyperref[I.1.2]{(1.2)}, with $X$ connected, the functor $\scr{F}\mapsto\scr{F}_{x_0}$ is an equivalence between the category of complex local systems on $X$ and the category of complex finite-dimensional representations of $\pi_1(X,x_0)$.
\end{itenv}

\begin{rmenv}{1.5}
\label{I.1.5}
  Under the hypotheses of \hyperref[I.1.2]{(1.2)}, if $a\colon[0,1]\to X$ is a path, and $b$ a loop based at $a(0)$, then $aba^{-1}=a(b)$ is a path based at $a(1)$.
  Its homotopy class depends only on the homotopy classes of $a$ and $b$.
  This construction defines an isomorphism between $\pi_1(X,a(0))$ and $\pi_1(X,a(1))$.
\end{rmenv}

\begin{itenv}{Proposition 1.6}
\label{I.1.6}
  Under the hypotheses of \hyperref[I.1.5]{(1.5)}, there exists, up to unique isomorphism, exactly one locally constant sheaf of groups $\Pi_1(X)$ on $X$ (\emph{the fundamental groupoid}), endowed, for all $x_0\in X$, with an isomorphism
  \[
  \label{I.1.6.1}
    \Pi_1(X)_{x_0} \simeq \pi_1(X,x_0)
  \tag{1.6.1}
  \]
  and such that, for every path $a\colon[0,1]\to X$, the isomorphism in \hyperref[I.1.5]{(1.5)} between $\pi_1(X,a(0))$ and $\pi_1(X,a(1))$ can be identified, via \hyperref[I.1.6.1]{(1.6.1)}, with the isomorphism in \hyperref[I.1.2]{(1.2)} between $\Pi_1(X)_{a(0)}$ and $\Pi_1(X)_{a(1)}$.
\end{itenv}

If $X$ is connected, with base point $x_0$, then the sheaf $\Pi_1(X)$ corresponds, via the equivalence in \hyperref[I.1.3]{(1.3)}, to the group $\pi_1(X,x_0)$ endowed with its action over itself by inner automorphisms.

\begin{itenv}{Proposition 1.7}
\label{I.1.7}
  If $\scr{F}$ is a locally constant sheaf on $X$, then there exists exactly one action (said to be \emph{canonical}) of $\Pi_1(X)$ on $\scr{F}$ that, at each $x_0\in X$, induces the action from \hyperref[I.1.2]{(1.2)} of $\pi_1(X,x_0)$ on $\scr{F}$.
\end{itenv}


\section{Integrable connections and local systems}
\label{I.2}
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\begin{rmenv}{2.1}
  Let $X$ be an analytic space \hyperref[0.1]{(0.1)}.
  We define a (holomorphic) \emph{vector bundle} on $X$ to be a locally free sheaf of modules that is of finite type over the structure sheaf $\cal{O}$ of $X$.
  If $\cal{V}$ is a vector bundle on $X$, and $x$ a point of $X$, then we denote by $\cal{V}_{(x)}$ the free $\cal{O}_{(x)}$-module of finite type of germs of sections of $\cal{V}$.
  If $\mathfrak{m}_x$ is the maximal ideal of $\cal{O}_{(x)}$, then we define the \emph{fibre at $x$ of the vector bundle $\cal{V}$} to be the $\CC$-vector space of finite rank
  \[
  \label{I.2.1.1}
    \cal{V}_x = \cal{V}_{(x)} \otimes_{\cal{O}_{(x)}} \cal{O}_{(x)}/\mathfrak{m}_x.
  \tag{2.1.1}
  \]

  If $f\colon X\to Y$ is a morphism of analytic spaces, then the \emph{inverse image} of a vector bundle $\cal{V}$ on $Y$ is the vector bundle $f^*\cal{V}$ on $X$ given by the inverse image of $\cal{V}$ as a coherent module:
  if $f^\sbullet\cal{V}$ is the sheaf-theoretic inverse image of $\cal{V}$, then
  \[
  \label{I.2.1.2}
    f^*\cal{V} \simeq \cal{O}_X \otimes_{f^*\cal{O}_Y} f^\sbullet\cal{V}
  \tag{2.1.2}
  \]

  In particular, if $x\colon P\to X$ is the morphism from the point space $P$ to $X$ defined by a point $x$ of $X$, then
  \[
    \label{I.2.1.3}
      \cal{V}_x \simeq x^*\cal{V}.
    \tag{2.1.3}
  \]
\end{rmenv}

\begin{rmenv}{2.2}
\label{I.2.2}
  Let $X$ be a complex-analytic manifold \hyperref[0.7]{(0.7)} and $\cal{V}$ a vector bundle on $X$.
  The old school would have defined a (holomorphic) connection on $\cal{V}$ as the data, for every pair of points $(x,y)$ that are first order infinitesimal neighbours in $X$, of an isomorphism $\gamma_{y,x}\colon\cal{V}_x\to\cal{V}_y$ that depends holomorphically on $(x,y)$ and is such that $\gamma_{x,x}=\id$.

  Suitably interpreted, this ``definition'' coincides with the currently fashionable definition \hyperref[I.2.2.4]{(2.2.4)} given below (which we not be use in the rest of the section).

  It suffices to understand ``point'' to mean ``point with values in any analytic space'':

\oldpage{6}
  \begin{rmenv}{2.2.1}
  \label{I.2.2.1}
    \emph{A point in an analytic space $X$ with values in an analytic space $S$} is a morphism from $S$ to $X$.
  \end{rmenv}

  \begin{rmenv}{2.2.2}
  \label{I.2.2.2}
    If $Y$ is a subspace of $X$, then the \emph{$n$\textsuperscript{th} infinitesimal neighbourhood} of $Y$ in $X$ is the subspace of $X$ defined locally by the $(n+1)$-th power of the ideal of $\cal{O}_X$ that defines $Y$.
  \end{rmenv}

  \begin{rmenv}{2.2.3}
  \label{I.2.2.3}
    Two points $x,y\in X$ with values in $S$ are said to be \emph{first order infinitesimal neighbours} if the map $(x,y)\colon S\to X\times X$ that they define factors through the first order infinitesimal neighbourhood of the diagonal of $X\times X$.
  \end{rmenv}

  \begin{rmenv}{2.2.4}
  \label{I.2.2.4}
    If $X$ is a complex-analytic manifold and $\cal{V}$ is a vector bundle on $X$, then a (\emph{holomorphic}) \emph{connection} $\gamma$ on $\cal{V}$ consists of the following data:

    for every pair $(x,y)$ of points of $X$ with values in an arbitrary analytic space $S$, with $x$ and $y$ first order infinitesimal neighbours, an isomorphism $\gamma_{x,y}\colon x^*\cal{V}\to y^*\cal{V}$;
    this data is subject to the conditions:
    \begin{enumerate}[(i)]
      \item (functoriality) For any $f\colon T\to S$ and any first order infinitesimal neighbours $x,y\colon S\rightrightarrows X$, we have $f^*(\gamma_{y,x})=\gamma_{yf,xf}$.
      \item We have $\gamma_{x,x}=\id$.
    \end{enumerate}
  \end{rmenv}
\end{rmenv}

\begin{rmenv}{2.3}
\label{I.2.3}
  Let $X_1$ be the first-order infinitesimal neighbourhood of the diagonal $X_0$ of $X\times X$, and let $p_1$ and $p_2$ be the two projections of $X_1$ to $X$.
  By definition, the vector bundle $P^1(\cal{V})$ of first-order jets of sections of $\cal{V}$ is the bundle $(p_1)_*p_2^*\cal{V}$.
  We denote by $j^1$ the first-order differential operator that sends each section of $\cal{V}$ to its first-order jet:
  \[
    j^1\colon \cal{V} \to P^1(\cal{V}) \simeq \cal{O}_{X_1}\otimes_{\cal{O}_X}\cal{V}.
  \]

  A connection (\hyperref[I.2.2.4]{(2.2.4)}) can be understood as a homomorphism (which is automatically an isomorphism)
  \[
  \label{I.2.3.1}
    \gamma = p_1^*\cal{V} \to p_2^*\cal{V}
  \tag{2.3.1}
  \]
  which induces the identity over $X_0$.
  Since
  \[
    \Hom_{X_1}(p_1^*\cal{V},p_2^*\cal{V}) \simeq \Hom(\cal{V},(p_1)_*p_2^*\cal{V}),
  \]
\oldpage{7}
  a connection can also be understood as a ($\cal{O}$-linear) homomorphism
  \[
  \label{I.2.3.2}
    \DD\colon \cal{V} \to P^1(\cal{V})
  \tag{2.3.2}
  \]
  such that the obvious composite arrow
  \[
    \cal{V}\xrightarrow{\DD} P^1(\cal{V}) \to \cal{V}
  \]
  is the identity.
  The sections $\DD s$ and $j^1(s)$ of $P^1(v)$ thus have the same image in $\cal{V}$, and $j^1(s)-\DD(s)$ can be identified with a section $\nabla s$ of $\Omega_X^1\otimes\cal{V} \simeq \Ker(P^1(\cal{V})\to\cal{V})$:
  \[
  \label{I.2.3.3}
    \nabla\colon \cal{V} \to \Omega^1(X)
  \tag{2.3.3}
  \]
  \[
  \label{I.2.3.4}
    j^1(s) = \DD(s)+\nabla s.
  \tag{2.3.4}
  \]

  In other words, a connection \hyperref[I.2.2.4]{(2.2.4)}, allowing us to compare two neighbouring fibres of $\cal{V}$, also allows us to define the differential $\nabla s$ of a section of $\cal{V}$.

  Conversely, equation~\hyperref[I.2.3.4]{(2.3.4)} allows us to define $\DD$, and thus $\gamma$, from the covariant derivative $\nabla$.
  For $\DD$ to be linear, it is necessary and sufficient for $\nabla$ to satisfy the identity
  \[
  \label{I.2.3.5}
    \nabla(fs) = \dd f\cdot s + f\cdot\nabla s
  \tag{2.3.5}
  \]

  Definition~\hyperref[I.2.2.4]{(2.2.4)} is thus equivalent to the following definition, due to J.L.~Koszul.
\end{rmenv}

\begin{rmenv}{Definition 2.4}
\label{I.2.4}
  Let $\cal{V}$ be a (holomorphic) vector bundle on a complex-analytic manifold $X$.
  A \emph{holomorphic connection} (or simply, \emph{connection}) on $\cal{V}$ is a $\mathbb{C}$-linear homomorphism
  \[
    \nabla\colon \cal{V} \to \Omega_X^1(\cal{V}) = \Omega_X^1\otimes_{\cal{O}}\cal{V}
  \]
  that satisfies the Leibniz identity (\hyperref[I.2.3.5]{(2.3.5)}) for local sections $f$ of $\cal{O}$ and $s$ of $\cal{V}$.
  We call $\nabla$ the \emph{covariant derivative} defined by the connection.
\end{rmenv}

\begin{rmenv}{2.5}
\label{I.2.5}
  If the vector bundle $\cal{V}$ is endowed with a connection $\Gamma$ with covariant derivative $\nabla$, and if $w$ is a holomorphic vector field on $X$, then we set, for every local section $v$ of $\cal{V}$ over an open subset $U$ of $X$,
  \[
    \nabla_w(v) = \langle \nabla v,w \rangle \in \cal{V}(U).
  \]
  We call $\nabla_w\colon \cal{V} \to \cal{V}$ the \emph{covariant derivative along the vector field $w$}.
\end{rmenv}
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\begin{rmenv}{2.6}
\label{I.2.6}
  If ${}_1\!\Gamma$ and ${}_2\!\Gamma$ are connections on $X$, with covariant derivatives ${}_1\!\nabla$ and ${}_2\!\nabla$ (respectively), then ${}_2\!\nabla-{}_1\!\nabla$ is a $\cal{O}$-linear homomorphism from $\cal{V}$ to $\Omega_X^1(\cal{V})$.
  Conversely, the sum of ${}_1\!\nabla$ and such a homomorphism defines a connection on $\cal{V}$.
  Thus connections on $\cal{V}$ form a principal homogeneous space (or torsor) on $\shHom(\cal{V},\Omega_X^1(\cal{V})) \simeq \Omega_X^1(\shEnd(\cal{V}))$.
\end{rmenv}

\begin{rmenv}{2.7}
\label{I.2.7}
  If vector bundles are endowed with connections, then every vector bundle obtained by a ``tensor operation'' is again endowed with a connection.
  This is evident with \hyperref[I.2.2.4]{(2.2.4)}.
  More precisely, let $\cal{V}_1$ and $\cal{V}_2$ be vector bundles endowed with connections with covariant derivatives $\nabla_1$ and $\nabla_2$.

  \begin{rmenv}{2.7.1}
  \label{I.2.7.1}
    We define a connection on $\cal{V}_1\oplus\cal{V}_2$ by the formula
    \[
      \nabla_w(v_1+v_2) = {}_1\!\nabla_w(v_1) + {}_2\!\nabla_w(v_2)
    \]
  \end{rmenv}

  \begin{rmenv}{2.7.2}
  \label{I.2.7.2}
    We define a connection on $\cal{V}_1\otimes\cal{V}_2$ by the Leibniz formula
    \[
      \nabla_w(v_1\otimes v_2) = \nabla_w v_1\cdot v_2 + v_1\cdot\nabla_w v_2.
    \]
  \end{rmenv}

  \begin{rmenv}{2.7.3}
  \label{I.2.7.3}
    We define a connection on $\shHom(\cal{V}_1,\cal{V}_2)$ by the formula
    \[
      (\nabla_w f)(v_1) = {}_2\!\nabla_w(f(v_1)) - f({}_1\!\nabla_w v_1).
    \]
  \end{rmenv}

  The canonical connection on $\cal{O}$ is the connection for which $\nabla f=\dd f$.
  
  Let $\cal{V}$ be a vector bundle endowed with a connection.
  \begin{rmenv}{2.7.4}
  \label{I.2.7.4}
    We define a connection on the dual $\cal{V}^\vee$ of $\cal{V}$ via \hyperref[I.2.7.3]{(2.7.3)} and the defining isomorphism $\cal{V}^\vee = \shHom(\cal{V},\cal{O})$.
    We have
    \[
      \langle \nabla_w v',v \rangle = \partial_w\langle v',v \rangle - \langle v',\nabla_w v \rangle.
    \]
  \end{rmenv}

  We leave it to the reader to verify that these formulas do indeed define connections.
  For \hyperref[I.2.7.2]{(2.7.2)}, for example, one must verify that, firstly, the given formula defines a $\mathbb{C}$-bilinear map from $(\cal{V}_1\otimes\cal{V}_2)$, which means that the right-hand side $\II(v_1,v_2)$ is $\mathbb{C}$-bilinear and such that $\II(fv_1,v_2)=\II(v_1,fv_2)$;
  secondly, one must also verify identity~\hyperref[I.2.3.5]{(2.3.5)}.
\end{rmenv}

\begin{rmenv}{2.8}
\label{I.2.8}
  An $\cal{O}$-homomorphism $f$ between vector bundles $\cal{V}_1$ and $\cal{V}_2$ endowed with connections
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  is said to be \emph{compatible with the connections} if
  \[
    {}_2\!\nabla\cdot f = f\cdot{}_1\!\nabla.
  \]
  By \hyperref[I.2.7.3]{(2.7.3)}, this reduces to saying that $\nabla f=0$, if $f$ is thought of as a section of $\shHom(\cal{V}_1,\cal{V}_2)$.
  For example, by \hyperref[I.2.7.3]{(2.7.3)}, the canonical map
  \[
    \Hom(\cal{V}_1,\cal{V}_2)\otimes\cal{V}_1 \to \cal{V}_2
  \]
  is compatible with the connections.
\end{rmenv}

\begin{rmenv}{2.9}
\label{I.2.9}
  A local section $v$ of $\cal{V}$ is said to be \emph{horizontal} if $\nabla v=0$.
  If $f$ is a homomorphism between bundles $\cal{V}_1$ and $\cal{V}_2$ endowed with connections, then it is equivalent to say either that $f$ is horizontal, or that $f$ is compatible with the connections \hyperref[I.2.8]{(2.8)}.
\end{rmenv}

\begin{rmenv}{2.10}
\label{I.2.10}
  Let $\cal{V}$ be a holomorphic vector bundle on $X$.
  Define $\Omega_X^p=\bigwedge^p\Omega_X^1$ and $\Omega_X^p(\cal{V})=\Omega_X^p\otimes_\cal{O}\cal{V}$ (the sheaf of \emph{exterior differential $p$-forms with values in $\cal{V}$}).
  Suppose that $\cal{V}$ is endowed with a holomorphic connection.
  We then define $\CC$-linear morphisms
  \[
  \label{I.2.10.1}
    \nabla\colon \Omega_X^p(\cal{V}) \to \Omega_X^{p+1}(\cal{V})
  \tag{2.10.1}
  \]
  characterised by the following formula:
  \[
  \label{I.2.10.2}
    \nabla(\alpha,v) = \dd\alpha\cdot v + (-1)^p\alpha\wedge\nabla v,
  \tag{2.10.2}
  \]
  where $\alpha$ is any local section of $\Omega^p$, $v$ is any local section of $\cal{V}$, and $\dd$ is the exterior differential.
  To prove that the right-hand side $\II(\alpha,v)$ of \hyperref[I.2.10.2]{(2.10.2)} defines a homomorphism \hyperref[I.2.10.1]{(2.10.1)}, it suffices to show that $\II(\alpha,v)$ is $\CC$-bilinear and satisfies
  \[
    \II(f\alpha,v) = \II(\alpha,fv).
  \]
  But we have that
  \[
    \begin{aligned}
      \II(f\alpha,v)
      &= \dd(f\alpha)v + (-1)^pf\alpha\wedge\nabla v
    \\&= \dd\alpha\cdot fv + \dd f\wedge\alpha v + (-1)^pf\alpha\wedge\nabla v
    \\&= \dd\alpha\cdot fv + (-1)^p\alpha\wedge(f\nabla v+\dd f\cdot v)
    \\&= \II(\alpha,fv).
    \end{aligned}
  \]

  Let $\cal{V}_1$ and $\cal{V}_2$ be vector bundles endowed with connections, and let $\cal{V}$ be their tensor product \hyperref[I.2.7.2]{(2.7.2)}.
  We denote by $\wedge$ the evident maps
  \[
    \wedge\colon \Omega^p(\cal{V}_1)\otimes\Omega^1(\cal{V}_2) \to \Omega^{p+q}(\cal{V})
  \]
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  such that, for any local section $\alpha$ (resp. $\beta$, resp. $v_1$, resp. $v_2$) of $\Omega^p$ (resp. $\Omega^q$, resp. $\cal{V}_1$, resp. $\cal{V}_2$), we have that $(\alpha\otimes v_1)\wedge(\beta\otimes v_2) = (\alpha\wedge\beta)\otimes(v_1\otimes v_2)$.
  If $\nu_1$ (resp. $\nu_2$) is any local section of $\Omega^p(\cal{V}_1)$ (resp. $\Omega^q(\cal{V}_2)$), then
  \[
  \label{I.2.10.3}
    \nabla(\nu_1\wedge\nu_2) = \nu_1\wedge\nu_2 + (-1)^p\nu_1\wedge\nu_2.
  \tag{2.10.3}
  \]
  Indeed, if $\nu_1=\alpha v_1$ and $\nu_2=\beta v_2$, then
  \[
    \begin{aligned}
      \nabla(\nu_1\wedge\nu_2)
      &= \nabla(\alpha\wedge\beta\otimes v_1\otimes v_2)
    \\&= \dd(\alpha\wedge\beta)v_1\otimes v_2 + (-1)^{p+q}\alpha\wedge\beta\wedge\nabla(v_1\otimes v_2)
    \\&= \dd\alpha\wedge\beta v_1\otimes v_2 + (-1)^p\alpha\wedge\dd\beta v_1\otimes v_2
    \\&\quad+ (-1)^{p+q}\alpha\wedge\beta\wedge\nabla v_1\otimes v_2 + (-1)^{p+q}\alpha\wedge\beta v_1\wedge\nabla v_2
    \\&= \dd\alpha v_1\wedge\nu_2 + (-1)^p\nu_1\wedge\dd\beta v_2 + (-1)^p\alpha\wedge\nabla v_1\wedge\nu_2
    \\&\quad+ (-1)^{p+q}\nu_2\wedge\beta\wedge\nabla v_2
    \\&= (\dd\alpha v_1 + (-1)^p\alpha\wedge\nabla v_1)\wedge\nu_2 + (-1)^p\nu_1\wedge(\dd\beta v_2 + (-1)^q\beta\wedge\nabla v_2)
    \\&= \nabla\nu_1\wedge\nu_2 +(-1)^p\nu_1\wedge\nabla\nu_2.
    \end{aligned}
  \]

  Let $\cal{V}$ be a vector bundle endowed with a connection.
  If we apply the above formula to $\cal{O}$ and $\cal{V}$, then, for any local section $\alpha$ (resp. $\nu$) of $\Omega^p$ (resp. $\Omega^q(\cal{V})$), we have that
  \[
  \label{I.2.10.4}
    \nabla(\alpha\wedge\nu) = \dd\alpha\wedge\nu + (-1)^p\alpha\wedge\nabla\nu.
  \tag{2.10.4}
  \]

  Iterating this formula gives
  \[
  \label{I.2.10.5}
    \begin{aligned}
      \nabla\nabla(\alpha\wedge\nu)
      &= \nabla(\dd\alpha\wedge\nu + (-1)^p\alpha\wedge\nabla\nu)
      \\&= \dd\alpha\wedge\nu + (-1)^{p+1}\dd\alpha\wedge\nabla\nu + (-1)^p\dd\alpha\wedge\nabla\nu + \alpha\wedge\nabla\nabla\nu
      \\&= \alpha\wedge\nabla\nabla\nu.
    \end{aligned}
  \tag{2.10.5}
  \]
\end{rmenv}

\begin{rmenv}{Definition 2.11}
\label{I.2.11}
  Under the hypotheses of \hyperref[I.2.10]{(2.10)}, the \emph{curvature} $R$ of the given connection on $\cal{V}$ is the composite homomorphism
  \[
    R\colon \cal{V} \to \Omega_X^2(\cal{V})
  \]
  considered as a section of $\Hom(\cal{V},\Omega_X^2(\cal{V})) \simeq \Omega_X^2(\End(\cal{V}))$.
\end{rmenv}

\begin{rmenv}{2.12}
\label{I.2.12}
  Taking $q=0$ in \hyperref[I.2.10.4]{(2.10.4)} gives
  \[
  \label{I.2.12.1}
    \nabla\nabla(\alpha v) = \alpha\wedge R(v),
  \tag{2.12.1}
  \]
  which we write as
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  \[
  \label{I.2.12.2}
    \nabla\nabla(\nu) = R\wedge\nu
    \qquad\mbox{(the \emph{Ricci identity}).}
  \tag{2.12.2}
  \]

  We endow $\shEnd(\cal{V})$ with the connection given in \hyperref[I.2.7.3]{(2.7.3)}.
  The equation $\nabla(\nabla\nabla)=(\nabla\nabla)\nabla$ can be written as $\nabla(R\wedge\nu) = R\wedge\nabla\nu$.
  By \hyperref[I.2.7.3]{(2.7.3)}, we have that $\nabla R\wedge\nu = \nabla(R\wedge\nu) - R\wedge\nabla\nu$, so that
  \[
  \label{I.2.12.3}
    \nabla R=0
    \qquad\mbox{(the \emph{Bianchi identity}).}
  \tag{2.12.3}
  \]
\end{rmenv}

\begin{rmenv}{2.13}
\label{I.2.13}
  If $\alpha$ is an exterior differential $p$-form, then we know that
  \[
    \begin{aligned}
      \langle \dd\alpha, X_0\wedge\ldots\wedge X_p \rangle
      &= \sum_i(-1)^i j_{X_i}\langle \alpha, X_0\wedge\ldots\wedge\widehat{X_i}\wedge\ldots\wedge X_p \rangle
    \\&\quad+ \sum_{i<j})(-1)^{i+j} \langle \alpha, [X_i,X_j]\wedge X_0\wedge\ldots\wedge\widehat{X_i}\wedge\ldots\wedge\widehat{X_j}\wedge\ldots\wedge X_p \rangle.
    \end{aligned}
  \]
  From this formula, and from \hyperref[I.2.10.2]{(2.10.2)}, we see that, for any local section $\nu$ of $\Omega_X^p(\cal{V})$, and holomorphic vector fields $X_0,\ldots,X_p$,
  \[
  \label{I.2.13.1}
    \begin{aligned}
      \langle \nabla\nu, X_0\wedge\ldots\wedge X_p \rangle
      &= \sum_i(-1)^i \nabla_{X_i}\langle \nu, X_0\wedge\ldots\wedge\widehat{X_i}\wedge\ldots\wedge X_p \rangle
    \\&\quad+ \sum_{i<j})(-1)^{i+j} \langle \nu, [X_i,X_j]\wedge X_0\wedge\ldots\wedge\widehat{X_i}\wedge\ldots\wedge\widehat{X_j}\wedge\ldots\wedge X_p \rangle.
    \end{aligned}
  \tag{2.13.1}
  \]

  In particular, for any local section $v$ of $\cal{V}$, we have that
  \[
    \langle \nabla\nabla v, X_1\wedge X_2 \rangle
    = \nabla_{X_1}\langle \nabla v, X_2 \rangle - \nabla_{X_2}\langle v, X_1 \rangle - \langle \nabla v, [X_1,X_2] \rangle.
  \]
  That is,
  \[
  \label{I.2.13.2}
    R(X_1,X_2)(v) = \nabla_{X_1}\nabla_{X_2}v - \nabla_{X_2}\nabla_{X_1}v - \nabla_{[X_1,X_2]}v.
  \tag{2.13.2}
  \]
\end{rmenv}

\begin{rmenv}{Definition 2.14}
\label{I.2.14}
  A connection is said to be \emph{integrable} if its curvature is zero, i.e. \hyperref[I.2.13.2]{(2.13.2)} if the following holds identically:
  \[
    \nabla_{[X,Y]} = [\nabla_X,\nabla_Y].
  \]
\end{rmenv}
If $\dim(X)\leq1$, then every connection is integrable.

If $\Gamma$ is an integrable connection on $\cal{V}$, then the morphism $\nabla$ of \hyperref[I.2.10.1]{(2.10.1)} satisfy $\nabla\nabla=0$, and so the $\Omega^p(\cal{V})$ give a differential complex $\Omega^\bullet(\cal{V})$.

\begin{rmenv}{Definition 2.15}
\label{I.2.15}
  Under the above hypotheses, the complex $\Omega^\bullet(\cal{V})$ is called the \emph{holomorphic de Rham complex} with values in $\cal{V}$.
\end{rmenv}
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The results \hyperref[I.2.16]{(2.16)} to \hyperref[I.2.19]{(2.19)} that follow will be proven in a more general setting in \hyperref[I.2.23]{(2.23)}.

\begin{itenv}{Proposition 2.16}
\label{I.2.16}
  Let $V$ be a local complex system on a complex-analytic variety $X$ \hyperref[0.6]{(0.6)}, and let $\cal{V}=\cal{O}\otimes_\CC V$.
  \begin{enumerate}[(i)]
    \item There exists, on the vector bundle $\cal{V}$, exactly one connection (said to be \emph{canonical}) whose horizontal sections are the local sections of the subsheaf $V$ of $\cal{V}$.
    \item The canonical connection on $\cal{V}$ is integrable.
    \item For any local section $f$ (resp. $v$) of $\cal{O}$ (resp. $V$),
      \[
      \label{I.2.16.1}
        \nabla(fv) = \dd f\cdot v.
      \tag{2.16.1}
      \]
  \end{enumerate}
\end{itenv}

\begin{proof}
  If $\nabla$ satisfies (i), then \hyperref[I.2.16.1]{(2.16.1)} is a particular case of \hyperref[I.2.3.5]{(2.3.5)}.
  Conversely, the right-hand side $\II(f,v)$ of \hyperref[I.2.16.1]{(2.16.1)} is $\CC$-bilinear, and thus extends uniquely to a $\CC$-linear map $\nabla\colon\cal{V}\to\Omega^1(\cal{V})$, which we can show defines a connection.
  Claim~(ii) is local on $X$, which allows us to reduce to the case where $V=\underline{\CC}$.
  Then $\cal{V}=\cal{O}$, $\nabla=\dd$, and $\nabla_{[X,Y]}=[\nabla_X,\nabla_Y]$ by the definition of $[X,Y]$.
\end{proof}

It is well known that:
\begin{itenv}{Theorem 2.17}
\label{I.2.17}
  Let $X$ be a complex-analytic variety.
  Then the following functors are quasi-inverse to one another, and thus give an equivalence between the category of complex local systems on $X$ and the category of holomorphic vector bundles with on $X$ with integrable connections (with the morphisms being the horizontal morphisms of vector bundles):
  \begin{enumerate}[a)]
    \item the complex local system $V$ is sent to $\cal{V}=\cal{O}\otimes V$ endowed with its canonical connection;
    \item the holomorphic vector bundle $\cal{V}$ endowed with its integrable connection is sent to the subsheaf $V$ of $\cal{V}$ consisting of horizontal sections (i.e. those $v$ such that $\nabla v=0$).
  \end{enumerate}
\end{itenv}

These equivalences are compatible with taking the tensor product, the internal $\Hom$, and the dual;
to the unit complex local system $\underline{\CC}$ corresponds the bundle $\cal{O}$ endowed with the connection $\nabla$ such that $\nabla f=\dd f$.

Definition~\hyperref[I.2.10.2]{(2.10.2)} implies the following:
\begin{itenv}{Proposition 2.18}
\label{I.2.18}
  If $V$ is a complex local system on $X$, and if $\cal{V}=\cal{O}\otimes_\CC V$,
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  then the system of isomorphisms
  \[
    \Omega_X^p\otimes_\CC V
    \simeq
    \Omega_X^p\otimes_\cal{O}\cal{O}\otimes_\CC V
    \simeq
    \Omega_X^p\otimes_\cal{O}\cal{V}
  \]
  is an isomorphism of complexes
  \[
    \Omega_X^\bullet\otimes_\CC V \to \Omega_X^\bullet(\cal{V}).
  \]
\end{itenv}
From this, the holomorphic Poincar\'{e} lemma gives the following:
\begin{itenv}{Proposition 2.19}
\label{I.2.19}
  Under the hypotheses of \hyperref[I.2.16]{(2.16)}, the complex $\Omega_X^\bullet(\cal{V})$ is a resolution of the sheaf $\cal{V}$.
\end{itenv}

\begin{rmenv}{2.20}
\label{I.2.20}
  \textbf{Variants.}
  
  \begin{rmenv}{2.20.1}
  \label{I.2.20.1}
    If $X$ is a differentiable manifold, and we consider $C^\infty$ connections on $C^\infty$ vector bundles, then all of the above results still hold true, mutatis mutandis.
    We will not use this fact.
  \end{rmenv}

  \begin{rmenv}{2.20.2}
  \label{I.2.20.2}
    Theorem~\hyperref[I.2.17]{(2.17)} makes essential use of the non-singularity of $X$;
    it is thus unimportant to note that this hypothesis has not been used in an essential way before \hyperref[I.2.17]{(2.17)}
  \end{rmenv}

  \begin{rmenv}{2.20.3}
  \label{I.2.20.3}
    The definition \hyperref[I.2.4]{(2.4)} of a connection and the definition \hyperref[I.2.11]{(2.11)} of an integrable connection are formal enough that we can transport them to the category of schemes, or in relative settings:
  \end{rmenv}
\end{rmenv}

\begin{rmenv}{Definition 2.21}
\label{I.2.21}
  \begin{enumerate}[(i)]
    \item Let $f\colon X\to S$ be a smooth morphism of schemes, and $\cal{V}$ a quasi-coherent sheaf on $X$.
      A \emph{relative connection} on $\cal{V}$ is an $f^*\cal{O}_S$-linear sheaf morphism
      \[
        \nabla\colon \cal{V} \to \Omega_{X/S}^1(\cal{V})
      \]
      (called the \emph{covariant derivative} defined by the connection) that identically satisfies, for any local section $f$ (resp. $v$) of $\cal{O}_X$ (resp. $\cal{V}$),
      \[
        \nabla(fv) = f\cdot\nabla v + \dd f\cdot v.
      \]
    \item Given $\cal{V}$ endowed with a relative connection, there exists exactly one system of $f^*\cal{O}_S$-homomorphisms of sheaves
      \[
        \nabla^{(p)}\colon \Omega_{X/S}^p(\cal{V}) \to \Omega_{X/S}^{p+1}(\cal{V})
      \]
      that satisfies \hyperref[I.2.10.4]{(2.10.4)} and is such that $\nabla^{(0)}=\nabla$.
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    \item The \emph{curvature} of a connection is defined by
      \[
        R = \nabla^{(1)}\nabla^{(0)} \in \shHom(\cal{V},\Omega_{X/S}^2(\cal{V})) \cong \Omega_{X/S}^2(\shEnd(\cal{V})).
      \]
      The curvature satisfies the Ricci identity \hyperref[I.2.12.2]{(2.12.2)} and the Bianchi identity \hyperref[I.2.12.3]{(2.12.3)}.
    \item An \emph{integrable connection} is a connection with zero curvature.
    \item The \emph{de Rham complex} defined by an integrable connection is the complex $(\Omega_{X/S}^p(\cal{V}),\nabla)$.
  \end{enumerate}
\end{rmenv}

\begin{rmenv}{2.22}
\label{I.2.22}
  Let $f\colon X\to S$ be a \emph{smooth} morphism of complex-analytic spaces;
  by hypothesis, $f$ is thus locally (in the domain) isomorphic to a projection $\pr_2\colon\CC^n\times S\to S$ (for some $n\in\NN$).
  A \emph{local relative system} on $X$ is a sheaf of $f^*\cal{O}_S$-modules that is locally isomorphic to the sheaf-theoretic inverse image of a coherent analytic sheaf on $S$.
  If $\cal{V}$ is a coherent analytic sheaf on $X$, then a \emph{relative connection} on $\cal{V}$ is an $f^*\cal{O}_S$-linear homomorphism
  \[
    \nabla\colon \cal{V} \to \Omega_{X/S}^1(\cal{V})
  \]
  that identically satisfies, for any local section $f$ (resp. $v$) of $\cal{O}$ (resp. $\cal{V}$),
  \[
    \nabla(fv) = f\cdot\nabla v + \dd f\cdot v.
  \]
  A \emph{morphism} between vector bundles endowed with relative connections is a morphism of vector bundles that commutes with $\nabla$.
  We define, as in \hyperref[I.2.11]{(2.11)} and \hyperref[I.2.21]{(2.21)}, the \emph{curvature} $R\in\Omega_{X/S}^2(\shEnd(\cal{V}))$ of a relative connection.
  A relative connection is said to be \emph{integrable} if $R=0$, in which case we have the \emph{relative de Rham complex with values in $\cal{V}$}, denoted by $\Omega_{X/S}^\bullet(\cal{V})$, and defined as in \hyperref[I.2.15]{(2.15)} and \hyperref[I.2.21]{(2.21)}.
\end{rmenv}

The ``absolute'' statements \hyperref[I.2.17]{(2.17)}, \hyperref[I.2.18]{(2.18)}, and \hyperref[I.2.19]{(2.19)} have ``relative'' (i.e. ``with parameters'') analogues:

\begin{itenv}{Theorem 2.23}
\label{I.2.23}
  Under the hypotheses of \hyperref[I.2.22]{(2.22)}, we have the following.
  \begin{enumerate}[(i)]
    \item For every relative local system $V$ on $X$, there exists a coherent analytic sheaf \mbox{$\cal{V}=\cal{O}_X\otimes_{f^*\cal{O}_S}V$}, and exactly one relative connection, said to be canonical, such that a local section $v$ of $\cal{V}$ is horizontal (i.e. such that $\nabla v=0$) if and only if $v$ is a section of $V$;
      this connection is integrable.
    \item Given a relative local system $V$ on $X$, the de Rham complex defined
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      by $\cal{V}=\cal{O}_X\otimes_{f^*\cal{O}_S}V$, endowed with its canonical connection, is a resolution of the sheaf $V$.
    \item The following functors are quasi-inverse to one another, and thus give an equivalence between the category of relative local systems on $X$ and the category of coherent analytic sheaves on $X$ endowed with a relative integrable connection:
      \begin{enumerate}[a)]
        \item the relative local system $V$ is sent to $\cal{V}=\cal{O}_X\otimes_{f^*\cal{O}_S}V$ endowed with its canonical connection;
        \item the coherent analytic sheaf $\cal{V}$ on $X$ endowed with a relative integrable connection is sent to the subsheaf consisting of its horizontal sections (i.e. the sections $v$ such that $\nabla v=0$).
      \end{enumerate}
  \end{enumerate}
\end{itenv}

\begin{proof}
  We first prove (i).
  To show that $\cal{V}$ is coherent, it suffices to do so locally, for $V=f^\sbullet V_0$, in which case $\cal{V}$ is the inverse image, in the sense of coherent analytic sheaves, of $\cal{V}_0$.
  The canonical relative connection necessarily satisfies, for any local section $f$ (resp $v_0$) of $\cal{O}_X$ (resp. $V$),
  \[
  \label{I.2.23.1}
    \nabla(fv_0) = \dd f\cdot v_0.
  \tag{2.23.1}
  \]
  The right-hand side $\II(f,v_0)$ of this equation is biadditive in $f$ and $v_0$, and satisfies, for any local section $g$ of $f^*\cal{O}_S$, the identity
  \[
    \II(fg,v_0) = \II(f,gv_0)
  \]
  (using the fact that $\dd g=0$ in $\Omega_{X/S}^1$).
  We thus deduce the existence and uniqueness of a relative connection $\nabla$ that satisfies \hyperref[I.2.23.1]{(2.23.1)}.
  Finally, we have that
  \[
    \nabla\nabla(fv_0) = \nabla(\dd f\cdot v_0) = \dd\dd f\cdot v_0 = 0,
  \]
  and so the canonical connection $\nabla$ is integrable.
  The fact that only the sections of $V$ are horizontal is a particular case of (ii), which is proven below.
\end{proof}

\begin{rmenv}{2.23.2}
\label{I.2.23.2}
  We first of all consider the particular case of (ii) where $S=D^n$, $X=D^n\times D^m$, $f=\pr_2$, and the relative local system $V$ is the inverse image of $\cal{O}_S$.
  The complex of global sections
  \[
    0 \to \Gamma(f^\sbullet\cal{O}_S) \to \Gamma(\cal{O}_X) \to \Gamma(\Omega_{X/S}^1) \to \ldots
  \]
  is acyclic, since it admits the homotopy operator $H$ defined below.
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  \begin{enumerate}[a)]
    \item $H\colon \Gamma(\cal{O}_X) \to \Gamma(f^\sbullet\cal{O}_S) = \Gamma(S,\cal{O}_S)$ is the inverse image under the zero section of $f$;
    \item an element $\omega\in\Gamma(\Omega_{X/S}^p)$ (where $p>0$) can be represented in a unique way as a sum of convergent series:
      \[
        \omega = \sum_{\substack{I\subset[1,m]\\|I|=p}} \; \sum_{\underline{n}\in \NN^{m+n}} a_{\underline{n}}^I
        \left(
          \prod_{i\in I} x_i^{n_i}\dd x_i
        \right)
        \left(
          \prod_{i\in[1,m+n]\setminus I} x_i^{n_i}
        \right)
      \]
      and we set
      \[
        H(\omega) = \sum_{I\subset[1,m]} \; \sum_{j\in I} \; \sum_{\underline{n}\in\NN^{m+n}} a_{\underline{n}}^I
        \left(
          \prod_{\substack{j\in I\\i\neq j}} x_j^{n_j}\dd x_j \frac{x_j^{n_j+1}}{n_j+1}
        \right)
        \left(
          \prod_{i\in[1,m+n]\setminus I} x_i^{n_i}.
        \right)
      \]
  \end{enumerate}

  This remains true if we replace $D^{m+n}$ by a smaller polycylinder, and so $\Omega_{X/S}^\bullet$ is a resolution of $f^\sbullet\cal{O}_S$.
\end{rmenv}

\begin{proof}[\normalfont\textbf{2.23.3}]
\label{I.2.23.3}
  We now prove (ii), which is of a local nature on $X$ and $S$.
  Denoting by $D$ the open unit disc, we can thus restrict to the case where $S$ is a closed analytic subset of the polycylinder $D^n$, where $X=D^m\times S$, with $f=\pr_2$, and where $V$ is the inverse image of a coherent analytic sheaf $V_0$ on $S$.
  Applying the syzygy theorem, and possibly shrinking $X$ and $S$, we can further suppose that the direct image of $V_0$ on $D^n$, which we again denote by $V_0$, admits a finite resolution $\scr{L}$ by free coherent $\cal{O}_{D^n}$-modules.
  To prove (ii), we are allowed to replace $V_0$ by its direct image on $D^n$, and to suppose that $D^n=S$, which we now do.

  If $\Sigma_0$ is a short exact sequence of coherent $\cal{O}_S$-modules
  \[
    \Sigma_0\colon 0 \to V'_0 \to V_0 \to V''_0 \to 0,
  \]
  then let $\Sigma=f^\sbullet\Sigma_0$ be the exact sequence of relative local systems given by the inverse image of $\Sigma_0$ (which is exact since $f^\sbullet$ is an exact functor), and let $\Omega_{X/S}^\bullet(\Sigma)$ be the corresponding exact sequence of relative de Rham complexes:
  \[
    \Omega_{X/S}^\bullet(\Sigma)\colon 0 \to \Omega_{X/S}^p\otimes_{f^\sbullet\cal{O}_S}f^\sbullet V'_0 \to \Omega_{X/S}^p\otimes_{f^\sbullet\cal{O}_S}f^\sbullet V_0 \to \Omega_{X/S}^p\otimes_{f^\sbullet\cal{O}_S}f^\sbullet V''_0 \to 0.
  \]
  This sequence is exact since $\Omega_{X/S}^p$ is flat over $f^\sbullet\cal{O}_S$, since it is locally free over $\cal{O}_X$ which is itself flat over $f^\sbullet\cal{O}_S$.

  The snake lemma applied to $\Omega_{X/S}^\bullet(\Sigma)$ shows that, if claim~(ii)
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  is satisfied for any two of relative local systems $f^\sbullet V_0$, $f^\sbullet V'_0$, and $f^\sbullet V''_0$, then it is again satisfied for the third.
  We thus deduce, by induction, that, if $V_0$ admits a finite resolution $M_\bullet$ by modules that satisfy (ii), then $V_0$ satisfies (ii).
  This, applied to $V_0$ and $\scr{L}^\bullet$, finishes the proof of (i) and (ii).

  It follows from (ii) that the composite $\mbox{(iii)b}\circ\mbox{(iii)a}$ of the functors from (iii) is canonically isomorphic to the identity;
  furthermore, if $V_1$ and $V_2$ are relative local systems, and if $u\colon\cal{V}_1\to\cal{V}_2$ is a homomorphism that induces $0$ on $V_1$, then $u=0$, since $V_1$ generates $\cal{V}_1$;
  it thus follows that the functor $\mbox{(iii)a}$ is fully faithful.
  It remains to show that every vector bundle $\cal{V}$ endowed with a relative connection $\nabla$ is given locally by a relative local system.

  \begin{itemize}
    \item[] \textbf{Case 1:} \emph{$S=D^n$, $X=D^{n+1}=D^n\times D$, $f=\pr_1$, and $\cal{V}$ is free.}

      Under these hypotheses, if $v$ is an arbitrary section of the inverse image of $\cal{V}$ under the zero section $s_0$ of $f$, then there exists exactly one horizontal section $\widetilde{v}$ of $\cal{V}$ that agrees with $v$ on $s_0(S)$ (as follows from the existence and uniqueness of solutions for Cauchy problems with parameters).
      If $(e_i)_{1\leq i\leq k}$ is a basis of $s_0^*\cal{V}$, then the $\widetilde{e_i}$ form a horizontal basis of $\cal{V}$, and $(\cal{V},{\nabla})$ is defined by the relative local system $f^\sbullet s_0^*\cal{V}\simeq f^\sbullet\cal{O}_S^k$.
    \item[] \textbf{Case 2:} \emph{$S=D^n$, $X=D^{n+1}=D^n\times D$, and $f=\pr_1$.}

      By possibly shrinking $X$ and $S$, we can suppose that $\cal{V}$ admits a free presentation:
      \[
        \cal{V}_1 \xrightarrow{d} \cal{V}_0 \xrightarrow{\varepsilon} \cal{V} \to 0.
      \]
      By then possibly shrinking again, we can further suppose that $\cal{V}_0$ and $\cal{V}_1$ admit connections $\nabla_1$ and $\nabla_0$ (respectively) such that $\varepsilon$ and $d$ are compatible with the connections (if $(e_i)$ is a basis of $\cal{V}_0$, then $\nabla_0$ is determined by the $\nabla_0 e_i$, and it suffices to choose $\nabla_0 e_i$ such that $\varepsilon(\nabla_0 e_i)=\nabla(\varepsilon(e_i))$; we proceed similarly for $\nabla_1$).
      The connections $\nabla_0$ and $\nabla_1$ are automatically integrable, since $f$ is of relative dimension~$1$.
      There thus exist (by Case~1) relative local systems $V_0$ and $V_1$ such that $(\cal{V}_i,\nabla_i)\simeq\cal{O}_X\otimes_{f^\sbullet\cal{O}_S}V_i$.
      We then have that
      \[
        (\cal{V},\nabla) \simeq \cal{O}_X\otimes_{f^\sbullet\cal{O}_S}(V_0/dV_1).
      \]
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    \item[] \textbf{Case 3:} \emph{$f$ is of relative dimension~$1$.}

      We can suppose that $S$ is a closed analytic subset of $D^n$, and that $X=S\times D$ and $f=\pr_1$.
      The relative local systems (resp. the modules with relative connections) on $X$ can then be identified with the local relative systems (resp. the modules with relative connections) on $D^n\times D$ that are annihilated by the inverse image of the ideal that defines $S$, and we conclude by using Case~2.
    \item[] \textbf{General case.}
      We proceed by induction on the relative dimension $n$ of $f$.
      The case $n=0$ is trivial.
      If $n\neq0$, then we are led to the case where $X=S\times D^{n-1}\times D$ and $f=\pr_1$.
      The bundle with connection $(\cal{V},\nabla)$ induces a bundle $\cal{V}_0$ with connection on $X_0=S\times D^{n-1}\times\{0\}$ which is, by induction, of the form $(\cal{V}_0,\nabla_0) = \cal{O}_{X_0}\otimes_{\pr_1^\sbullet\cal{O}_S}V$.
      The projection $f$ from $X$ to $S\times D^{n-1}$ is of relative dimension~$1$, and the relative connection $\nabla$ induces a relative connection for $\cal{V}$ on $X/S\times D^{n-1}$.
      By Case~3, there exists a vector bundle $V_1$ on $S\times D^{n-1}$, as well as an isomorphism
      \[
        \cal{V} \simeq \cal{O}_X\otimes_{p^\sbullet\cal{O}_{S\times D^{n-1}}}p^\sbullet V_1.
      \]
      of bundles with relative connections (with respect to $p$).

      The vector bundle $V_1$ can be identified with the restriction of $\cal{V}$ to $X_0$, whence we obtain an isomorphism
      \[
        \alpha\colon \cal{V}\simeq\cal{O}_X\otimes_{f^\sbullet\cal{O}_S}V
      \]
      of vector bundles, such that
      \begin{enumerate}[(i)]
        \item the restriction of $\alpha$ to $X_0$ is horizontal ; and
        \item $\alpha$ is ``relatively horizontal'' with respect to $p$.
      \end{enumerate}

      If $v$ is a section of $V$, then condition~(ii) implies that
      \[
        \nabla_{x_n}v = 0.
      \]

      If $1\leq i<n$, since $R=0$, then, by an analogous statement to \hyperref[I.2.13.2]{(2.13.2)}, we have that
      \[
        \nabla_{x_n}\nabla_{x_i}v = \nabla_{x_i}\nabla_{x_n}v = 0.
      \]

      In other words, $\nabla_{x_i}v$ is a relative horizontal section, with respect to $p$, of $\cal{V}$;
      by (i), it is zero on $X_0$, and is thus zero, and we conclude that $\nabla v=0$.
      The isomorphism $\alpha$ is thus horizontal, and this finishes the proof
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      of \hyperref[I.2.23]{(2.23)}.
  \end{itemize}
\end{proof}

Some results in general topology (\hyperref[I.2.24]{(2.24)} to \hyperref[I.2.27]{(2.27)}) will be necessary to deduce \hyperref[I.2.28]{(2.28)} from \hyperref[I.2.23]{(2.23)}.

\begin{rmenv}{Reminder 2.24}
\label{I.2.24}
  Let $Y$ be a closed subset of a topological space $X$, and suppose that $Y$ has a paracompact neighbourhood.
  For every sheaf $\scr{F}$ on $X$, we have that
  \[
    \varinjlim_{U\supset Y} \HH^\bullet(U,\scr{F}) \simto \HH^\bullet(Y,\scr{F}).
  \]
\end{rmenv}

\begin{proof}
  See Godement~\cite[II, 4.11.1, p.~193]{7}.
\end{proof}

\begin{itenv}{Corollary 2.25}
\label{I.2.25}
  Let $f\colon X\to S$ be a proper separated morphism between topological spaces.
  Suppose that $S$ is locally paracompact \hyperref[0.5]{(0.5)}.
  Then, for every $s\in S$, and for every sheaf $\scr{F}$ on $X$, we have that
  \[
    (\RR^i f_*\scr{F})_s \simeq \HH^i(f^{-1}(s), \scr{F}|f^{-1}(s)).
  \]
\end{itenv}

\begin{proof}
  Since $f$ is closed, the $f^{-1}(U)$ form a fundamental system of neighbourhoods of $f^{-1}(s)$, where the $U$ are neighbourhoods of $s$.
  Furthermore, if $U$ is paracompact, then $f^{-1}(U)$ is paracompact, since $f$ is proper and separated.
  We conclude by \hyperref[I.2.24]{(2.24)}.
\end{proof}

\begin{rmenv}{Reminder 2.26}
\label{I.2.26}
  Let $X$ be a contractible locally paracompact topological space, $i$ an integer, and $V$ a complex local system on $X$, such that $\dim_\CC\HH^i(X,V)<\infty$.
  Then, for every vector space $A$ over $\CC$, possibly of infinite dimension, we have that
  \[
  \label{I.2.26.1}
    A\otimes_\CC\HH^i(X,V) \simto \HH^i(X,A\otimes_\CC V).
  \tag{2.26.1}
  \]
\end{rmenv}

\begin{proof}
  We denote by $\HH_\bullet(X,V^*)$ the singular homology of $X$ with coefficients in $V^*$.
  The universal coefficient formula, which holds here, gives
  \[
  \label{I.2.26.2}
    \HH^i(X,A\otimes V) \simeq \Hom_\CC(\HH_i(X,V^*),A).
  \tag{2.26.2}
  \]
  For $A=\CC$, we thus conclude that $\dim\HH_i(X,V^*)<\infty$.
  Equation~\hyperref[I.2.26.1]{(2.26.1)} then follows from \hyperref[I.2.26.2]{(2.26.2)}.
\end{proof}

\begin{rmenv}{2.27}
\label{I.2.27}
  Let $f\colon X\to S$ be a smooth morphism of complex-analytic spaces, and let $V$ be a local system on $X$.
  Then the sheaf
\oldpage{20}
  \[
  \label{I.2.27.1}
    V_\mathrm{rel} = f^\sbullet\cal{O}_S \otimes_\CC V
  \tag{2.27.1}
  \]
  is a relative local system.
  We denote by $\Omega_{X/S}^\bullet(V)$ the corresponding de Rham complex.
  By \hyperref[I.2.23]{(2.23)}, $\Omega_{X/S}^\bullet$ is a resolution of $V_\mathrm{rel}$.
  We thus have that
  \[
  \label{I.2.27.2}
    \RR^i f_* V_\mathrm{rel} \simto \RR^i f_*(\Omega_{X/S}^\bullet(V))
  \tag{2.27.2}
  \]
  where the right-hand side is the relative hypercohomology.
  From \hyperref[I.2.27.1]{(2.27.1)}, we thus obtain an arrow
  \[
  \label{I.2.27.3}
    \cal{O}_S \otimes_\CC \RR^i f_*V \to \RR^i f_*(V_\mathrm{rel}),
  \tag{2.27.3}
  \]
  whence, by composition, an arrow
  \[
  \label{I.2.27.4}
    \cal{O}_S \otimes \RR^i f_*V \to \RR^i f_*(\Omega_{X/S}(V)).
  \tag{2.27.4}
  \]
\end{rmenv}

\begin{itenv}{Proposition 2.28}
\label{I.2.28}
  Let $f\colon X\to S$ be a smooth separated morphism of analytic spaces, $i$ an integer, and $V$ a complex local system on $X$.
  We suppose that
  \begin{enumerate}[a)]
    \item $f$ is topologically trivial locally on $S$ ; and
    \item the fibres of $f$ satisfy
      \[
        \dim\HH^i(f^{-1}(s),V) < \infty.
      \]
      Then the arrow \hyperref[I.2.27.4]{(2.27.4)} is an isomorphism:
      \[
        \cal{O}_S \otimes_\CC \RR^i f_*V \simto \RR^i f_*(\Omega_{X/S}^\bullet(V)).
      \]
  \end{enumerate}
\end{itenv}

\begin{proof}
  Let $s\in S$, $Y=f^{-1}(s)$, and $V_0=V|Y$.
  To show that \hyperref[I.2.27.4]{(2.27.4)} is an isomorphism, it suffices to construct a fundamental system $T$ of neighbourhoods of $s$ such that the arrows
  \[
  \label{I.2.28.1}
    \HH^0(T,\cal{O}_S) \otimes \HH^i(T\times Y,\pr_2^\sbullet V_0) \simto \HH^i(T\times Y,\pr_1^\sbullet\cal{O}_S \otimes \pr_2^\sbullet V_0)
  \tag{2.28.1}
  \]
  are isomorphisms.
  In fact, the fibre at $s$ of \hyperref[I.2.27.3]{(2.27.3)}, which is the inductive limit of the arrows \hyperref[I.2.28.1]{(2.28.1)}, will then be an isomorphism.

  We will prove \hyperref[I.2.28.1]{(2.28.1)} for a compact Stein neighbourhood $T$ of $s$, assumed to be contractible.
  The arrow in \hyperref[I.2.28.1]{(2.28.1)} can then be written as
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  \[
  \label{I.2.28.2}
    \HH^0(T,\cal{O}_S) \otimes \HH^i(Y,V_0) \simto \HH^i(T\times Y,\pr_1^\sbullet\cal{O}_S \otimes \pr_2^\sbullet V_0).
  \tag{2.28.2}
  \]

  We can calculate the right-hand side of \hyperref[I.2.28.2]{(2.28.2)} by using the Leray spectral sequence for $\pr_2\colon T\times Y\to Y$.
  By \hyperref[I.2.25]{(2.25)}, since $\HH^i(T,\cal{O}_S)=0$, we have that
  \[
    \HH^i(T\times Y,\pr_1^\sbullet\cal{O}_S \otimes \pr_2^\sbullet V_0) \simeq \HH^i(Y,\HH^0(T,\cal{O}_S) \otimes V_0),
  \]
  and we conclude by \hyperref[I.2.26]{(2.26)}.
\end{proof}

\begin{rmenv}{2.29}
\label{I.2.29}
  Under the hypotheses of \hyperref[I.2.28]{(2.28)}, with $S$ smooth, we define the \emph{Gauss--Manin connection} on $\RR^i f_*\Omega_{X/S}^\bullet(V)$ as being the unique integrable connection that admits the local sections of $\RR^i f_*V$ as its horizontal sections \hyperref[I.2.17]{(2.17)}.
\end{rmenv}



\section{Translation in terms of first-order partial differential equations}
\label{I.3}

\begin{rmenv}{3.1}
\label{I.3.1}
  Let $X$ be a complex-analytic variety.
  If $\cal{V}$ is the holomorphic vector bundle defined by a $\CC$-vector space $V_0$, then we have seen that $\cal{V}$ admits a canonical connection with covariant derivative ${}_0\!\nabla$.
  If $\nabla$ is the covariant derivative defined by another connection on $\cal{V}$, then we have seen \hyperref[I.2.6]{(2.6)} that $\nabla$ can be written in the form
  \[
    \nabla = {}_0\!\nabla + \Gamma,
    \quad\mbox{where $\Gamma\in\Omega(\shEnd(\cal{V}))$.}
  \]

  If we identify sections of $\cal{V}$ with holomorphic maps from $X$ to $V_0$, then we have that
  \[
  \label{I.3.1.1}
    \nabla v = \dd v + \Gamma\cdot v
  \tag{3.1.1}
  \]

  If we suppose that we have chosen a basis of $V$, i.e. an isomorphism $e\colon\CC^n\to V_0$ with coordinates (identified with basis vectors) $e_\alpha\colon\CC\to V_0$, then $\Gamma$ can be written as a matrix $\omega_\beta^\alpha$ of differential forms (the \emph{matrix of forms of the connection}), and \hyperref[I.3.1.1]{(3.1.1)} can then be written as
  \[
  \label{I.3.1.2}
    (\nabla v)^\alpha = \dd v^\alpha + \sum_\beta \omega_\beta^\alpha v^\beta.
  \tag{3.1.2}
  \]

  Let $\cal{V}$ be an arbitrary holomorphic vector bundle on $X$.
  The choice of a basis $e\colon\CC^n\simto\cal{V}$ of $\cal{V}$ allows us to think of $\cal{V}$ as being defined by a
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  constant vector space ($\CC^n$), and the above remarks apply:
  connections on $\cal{V}$ correspond, via \hyperref[I.3.1.2]{(3.1.2)}, with $(n\times n)$-matrices of differential forms on $X$.
  If $\omega_e$ is the matrix of the connection $\nabla$ in the basis $e$, and if $f\colon\CC^n\to\simto\cal{V}$ is another basis of $\cal{V}$, with matrix $A\in\GL_n(\cal{O})$ (where $A=e^{-1}f$), then \hyperref[I.3.1.2]{(3.1.2)}
  \[
    \begin{aligned}
      \nabla v
      &= e\dd(e^{-1}v) + e\omega_e e^{-1}v
    \\&= fA^{-1}\dd(Af^{-1}v) + fA^{-1}\omega_e Af^{-1}v
    \\&= f\dd f^{-1}v + f(A^{-1}\dd A + A^{-1}\omega_e A)f^{-1}v.
    \end{aligned}
  \]
  Comparing this with \hyperref[I.3.1.2]{(3.1.2)} in the basis $f$, we find that
  \[
  \label{I.3.1.3}
    \omega_f = A^{-1}\dd A + A^{-1}\omega_e A.
  \tag{3.1.3}
  \]

  If, further, $(x^i)$ is a system of local coordinates on $X$, which defines a basis $(\dd x^i)$ of $\Omega_X^1$, we set
  \[
    \omega_\beta^\alpha = \sum_i \Gamma_{\beta i}^\alpha \dd x^i
  \]
  and we call the holomorphic functions $\Gamma_{\beta i}^\alpha$ the \emph{coefficients of the connection}.
  Equation~\hyperref[I.3.1.2]{(3.1.2)} can the be written as
  \[
  \label{I.3.1.4}
    (\nabla_i v)^\alpha = \partial_i v^\alpha + \sum_\beta \Gamma_{\beta i}^\alpha v^\beta.
  \tag{3.1.4}
  \]

  The differential equation $\nabla v=0$ of horizontal sections of $\cal{V}$ can be written as the linear homogeneous system of first-order partial differential equations
  \[
  \label{I.3.1.5}
    \partial_i v^\alpha = -\sum_\beta \Gamma_{\beta i}^\alpha v^\beta.
  \tag{3.1.5}
  \]
\end{rmenv}

\begin{rmenv}{3.2}
\label{I.3.2}
  With the notation of \hyperref[I.3.1.2]{(3.1.2)}, and using Einstein summation notation, we have that
  \[
    \begin{aligned}
      \nabla\nabla v
      &= \nabla((\dd v^\alpha + \omega_\beta^\alpha v^\beta)e_\alpha)
    \\&= \dd(\dd v^\alpha + \omega_\beta^\alpha v^\beta)e_\alpha - (\dd v^\alpha + \omega_\beta^\alpha v^\beta)\wedge\omega_\alpha^\gamma\cdot e_\gamma
    \\&= \dd\omega_\beta^\alpha\cdot v^\beta\cdot e_\alpha - \omega_\beta^\alpha\wedge\dd v^\beta\cdot e_\alpha - \dd v^\alpha\wedge\omega_\alpha^\gamma\cdot e_\gamma - \omega_\beta^\alpha\wedge\omega_\alpha^\gamma\cdot v^\beta e_\gamma
    \\&= (\dd\omega_\beta^\gamma - \omega_\beta^\alpha\wedge\omega_\alpha^\gamma)v^\beta e_\gamma.
    \end{aligned}
  \]

  The curvature tensor matrix is thus
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  \[
  \label{I.3.2.1}
    R_\beta^\alpha = \dd\omega_\beta^\alpha + \sum_\gamma \omega_\gamma^\alpha\wedge\omega_\beta^\gamma,
  \tag{3.2.1}
  \]
  which we can also write as
  \[
  \label{I.3.2.2}
    R = \dd\omega + \omega\wedge\omega.
  \tag{3.2.2}
  \]
  Equation~\hyperref[I.3.2.1]{(3.2.1)} gives, in a system $(x^i)$ of local coordinates,
  \[
  \label{I.3.2.3}
    \begin{cases}
      R_{\beta i j}^\alpha
      &= (\partial_i\Gamma_{\beta j}^\alpha - \partial_j\Gamma_{\beta i}^\alpha) + (\Gamma_{\gamma i}^\alpha\Gamma_{\beta j}^\gamma - \Gamma_{\gamma j}^\gamma\Gamma_{\beta i}^\gamma)
    \\R_\beta^\alpha
      &= \sum_{i<j} R_{\beta i j}^\alpha \dd x^i\wedge\dd x^j.
    \end{cases}
  \tag{3.2.3}
  \]

  The condition $R_{\beta i j}^\alpha = 0$ is the integrability condition of the system \hyperref[I.3.1.5]{(3.1.5)}, in the classical sense of the word;
  it can be obtained by eliminating $v^\alpha$ from the equations given by substituting \hyperref[I.3.1.5]{(3.1.5)} into the identity $\partial_i\partial_j v^\alpha = \partial_j\partial_i v^\alpha$.
\end{rmenv}



\section{\texorpdfstring{$n^\mathrm{th}$}{nth}-order differential equations}
\label{I.4}

\begin{rmenv}{4.1}
\label{I.4.1}
  The solution of a linear homogeneous $n^\mathrm{th}$-order differential equation
  \[
  \label{I.4.1.1}
    \frac{\dd^n}{\dd x^n}y = \sum_{i=1}^n a_i(x) \frac{\dd^{n-i}}{\dd x^i}y
  \tag{4.1.1}
  \]
  is equivalent to that of the system
  \[
  \label{I.4.1.2}
    \begin{cases}
      \frac{\dd}{\dd x}y_i
      = y_{i+1} &\mbox{(for $1\leq i<n$);}
    \\\frac{\dd}{\dd x}y_n
      = \sum_{i=1}^n a_i(x) y_{n+1-i}
    \end{cases}
  \tag{4.1.2}
  \]
  of $n$ first-order equations.

  By \hyperref[I.3]{(3)}, this system can be described as the differential equation of horizontal sections of a rank-$n$ vector bundle endowed with a suitable connection, and this is what we aim to further explore.
\end{rmenv}

\begin{rmenv}{4.2}
\label{I.4.2}
  Let $X$ be a non-singular complex-analytic variety of pure dimension~$1$.
  Let $X_n$ be the $n^\mathrm{th}$ infinitesimal neighbourhood of the diagonal of $X\times X$, and $p_1$ and $p_2$ the two projections from $X_n$ to $X$.
  We denote by $\pi_{k,l}$ the injection from $X_l$ to
\oldpage{24}
  $X_k$, for $l\leq k$.

  Let $\Omega^{\otimes n}$ be the $n^\mathrm{th}$ tensor power of the invertible sheaf $\Omega_X^1$ (for $n\in\ZZ$).
  If $I$ is the ideal that defines the diagonal of $X\times X$, then $I/I^2\simeq\Omega_X^1$ canonically, and
  \[
  \label{I.4.2.1}
    I^n/I^{n+1} \simeq \Omega^{\otimes n}.
  \tag{4.2.1}
  \]

  If $\scr{L}$ is an invertible sheaf on $X$, then we denote by $P^n(\scr{L})$ the vector bundle
  \[
  \label{I.4.2.2}
    P^n(\scr{L}) = (p_1)_*p_2^*\scr{L}
  \tag{4.2.2}
  \]
  of $n^\mathrm{th}$-order jets of sections of $\scr{L}$.
  The $I$-adic filtration of $p_2^*\scr{L}$ defines a filtration of $P^n(\scr{L})$ for which
  \[
  \label{I.4.2.3}
    \begin{aligned}
      \Gr P^n(\scr{L}) &\simeq \Gr P^n(\cal{O})\otimes\scr{L}
    \\\Gr^i P^n(\scr{L}) &\simeq \Omega^{\otimes i}\otimes\scr{L} \qquad\mbox{(for $0\leq i\leq n$).}
    \end{aligned}
  \tag{4.2.3}
  \]

  Recall that we define, by induction on $n$, a \emph{differential operator of order $\leq n$} as being a morphism $A\colon\scr{M}\to\scr{N}$ of abelian sheaves such that
  \[
    \begin{cases}
      \mbox{$A$ is $\cal{O}$-linear} & \mbox{for $n=0$ ;}
    \\\mbox{$[A,f]$ is of order $\leq m$ for every local section $f$ of $\cal{O}$} & \mbox{for $n=m+1$.}
    \end{cases}
  \]

  For every local section $s$ of $\scr{L}$, $p_2^*s$ defines a local section $\DD^n(s)$ of $P^n(\scr{L})$ \hyperref[I.4.2.2]{(4.2.2)}.
  The $\CC$-linear sheaf morphism $\DD^n\colon\scr{L}\to P^n(\scr{L})$ is the universal differential operator of order $\leq n$ with domain $\scr{L}$.
\end{rmenv}

\begin{rmenv}{Definition 4.3}
\label{I.4.3}
  \begin{enumerate}[(i)]
    \item A \emph{linear homogeneous $n^\mathrm{th}$-order differential equation} on $\scr{L}$ is an $\cal{O}_X$-homomorphism $E\colon P^n(\scr{L})\to\Omega^{\otimes n}\otimes\scr{L}$ that induces the identity on the submodule $\Omega^{\otimes n}\otimes\scr{L}$ of $P^n(\scr{L})$.
    \item A local section $s$ of $\scr{L}$ is a \emph{solution} of the differential equation $E$ if $E(\DD^n(s))=0$.
  \end{enumerate}
\end{rmenv}

In fact, I have cheated with this definition, in that I have only considered equations that can be put in the ``resolved'' form \hyperref[I.4.1.1]{(4.1.1)}.
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\begin{rmenv}{4.4}
\label{I.4.4}
  Suppose that $\scr{L}=\cal{O}$, and let $x$ be a local coordinate on $X$.
  The choice of $x$ allows us to identify $p^k(\cal{O})$ with $\cal{O}^{[0,k]}$, with the arrow $\DD^k$ becoming
  \[
    \begin{aligned}
      \DD^k\colon \cal{O} &\to P^k(\cal{O}) \simeq \cal{O}^{[0,k]}
    \\f &\mapsto (\partial_x^i f)_{0\leq i\leq k}.
    \end{aligned}
  \]
  The choice of $x$ also allows us to identify $\Omega^1$ with $\cal{O}$, so that the $n^\mathrm{th}$-order differential equation can be identified with a morphism $E\in\Hom(\cal{O}^{[0,n]},\cal{O})$, and, as such, has coordinates $(b_i)_{0\leq i\leq n}$ with $b_n=1$.
  The solutions of $E$ are then exactly the (holomorphic) functions $f$ that satisfy
  \[
  \label{I.4.4.1}
    \sum_{i=0}^n b_i(x) \partial_x^i f = 0
    \qquad\mbox{(with $b_n=1$).}
  \tag{4.4.1}
  \]

  The existence and uniqueness theorem for solutions of the Cauchy problem in \hyperref[I.4.4.1]{(4.4.1)} implies the following.
\end{rmenv}

\begin{itenv}{Theorem 4.5}
\label{I.4.5}
  \emph{(Cauchy).}
  Let $X$ and $\scr{L}$ be as in \hyperref[I.4.2]{(4.2)}, and let $E$ be an $n^\mathrm{th}$-order differential equation on $\scr{L}$.
  Then
  \begin{enumerate}[(i)]
    \item the subsheaf of $\scr{L}$ given by solutions of $E$ is a local system $\scr{L}^E$ of rank~$n$ on $X$ ; and
    \item the canonical arrow $\DD^{n-1}\colon\scr{L}^E \to P^{n-1}(\scr{L})$ induces an isomorphism
      \[
        \cal{O}\otimes_\CC\scr{L}^E \simto P^{n-1}(\scr{L}).
      \]
  \end{enumerate}
\end{itenv}

In particular, it follows from \hyperref[I.4.5]{(4.5.ii)} and from \hyperref[I.2.17]{(2.17)} that $E$ defines a canonical connection on $P^{n-1}(\scr{L})$, whose horizontal sections are the images under $\DD$ of solutions of $E$.

\begin{rmenv}{4.6}
\label{I.4.6}
  To a differential equation $E$ on $\scr{L}$, we have thus associated
  \begin{enumerate}[a)]
    \item a holomorphic vector bundle $\cal{V}$ endowed with a connection (which is automatically integrable) on the bundle $P^{n-1}(\scr{L})$ ; and
    \item a surjective homomorphism $\lambda\colon\cal{V}\to\scr{L}$ (by $i=0$ in \hyperref[I.4.2.3]{(4.2.3)}).
  \end{enumerate}
  Furthermore, the solutions of $E$ are exactly the images under $\lambda$ of the horizontal sections of $\cal{V}$.
  This is just another way of expressing how to obtain \hyperref[I.4.1.2]{(4.1.2)} from \hyperref[I.4.1.1]{(4.1.1)}.
\end{rmenv}
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\begin{rmenv}{4.7}
\label{I.4.7}
  Let $\cal{V}$ be a rank-$n$ vector bundle on $X$, endowed with a connection with covariant derivative $\nabla$.
  Let $v$ be a local section of $\cal{V}$, and $w$ a vector field on $X$ that doesn't vanish at any point.
  We say that $v$ is \emph{cyclic} if the local sections $(\nabla_w)^i(v)$ of $\cal{V}$ (for $0\leq i<n$) form a basis of $\cal{V}$.
  This condition does not depend on the choice of $w$, and if $f$ is an invertible holomorphic function, then $v$ is cyclic if and only if $fv$ is cyclic.
  In fact, we can show, by induction on $i$, that $(\nabla_{gw})^i(fv)$ lies in the submodule of $\cal{V}$ generated by the $(\nabla_w)^j(v)$ (for $0\leq j\leq i$).

  If $\scr{L}$ is an invertible module, then we say that a section $v$ of $\cal{V}\otimes\scr{L}$ is cyclic if, for every every local isomorphism between $\scr{L}$ and $\cal{O}$, the corresponding section of $\cal{V}$ is cyclic.
  This applies, in particular, to sections $v$ of $\shHom(\cal{V},\scr{L})=\cal{V}^\vee\otimes\scr{L}$.
\end{rmenv}

\begin{itenv}{Lemma 4.8}
\label{I.4.8}
  With the hypotheses and notation of \hyperref[I.4.6]{(4.6)}, $\lambda$ is a cyclic section of $\shHom(\cal{V},\scr{L})$.
\end{itenv}

\begin{proof}
  The problem is local on $X$;
  we can reduce to the case where $\scr{L}=\cal{O}$ and where there exists a local coordinate $x$.

  We use the notation of \hyperref[I.4.4]{(4.4)}.
  A section $(f^i)$ of $P^{n-1}(\cal{O})\simeq\cal{O}^{[0,n-1]}$ is horizontal if and only if it satisfies
  \[
    \begin{cases}
      \partial_x f^i = f^{i+1}
      & \mbox{(for $0\leq i\leq n-2$)}
    \\\partial_x f^{n-1} = -\sum_{i=0}^{n-1} b_i f^i.
    \end{cases}
  \]
  This gives us the coefficients of the connection: the matrix of the connection is
  \[
  \label{I.4.8.1}
    \left(
      \def\arraystretch{1.8}
      \begin{array}{rrrrrr}
        0 & -1 & 0 & 0 & \cdots & 0
      \\0 & 0 & -1 & 0 & \cdots & 0
      \\0 & 0 & 0 & -1 & & 0
      \\\vdots & \vdots & & \ddots & \ddots & \vdots
      \\\vdots & \vdots & & & 0 & -1
      \\b^0 & b^1 & \cdots & \cdots & b^{n-2} & b^{n-1}
      \end{array}
    \right)
  \tag{4.8.1}
  \]

\oldpage{27}
  In the chosen system of coordinates, $\lambda=e^0$, and we calculate that
  \[
    \nabla_x^i\lambda = e^i
    \qquad\mbox{(for $0\leq i\leq n-1$)}
  \]
  which proves \hyperref[I.4.8]{(4.8)}.
\end{proof}

\begin{itenv}{Proposition 4.9}
\label{I.4.9}
  The construction in \hyperref[I.4.6]{(4.6)} establishes an equivalence between the following categories, where we take morphisms to be isomorphisms:
  \begin{enumerate}[a)]
    \item the category of invertible sheaves on $X$ endowed with an $n^\mathrm{th}$-order differential equation \hyperref[I.4.3]{(4.3)} ; and
    \item the category of triples consisting of a rank-$n$ vector bundle $\cal{V}$ endowed with a connection, an invertible sheaf $\scr{L}$, and a cyclic homomorphism $\lambda\colon\cal{V}\to\scr{L}$.
  \end{enumerate}
\end{itenv}

\begin{proof}
  We will construct a functor that is quasi-inverse to that in \hyperref[I.4.6]{(4.6)}.
  Let $\cal{V}$ be a vector bundle with connection, and $\lambda$ a homomorphism from $\cal{V}$ to an invertible sheaf $\scr{L}$.
  We denote by $V$ the local system of horizontal sections of $\cal{V}$.
  For every $\cal{O}$-module $\scr{M}$, we have \hyperref[I.2.17]{(2.17)}
  \[
    \Hom_\cal{O}(\cal{V},\scr{M}) \simto \Hom_\CC(V,\scr{M}).
  \]
  In particular, we define a map $\gamma^k$ from $\cal{V}$ to $P^k(\scr{L})$ by setting, for any \emph{horizontal section} $v$ of $\cal{V}$,
  \[
  \label{I.4.9.1}
    \gamma^k(v) = \DD^k(\lambda(v)).
  \tag{4.9.1}
  \]

  \begin{itenv}{Lemma 4.9.2}
  \label{I.4.9.2}
    The homomorphism $\lambda$ is cyclic if and only if
    \[
      \gamma^{n-1}\colon \cal{V} \to P^{n-1}(\scr{L})
    \]
    is an isomorphism.
  \end{itenv}

  The problem is local on $X$.
  We can restrict to the case where $\scr{L}=\cal{O}$ and where we have a local coordinate $x$.
  With the notation of \hyperref[I.4.4]{(4.4)}, the morphism $\gamma^k$ then admits the morphisms $\partial_x^i\lambda = \nabla_x^i$ (for $0\leq i\leq k$) as coordinates.
  For $k=n-1$, these form a basis of $\Hom(\cal{V},\cal{O})$ if and only if $\gamma^{n-1}$ is an isomorphism.

  For $k\geq l$, the diagram
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  \[
  \label{I.4.9.3}
    \begin{tikzcd}[row sep=huge]
      & \cal{V} \dlar[swap,"\gamma^k"] \drar["v^l"] &
    \\P^k(\scr{L}) \ar[rr,"\pi_{l,k}"] && P^l(\scr{L})
    \end{tikzcd}
  \tag{4.9.3}
  \]
  commutes;
  if $\lambda$ is cyclic, then this, along with \hyperref[I.4.9.2]{(4.9.2)}, implies that $\gamma^n(v)$ is locally a direct factor, of codimension~$1$ in $P^n(\scr{L})$, and admits $\omega^{\otimes n}\otimes\scr{L} \simeq \Ker(\pi_{n-1,n})$ as a complement.
  There thus exists exactly one $n^\mathrm{th}$-order differential equation
  \[
    E\colon P^n(\scr{L}) \to \Omega^{\otimes n}\otimes\scr{L}
  \]
  on $\scr{L}$ such that $E\circ\gamma^n=0$.

  By \hyperref[I.4.9.1]{(4.9.1)}, if $v$ is a horizontal section of $\cal{V}$, then $E\DD^n\lambda v = E\gamma^n v = 0$, and so $\lambda v$ is a solution of $E$.
  We endow $P^{n-1}(\scr{L})$ with the connection \hyperref[I.4.6]{(4.6)} defined by $E$.
  If $v$ is a horizontal section of $\cal{V}$, then $\gamma^{n-1}(v)=\DD^{n-1}\lambda v$, where $\lambda v$ is a solution of $E$, and $\gamma^{n-1}(v)$ is thus horizontal.
  We thus deduce that $\gamma^{n-1}$ is compatible with the connections.
  A particular case of \hyperref[I.4.9.3]{(4.9.3)} shows that the diagram
  \[
    \begin{tikzcd}[row sep=huge]
      \cal{V} \ar[rr,"\gamma^{n-1}"] \drar[swap,"\lambda"]
      && P^{n-1}(\scr{L}) \dlar["\pi_{0,n-1}"]
    \\&\scr{L}&
    \end{tikzcd}
  \]
  commutes, whence we have an isomorphism between $(\cal{V},\scr{L},\lambda)$ and the triple given by \hyperref[I.4.6]{(4.6)} applied to $(\scr{L},E)$.
  The functor
  \[
    (\cal{V},\scr{L},\lambda) \mapsto (\scr{L},E)
  \]
  is thus quasi-inverse to the functor in \hyperref[I.4.6]{(4.6)}.
\end{proof}

\begin{rmenv}{4.10}
\label{I.4.10}
  We now summarise the relations between two systems $(\cal{V},\scr{L},\lambda)$ and $(\scr{L},E)$ that correspond under \hyperref[I.4.6]{(4.6)} and \hyperref[I.4.9]{(4.9)}.

  We have homomorphisms $\gamma^k\colon\cal{V}\to P^k(\scr{L})$, such that
  \begin{enumerate}
    \item[(4.10.1)]\label{I.4.10.1}
      $\gamma^k(v) = \DD^k\lambda v$ for $v$ horizontal ;
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    \item[(4.10.2)]\label{I.4.10.2}
      $\gamma^0=\lambda$ and $\pi_{l,k}\gamma^k=\gamma^l$ ;
    \item[(4.10.3)]\label{I.4.10.3}
      $\gamma^{n-1}$ is an isomorphism ($\lambda$ is cyclic) ;
    \item[(4.10.4)]\label{I.4.10.4}
      $E\gamma^n=0$ ; and
    \item[(4.10.5)]\label{I.4.10.5}
      $\lambda$ induces an isomorphic between the local system $V$ of sections of $\cal{V}$ and the local system $\scr{L}^E$ of solutions of $E$.
  \end{enumerate}
\end{rmenv}


\section{Second-order differential equations}
\label{I.5}

In this section, we specialise the results of \hyperref[I.4]{(4)} to the case where $n=2$, and we express certain results given in R.C.~Gunning~\cite{11} in a more geometric form.

\begin{rmenv}{5.1}
\label{I.5.1}
  Let $S$ be an analytic space, and let $q\colon X_2\to S$ be an analytic space over $S$ that is locally isomorphic to the finite analytic space over $S$ defined by the $\cal{O}_S$-algebra $\cal{O}_S[T]/(T^3)$.

  The fact that the group $\mathrm{PGL}_2$ acts sharply $3$-transitively on $\PP^1$ has the following infinitesimal analogue.
\end{rmenv}

\begin{itenv}{Lemma 5.2}
\label{I.5.2}
  Under the hypotheses of \hyperref[I.5.1]{(5.1)}, let $u$ and $v$ be $S$-immersions of $X_2$ into $\PP_S^1$, i.e.
  \[
    \begin{tikzcd}
      X_2 \rar[shift left=1,"u"] \rar[shift right=1,swap,"v"]
      & \PP_S^1.
    \end{tikzcd}
  \]
  Then there exists exactly one projective transformation ($S$-automorphism) of $\PP_S^1$ that sends $u$ to $v$.
\end{itenv}

\begin{proof}
  The problem is local on $S$, which allows us to suppose that $X_2$ is defined by the $\cal{O}_S$-algebra $\cal{O}_S[T]/(T^3)$, and that $u(X_2)$ and $v(X_2)$ are contained inside the same affine line, say, $\AA_S^1$.
  By translation, we can assume that $u(0)=v(0)=0$.
  We must then prove the existence and uniqueness of a projective transformation $p(x)=(ax+b)(cx+d)$ that satisfies $p(0)=0$, with first derivative $p'(0)\neq0$ and given second derivative $p''(0)$.
  We have that $b=0$, and $p$ can be written uniquely in the form
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  \[
    \begin{aligned}
      p(x)
      &= e\frac{x}{1-fx} \qquad\mbox{(for $e\neq0$)}
    \\&= ex + efx^2 \mod x^3.
    \end{aligned}
  \]
  The claim then follows immediately.
\end{proof}

\begin{rmenv}{5.3}
\label{I.5.3}
  By \hyperref[I.5.2]{(5.2)}, there exists exactly (up to isomorphism) one pair $(u,P)$ consisting of a projective line $P$ on $S$ (with structure group $\mathrm{PGL}_2(\cal{O}_S)$) and an $S$-immersion $u$ of $X_2$ into $P$.
  We call $P$ the \emph{osculating projective line of $X_2$}.

  Let $X$ be a smooth curve.
  Let $X_2$ the second infinitesimal neighbourhood of the diagonal of $X\times X$, and let $q_1$ and $q_2$ be the two projections from $X_2$ to $X$.

  The morphism $q_1\colon X_2\to X$ is of the type considered in \hyperref[I.5.1]{(5.1)}.
\end{rmenv}

\begin{rmenv}{Definition 5.4}
\label{I.5.4}
  We define the \emph{osculating projective line bundle of $X$}, denoted by $P_\tg$, to be the osculating projective line bundle of $q_1\colon X_2\to X$.
\end{rmenv}

By definition, we thus have a canonical commutative diagram
\[
\label{I.5.4.1}
  \begin{tikzcd}
    X_2 \rar[hook] \drar[swap,"q_1"]
    & P_\tg \dar
  \\& X
  \end{tikzcd}
\tag{5.4.1}
\]
and, in particular, $P_\tg$ is endowed with a canonical section $e$, which is the image of the diagonal section of $X_2$, and we have that
\[
\label{I.5.4.2}
  e^*\Omega_{P_\tg/X}^1 \simeq \Omega_X^1.
\tag{5.4.2}
\]

\begin{rmenv}{5.5}
\label{I.5.5}
  If $X$ is a projective line, then $\pr_1\colon X\times X\to X$ is a projective bundle on $X$ such that $P_\tg$ can be identified with the constant projective bundle of fibre $X$ on $X$ endowed with the inclusion homomorphism of $X_2$ into $X\times X$, i.e.
  \[
    \begin{tikzcd}
      X_2 \rar[hook] \drar[swap,"q_1"]
      & X\times X \dar["\pr_1"]
    \\& X
    \end{tikzcd}
  \]
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  In this particular case, we have a canonical commutative diagram
  \[
    \begin{tikzcd}[column sep=huge]
      X_3 \drar[hook] \ar[ddr]
    \\X_2 \uar[hook] \rar[hook] \drar
      & P_\tg \dar
    \\& X
    \end{tikzcd}
  \]
\end{rmenv}

Now let $X$ be an arbitrary smooth curve.

\begin{rmenv}{Definition 5.6}
\label{I.5.6}
  \emph{(Local version).}
  A \emph{projective connection} on $X$ is a sheaf on $X$ of germs of local isomorphisms from $X$ to $\PP^1$, which is a principal homogeneous sheaf (i.e. a torsor) for the constant sheaf of groups with value $\mathrm{PLG}_2(\CC)$.
\end{rmenv}

If $X$ is endowed with a projective connection, then every local construction on $\PP^1$ that is invariant under the projective group can be transported to $X$;
in particular, the construction in \hyperref[I.5.5]{(5.5)} gives us a morphism $\gamma$ that fits into a commutative diagram:
\[
\label{I.5.6.1}
  \begin{tikzcd}[column sep=huge]
    X_3 \drar[hook,"\gamma"] \ar[ddr]
  \\X_2 \uar \rar[hook] \drar
    & P_\tg \dar
  \\& X
  \end{tikzcd}
\tag{5.6.1}
\]

It is not difficult to show that such a morphism $\gamma$ is defined by a unique projective connection (a proof of this will be given in \hyperref[I.5.10]{(5.10)}), and so Definition~\hyperref[I.5.6]{(5.6)} is equivalent to the following.

\begin{rmenv}{Definition 5.6~bis}
\label{I.5.6bis}
  \emph{(Infinitesimal version).}
  A \emph{projective connection} on $X$ is a morphism $\gamma\colon X_3\hookrightarrow P_\tg$ that makes the diagram in \hyperref[I.5.6.1]{(5.6.1)} commute.
\end{rmenv}

Intuitively, giving a projective connection (the infinitesimal version) allows us to define the cross-ratio of 4 infinitesimally-neighbouring points, and we then know how to define the cross-ration of 4 neighbouring points (the local form of \hyperref[II.5.6]{(5.6)}).

\begin{rmenv}{5.7}
\label{I.5.7}
  Set $\Omega^{\otimes n}=(\Omega_X^1)^{\otimes n}$ \hyperref[I.4.2]{(4.2)}.
  The sheaf of ideals on $X_3$ that defines $X_2$ is
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  canonically isomorphic to $\Omega^{\otimes3}$, and is annihilated by the sheaf of ideals that defines the diagonal.
  Also, if $\Delta$ is the diagonal map, then, by \hyperref[I.5.4.2]{(5.4.2)}, we have that
  \[
    \Delta^*\gamma^*\Omega_{P_\tg/X}^1 \simeq \Omega^1.
  \]
  We thus deduce that the set of $X$-homomorphisms from $X_3$ to $P_\tg$ that induce the canonical homomorphism from $X_2$ to $P_\tg$ is either empty, or a principal homogeneous space for
  \[
    \Hom_X(\Delta^*\gamma^*\Omega_{P_\tg/X}^1, \Omega^{\otimes3})
    = \Hom_X(\Omega^1,\Omega^{\otimes3})
    = \HH^0(X,\Omega^{\otimes2}).
  \]
  If we replace $X$ by a small enough open subset, then this set is non-empty:
\end{rmenv}

\begin{itenv}{Proposition 5.8}
\label{I.5.8}
  Projective connections of open subsets of $X$ form a principal homogeneous sheaf (i.e. a torsor) for the sheaf $\Omega^{\otimes2}$.
\end{itenv}

\begin{proof}
  If $\eta$ is a section of $\Omega^{\otimes2}$, and $\gamma_1\colon X_3\to P_\tg$ is a projective connection, then the connection $\gamma_2=\gamma_1+\eta$ is defined, for any function $f$ on $P_\tg$, by
  \[
  \label{I.5.8.1}
    \gamma_2^*f = \gamma_1^*f + \eta\cdot e^*\dd f
  \tag{5.8.1}
  \]
  (modulo the identification of $\Omega^{\otimes3}$ with an ideal of $\cal{O}_{X_3}$).
\end{proof}

\begin{rmenv}{5.9}
\label{I.5.9}
  Let $f\colon X\to Y$ be a homomorphism between smooth curves endowed with projective connections $\gamma_X$ and $\gamma_Y$, and suppose that $f$ is a local isomorphism (i.e. $\dd f\neq0$ at all points).
  Set
  \[
    \theta f = f^*\gamma_Y - \gamma_X \in \Gamma(X,\Omega^{\otimes2}).
  \]
  For a composite map $g\circ f\colon X\xrightarrow{f}Y\xrightarrow{g}Z$, we trivially have that
  \[
  \label{I.5.9.1}
    \begin{aligned}
      \theta(g\circ f) &= \theta(f) + f^*\theta(g),
    \\\mbox{whence }\theta(f^{-1}) &= -f^*\theta(f).
    \end{aligned}
  \tag{5.9.1}
  \]

  Suppose that $X$ and $Y$ are open subsets of $\CC$, and endowed with the projective connection induced by that of $\PP^1(\CC)$.
  Denoting by $x$ the injection from $X$ into $\CC$, we then have that
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  \[
  \label{I.5.9.2}
    \theta f = \frac{f'(f'''/6) - (f''/2)^2}{(f')^2} \dd x^{\otimes2}.
  \tag{5.9.2}
  \]

  To prove this, we identify, using \hyperref[I.5.5]{(5.5)}, the projective double tangent bundle to $X$ or $Y$ with the constant projective bundle.
  The morphism $\delta f\colon P_{\tg,X}\to P_{\tg,Y}$ induced by $f$ can be written as
  \[
    \delta f\colon (x,p) \mapsto
    \left(
      f(x),
      f(x) + \frac{f'(x)(p-x)}{1-\frac12(f''(x)/f'(x))(p-x)}
    \right).
  \]

  Consider the diagram
  \[
    \begin{tikzcd}
      X_3 \rar["f"] \dar[hook]
      & Y_3 \dar[hook]
    \\P_{\tg,X} \rar["\delta f"]
      & P_{\tg,Y}
    \end{tikzcd}
  \]
  Then $\theta(f)$ describes the lack of commutativity of the diagram, i.e. the difference between the jets
  \[
    (x,x+\varepsilon)
    \mapsto
    \left(
      f(x),
      f(x) + f'(x)\varepsilon + f''(x)\frac{\varepsilon^2}{2} + f'''(x)\frac{\varepsilon^3}{6}
    \right)
    \qquad\mbox{(mod. $\varepsilon^4=0$)}
  \]
  and
  \[
    \begin{aligned}
      (x,x+\varepsilon)
      &\mapsto
      \left(
        f(x),
        f(x) + \frac{f'(x)\varepsilon}{1-\frac12(f''(x)/f'(x))\varepsilon}
      \right)
    \\&= \left(
        f(x),
        f(x) + f'(x)\varepsilon + f''(x)\frac{\varepsilon^2}{2} + \frac14(f''(x)^2/f'(x))\varepsilon^3
      \right).
    \end{aligned}
  \]
  We thus have that
  \[
    \theta(f) =
    \left(
      \frac16f'''(x) - \frac14f''(x)^2/f'(x)
    \right) \dd x^{\otimes3} \dd f^{\otimes-1},
  \]
  and \hyperref[I.5.9.2]{(5.9.2)} then follows.

  Equation~\hyperref[I.5.9.2]{(5.9.2)} shows that $6\theta f$ is the classical \emph{Schwarz derivative} of $f$.

  \bigskip

  If a map $f$ from $X\subset\CC$ to $\PP^1(\CC)$ is described by projective coordinates $f=(g,h)$, then
  \[
  \label{I.5.9.3}
    \theta(f) =
    \frac{
      \left\vert
        \begin{array}{cc}
          g&g'\\h&h'
        \end{array}
      \right\vert
      \left(
        \left\vert
          \begin{array}{cc}
            g&g'''/6\\h&h'''/6
          \end{array}
        \right\vert
        +
        \left\vert
          \begin{array}{cc}
            g'&g'/2\\h'&h'/2
          \end{array}
        \right\vert
      \right)
      -
      \left\vert
        \begin{array}{cc}
          g&g''/2\\h&h''/2
        \end{array}
      \right\vert^2
    }{
      \left\vert
        \begin{array}{cc}
          g&g'\\h&h'
        \end{array}
      \right\vert^2
    }
  \tag{5.9.3}
  \]

  To prove \hyperref[I.5.9.3]{(5.9.3)}, the simplest method is to note the following.
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  \begin{enumerate}[(i)]
    \item The right-hand side of \hyperref[I.5.9.3]{(5.9.3)} is invariant under a linear substitution of constant coefficients $L$ acting on $g$ and $h$: the numerator and denominator $\det(L)^2$.
    \item The right-hand side of \hyperref[I.5.9.3]{(5.9.3)} is invariant under the substitution
      \[
        (g,h) \mapsto (\lambda g,\lambda h).
      \]

      Denoting the determinant of $\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$ by $\detrow{a}{b}$, we have that
      \[
        \begin{aligned}
          \detrow{g}{(\lambda g)'}
          \quad&=\quad \detrow{\lambda g}{\lambda g'+\lambda' g}
        \\[0.5em]
          &=\quad \lambda^2\detrow{g}{g'}
        \\[1em]
          \detrow{\lambda g}{(\lambda g)''/2}
          \quad&=\quad \lambda^2\detrow{g}{g''/2}
          + \lambda\lambda'\detrow{g}{g'}
        \\[1em]
          \detrow{\lambda g}{(\lambda g)'''/6}
          \quad&=\quad \lambda^2\detrow{g}{g'''/6}
          + \lambda\lambda'\detrow{g}{g''/2}
        \\[0.5em]
          &\qquad+ (\lambda\lambda''/2)\detrow{g}{g'}
        \\[1em]
          \detrow{(\lambda g)'}{(\lambda g)''/2}
          \quad&=\quad \lambda^2\detrow{g'}{g''/2}
          - (\lambda\lambda''/2)\detrow{g}{g'}
        \\[0.5em]
          &\qquad+ (\lambda')^2\detrow{g}{g'}
          + \lambda\lambda'\detrow{g}{g''/2}.
        \end{aligned}
      \]

      The new denominator $D_\lambda$ (resp. numerator $N_\lambda$) is thus given in terms of the old denominator $D$ (resp. numerator $N$) by
      \[
        \begin{aligned}
          D_\lambda
          &= \lambda^4 D
        \\N_\lambda
          &= \lambda^4 N + \lambda^4\detrow{g}{g'}\cdot
          \left[
            \begin{aligned}
              &\Big(
                \lambda'/\lambda\detrow{g}{g''/2}
                + (\lambda''/2\lambda)\detrow{g}{g'}
              \Big)
            \\+&\Big(
                -(\lambda''/2\lambda)\detrow{g}{g'}
                +(\lambda'/\lambda)^2\detrow{g}{g'}
                +(\lambda'/\lambda)\detrow{g}{g''}
              \Big)
            \\-&\Big(
                2(\lambda'/\lambda)\detrow{g}{g''/2}
                + (\lambda'/\lambda)^2\detrow{g}{g'}
              \Big)
            \end{aligned}
          \right]
        \end{aligned}
      \]
      and $N_\lambda/D_\lambda=N/D$.

      With these variance properties agreeing with those of the left-hand side of \hyperref[I.5.9.3]{(5.9.3)}, it suffices to prove \hyperref[I.5.9.3]{(5.9.3)} in the particular case where $h=1$.
      The equation then reduces to \hyperref[I.5.9.2]{(5.9.2)}.
  \end{enumerate}

  We will only need to use the fact that $\theta(f)$ can be expressed in terms of cross-ratios:
  we have, for $Z_i\sim Z$,
  \[
  \label{I.5.9.4}
    \frac{(f(Z_1),f(Z_2),f(Z_3),f(Z_4))}{(Z_1,Z_2,Z_3,Z_4)} - 1
    = \theta(f)(Z_1-Z_2)(Z_3-Z_4) + \mathcal{O}((Z_i-Z)^3).
  \tag{5.9.4}
  \]
\end{rmenv}
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\begin{rmenv}{5.10}
\label{I.5.10}
  The differential equation $\theta(f)=0$ (for $f\colon X\to\PP^1(\CC)$ with non-zero first derivative) is a third-order differential equation.
  It thus admits $\infty^3$ solutions, locally, and these solutions are permuted amongst themselves by the projective group (since the group transitively permutes the Cauchy data: \hyperref[I.5.2]{(5.2)}).
  The set of solutions is thus a projective connection (the local version, \hyperref[I.5.6]{(5.6)}).
  This construction is inverse to that which associates, to any projective connection in the sense of \hyperref[I.5.6]{(5.6)}, a projective connection in the sense of \hyperref[I.5.6bis]{(5.6bis)}.
\end{rmenv}

\begin{rmenv}{5.11}
\label{I.5.11}
  Let $X$ be a smooth curve, $\scr{L}$ an invertible sheaf on $X$, and $E$ a second-order ordinary differential equation on $\scr{L}$.
  We have seen, in \hyperref[I.4.5]{(4.5)}, that $E$ defines a connection on the bundle $P^1(\scr{L})$ of first-order jets of sections of $\scr{L}$, and we obtain from it a connection on
  \[
    \bigwedge^2 P^1(\scr{L}) \simeq \scr{L}\otimes\Omega^1(\scr{L}) = \Omega^1\otimes\scr{L}^{\otimes2}.
  \]

  If $X$ is a compact connected curve of genus~$g$, then the bundle $\Omega^1\otimes\scr{L}^{\otimes2}$ is thus necessarily of degree~$0$, and we have that
  \[
    \deg(\scr{L}) = 1-g.
  \]

  Let $V$ be the rank-$2$ local system of solutions of $E$;
  we have \hyperref[I.4.5]{(4.5)} that $\cal{O}\otimes V\simto P^1(\scr{L})$, and the linear form $\lambda\colon P^1(\scr{L})\to\scr{L}$ defines a section $\lambda_0$ of the projective bundle associated to the vector bundle $P^1(\scr{L})$.

  Locally on $X$, $V$ is isomorphic to the constant local system $\underline{\CC^2}$;
  the choice of an isomorphism $\sigma\colon V\to\underline{\CC^2}$ identifies $\lambda_0$ with a map $\lambda_{0,\sigma}$ from $X$ to $\PP^1(\CC)$;
  by \hyperref[I.4.8]{(4.8)}, the differential of this map is everywhere non-zero, and so $\lambda_{0,\sigma}$ allows us to transport the canonical projective connection of $\PP^1(\CC)$ to $X$.
  This connection does not depend on the choice of $\sigma$, and so the differential equation $E$ defines a projective connection on $X$.
\end{rmenv}

\begin{itenv}{Proposition 5.12}
\label{I.5.12}
  Let $\scr{L}$ be an invertible sheaf on a smooth curve $X$.
  The construction in \hyperref[I.5.10]{(5.10)} gives a bijection between
  \begin{enumerate}[a)]
    \item the set of second-order ordinary differential equations on $\scr{L}$ ; and
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    \item the set of pairs consisting of a projective connection on $X$ and a connection on $\Omega^1(\scr{L}^{\otimes2})$.
  \end{enumerate}
\end{itenv}

\begin{proof}
  The problem is local on $X$;
  we can thus suppose that $X$ is an open subset of $\CC$, and that $\scr{L}=\cal{O}$.
  An equation $E$ can then be written as
  \[
    E\colon y'' + a(x)y' + b(x)y = 0.
  \]
  If we identify $P^1(\scr{L})$ with $\cal{O}^2$, then the matrix of the connection \hyperref[I.5.10]{(5.10)} defined by $E$ on $\wedge^2 P^1(\scr{L})\sim\cal{O}$ is then $-a(x)\tr M$, where $M$ is the matrix in \hyperref[I.4.8.1]{(4.8.1)}.

  Let $\varphi$ be the identity map from $X$, an open subset of $\PP^1(\CC)$, to itself endowed with the projective connection defined by $E$.
  Identifying $\Omega$ with $\cal{O}$ by means of the given local coordinate, we then have that
  \[
  \label{I.5.12.1}
    \theta(\varphi) = \frac13b - \frac{1}{12}(a^2+2a').
  \tag{5.12.1}
  \]
  Indeed, if $f$ and $g$ are two linearly independent solutions of $E$, then the map with projective coordinates
  \[
    (f,g)\colon X\to\PP^1(\CC)
  \]
  belongs to the projective connection.
  We have that
  \[
    \begin{aligned}
      f''
      &= -(af'+bf)
    \\f'''
      &= -a(-af'-bf) - bf' - a'f' - b'f
    \\&= (a^2-a'-b)f' + (ab-b')f.
    \end{aligned}
  \]

  Equation~\hyperref[I.5.9.3]{(5.9.3)} gives (using the same notation for determinants as before)
  \[
    \begin{aligned}
      \theta(\varphi)
      &= \frac{
        \detrow{f}{f'}
        \left(
          \frac16(a^2-a'-b)\detrow{f}{f'}
          +\frac12 b\detrow{f}{f'}
        \right)
        - (\frac12a)^2\detrow{f}{f'}^2
      }{
        \detrow{f}{f'}^2
      }
    \\&= \frac16(a^2-a'-b) + \frac12 b - \frac14 a^2
    \\&= \frac13 b - \frac{1}{12}(a^2+2a').
    \end{aligned}
  \]

  We conclude by noting that $(a,b)$ is uniquely determined by $(-a,\frac13b-\frac{1}{12}(a^2+2a'))$, and that, for any holomorphic function $g$ on an open subset $U$ of $\CC$, there exists a unique projective connection on $U$ satisfying $\theta(\varphi)=g$, for $\varphi$ belonging to the connection (same proof as for \hyperref[I.5.10]{(5.10)}, or \hyperref[I.5.8]{(5.8)}).
\end{proof}
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\section{Multiform functions of finite determination}
\label{I.6}

\begin{rmenv}{6.1}
\label{I.6.1}
  Let $X$ be a non-empty connected topological space that is both locally path connected and locally simply path connected, and let $x_0$ be a point of $X$.
  We denote by $\pi\colon \widetilde{X}_{x_0}\to X$ the universal covering of $(X,x_0)$, and by $\widetilde{x}_0$ the base point of $\widetilde{X}_{x_0}$.
\end{rmenv}

If $\scr{F}$ is a sheaf on $X$, then we pose:
\begin{rmenv}{Definition 6.2}
\label{I.6.2}
  A \emph{multivalued section} of $\scr{F}$ on $X$ is a global section of the inverse image $\pi^*\scr{F}$ of $\scr{F}$ on $\widetilde{X}_{x_0}$.

  If $s$ is a multivalued section of $\scr{F}$ on $X$, then a \emph{determination of $s$ at a point $x$ of $X$} is an element of the fibre $\scr{F}_{(x)}$ of $\scr{F}$ at $x$ that is an inverse image of $s$ under a local section of $\pi$ at $x$.
  Each point in $\pi^{-1}(x)$ thus defines a determination of $s$ at $x$.
  We define the \emph{base determination} of $s$ at $x_0$ to be the determination defined by $\widetilde{x}_0$.
  We define a \emph{determination of $s$ on an open subset $U$ of $X$} to be a section of $\scr{F}$ over $U$ whose germ at every point of $U$ is a determination of $s$ at that point.
\end{rmenv}

\begin{rmenv}{Definition 6.3}
\label{I.6.3}
  We say that $\scr{F}$ satisfies the \emph{principle of analytic continuation} if the set where any two local sections of $\scr{F}$ agree is always (open and) closed.
\end{rmenv}

\begin{rmenv}{Example 6.4}
\label{I.6.4}
  If $\scr{F}$ is a coherent analytic sheaf on a complex-analytic space, then $\scr{F}$ satisfies the principle of analytic continuation if and only if $\scr{F}$ has no embedded components.
\end{rmenv}

\begin{itenv}{Proposition 6.5}
\label{I.6.5}
  Let $X$ and $x_0$ be as in \hyperref[I.5.1]{(5.1)}, and let $\scr{F}$ be a sheaf of $\CC$-vector spaces on $X$ that satisfies the principle of analytic continuation.
  For every multivalued section $s$ of $\scr{F}$, the following conditions are equivalent:
  \begin{enumerate}[(i)]
    \item the determinations of $s$ at $x_0$ generate a finite-dimensional sub-vector space of $\scr{F}_{x_0}$ ; and
    \item the subsheaf of $\scr{F}$ of $\CC$-vector spaces generated by the determinations of $s$ is a complex local system \hyperref[I.1.1]{(1.1)}.
  \end{enumerate}
\end{itenv}
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\begin{proof}
  It is trivial that (ii) implies (i).
  We now prove that (i) implies (ii).
  Let $x$ be a point of $X$ at which the determinations of $s$ generate a finite-dimensional sub-vector space of $\scr{F}_x$, and let $U$ be a connected open neighbourhood of $x$ over which $\widetilde{X}_{x_0}$ is trivial: $(\pi^{-1}(U),\pi) \simeq (U\times I,\pr_1)$ for some suitable set $I$.
  We will prove that, over $U$, the determinations of $s$ generate a complex local system.
  Each $i\in I$ defines a determination $s_i$ of $s$, and, over $U$, the vector subsheaf of $\scr{F}$ generated by the determinations of $s$ is generated by the $(s_i)_{i\in I}$;
  if this sheaf is constant, then the hypotheses on $x$ implies that it is a local system.
  We have:

  \begin{itenv}{Lemma 6.6}
  \label{I.6.6}
    If a sheaf $\scr{F}$ of $\CC$-vector spaces on a connected space satisfies the principle of analytic continuation, then the vector subsheaf of $\scr{F}$ generated by a family of global sections $s_i$ is a constant sheaf.
  \end{itenv}

  The sections $s_i$ define
  \[
    a\colon\underline{\CC}^{(I)}\to\scr{F}
  \]
  with the image being the vector subsheaf $\scr{G}$ of $\scr{F}$ generated by the $s_i$.
  If an equation $\sum_i\lambda_i s_i=0$ between the $s_i$ holds at a point, then it holds everywhere, by the principle of analytic continuation.

  The sheaf $\Ker(a)$ is thus constant subsheaf of $\underline{\CC}^{(I)}$, and the claim then follows.

  We conclude the proof of \hyperref[I.6.5]{(6.5)} by noting that, by the above, the largest open subset of $X$ over which the determinations of $s$ generate a local system is closed and contains $x_0$.
\end{proof}

\begin{rmenv}{Definition 6.7}
\label{I.6.7}
  Under the hypotheses of \hyperref[I.6.5]{(6.5)}, a multivalued section $s$ of $\scr{F}$ is said to be a \emph{finite determination} if it satisfies either of the equivalent conditions of \hyperref[I.6.5]{(6.5)}.
\end{rmenv}

\begin{rmenv}{6.8}
\label{I.6.8}
  Under the hypotheses of \hyperref[I.6.5]{(6.5)}, let $s$ be a multivalued section of finite determination of $\scr{F}$.
  This section defines
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  \begin{enumerate}[a)]
    \item the local system $V$ generated by its determinations ;
    \item a germ of a section of $V$ at $x_0$, say, $v_0$, corresponding to the base determination of $s$ ; and
    \item an inclusion morphism $\lambda\colon V\to\scr{F}$.
  \end{enumerate}

  The triple consisting of $V_{x_0}$, $v_0$, and the representation of $\pi_1(X,x_0)$ on $V_{x_0}$ defined by $V$ \hyperref[I.1.4]{(1.4)} is called the \emph{monodromy} of $s$.
  The triple $(V,V_0,\lambda)$ satisfies the following two conditions.
  \begin{enumerate}
    \item[(6.8.1)]\label{I.6.8.1}
      $v_0$ is a cyclic vector of the $\pi_1(X,x_0)$-module $V_{x_0}$, i.e. it generates the $\pi_1(X,x_0)$-module $V_{x_0}$.

      This simply means that $V$ is generated by the set of determinations of the unique multivalued section of $V$ with base determination $v_0$.
    \item[(6.8.2)]\label{I.6.8.2}
      $\lambda\colon V_{x_0}\to\scr{F}_{x_0}$ is injective.
  \end{enumerate}
\end{rmenv}

\begin{rmenv}{6.9}
\label{I.6.9}
  Let $W_0$ be a finite-dimensional complex representation of $\pi_1(X,x_0)$, endowed with a cyclic vector $w_0$.
  The multivalued section $s$ of $\scr{F}$ is said to be of \emph{monodromy subordinate to $(w_0,v_0)$} if it is the finite determination, and if, with the notation of \hyperref[I.6.8]{(6.8)}, there exists a homomorphism of $\pi_1(X,x_0)$-representations of $W_0$ in $V_{x_0}$ that sends $w_0$ to $v_0$.
  Let $W$ be the local system defined by $W_0$, and let $w$ be the unique multivalued section of $w$ of base determination $w_0$.
  It is clear that, under the hypotheses of \hyperref[I.6.5]{(6.5)}, we have
\end{rmenv}

\begin{itenv}{Proposition 6.10}
\label{I.6.10}
  The function $\lambda\mapsto\lambda(w)$ is a bijection between the set $\Hom_\CC(W,\scr{F})$ and the set of multivalued sections of $\scr{F}$ with monodromy subordinate to $(W_0,w_0)$.
\end{itenv}

\begin{itenv}{Corollary 6.11}
\label{I.6.11}
  Let $X$ be a reduced connected complex-analytic space endowed with a base point $x_0$.
  Let $W_0$ be a finite-dimensional complex representation of $\pi_1(X,x_0)$ endowed with a cyclic vector $w_0$, and $W$ the corresponding local system on $X$, with $\scr{W}=\cal{O}\otimes_\CC W$ being
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  the associated vector bundle, and $w$ the unique multivalued section of $\scr{W}$ of base determination $w_0$.
  Write $\scr{W}^\vee$ be the dual vector bundle of $\scr{W}$.
  Then the function
  \[
    \lambda \mapsto \langle\lambda,w\rangle,
  \]
  from $\Gamma(X,\scr{W}^\vee)$ to the set of multivalued holomorphic functions on $X$ of monodromy subordinate to $(W_0,w_0)$, is a bijection.
\end{itenv}

\begin{itenv}{Corollary 6.12}
\label{I.6.12}
  If $X$ is Stein, then there exist multivalued holomorphic functions on $X$ of any given monodromy $(W_0,w_0)$.
\end{itenv}



\chapter{Regular connections}
\label{II}


\section{Regularity in dimension~\texorpdfstring{$1$}{1}}
\label{II.1}

\oldpage{41}
\begin{rmenv}{1.1}
\label{II.1.1}
  Let $U$ be an open neighbourhood of $0$ in $\CC$, and consider an $n^\mathrm{th}$-order differential equation
  \[
  \label{II.1.1.1}
    y^{(n)} + \sum_{i=0}^{n-1} a_i(x) y^{(i)} = 0
  \tag{1.1.1}
  \]
  where the $a_i$ are holomorphic functions on $U\setminus\{0\}$.
  We classically say that $0$ is a \emph{regular singular point} of \hyperref[II.1.1.1]{(1.1.1)} if the functions $x^{n-i}a_i(x)$ are holomorphic at $0$.
  If this is true, then, after multiplying by $x^n$, we can write \hyperref[II.1.1.1]{(1.1.1)} in the form
  \[
  \label{II.1.1.2}
    \left(x\frac{\dd}{\dd x}\right)^n y
    + \sum b_i(x)\left(x\frac{\dd}{\dd x}\right)^i y
    = 0
  \tag{1.1.2}
  \]
  where the $b_i(x)$ are holomorphic at $0$.
\end{rmenv}

In this section, we will translate this idea into the language of connections (cf. \hyperref[I.4]{(I.4)}), and we will establish some of its properties.

The results in this section were taught to me by N.~Katz.
They are either due to N.~Katz (see, most notably, \cite{14,15}), or classical (see, for example, Ince~\cite{13}, and Turrittin~\cite{25,26}).

\begin{rmenv}{1.2}
\label{II.1.2}
  Let $K$ be a (commutative) field, $\Omega$ a rank-$1$ vector space over $K$, and $\dd\colon K\to\Omega$ a non-trivial derivation, i.e. an non-zero additive map that satisfies the identity
  \[
  \label{II.1.2.1}
    \dd(xy) = x\dd y + y\dd x.
  \tag{1.2.1}
  \]

  Let $V$ be an $n$-dimensional vector space over $K$.
  Then a \emph{connection} on $V$ is an additive map $\nabla\colon V\to\Omega\otimes V$ that satisfies the identity
  \[
  \label{II.1.2.2}
    \nabla(xv) = \dd x\cdot v + x\nabla v.
  \tag{1.2.2}
  \]

  If $\tau$ is an element of the dual $\Omega^\vee$ of $\Omega$, then we set
  \[
  \label{II.1.2.3}
    \partial_\tau(x) = \langle\dd x,\tau\rangle \in K,
  \tag{1.2.3}
  \]
  \[
  \label{II.1.2.4}
    \nabla_\tau(v) = \langle\dd v,\tau\rangle \in V.
  \tag{1.2.4}
  \]
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  We thus have that
  \begin{enumerate}
    \item[(1.2.5)] \label{II.1.2.5}
      $\partial_\tau$ is a derivation;
    \item[(1.2.6)] \label{II.1.2.6}
      $\nabla_\tau(xv) = \partial_\tau(x)\cdot v + x\nabla_\tau v$; and
    \item[(1.2.7)] \label{II.1.2.7}
      $\nabla_{\lambda\tau}(v) = \lambda\nabla_\tau v$.
  \end{enumerate}

  Let $v\in V$.
  We can easily show that the vector subspace of $V$ generated by the vectors
  \[
    v, \nabla_{\tau_1}v, \nabla_{\tau_2}\nabla_{\tau_1}v, \ldots, \nabla_{\tau_k}\cdots\nabla_{\tau_1} v
  \]
  (where $\tau_i\neq0$ in $\Omega$) does not depend on the choice of the $\tau_i\neq0$, and does not change is we replace $v$ by $\lambda v$ (for some $\lambda\in K^*$).
  Furthermore, if the last of these vectors is a linear combination of the preceding vectors, then this vector subspace is stable under derivations.
  We say that $v$ is a \emph{cyclic vector} if, for $\tau\in\Omega$, the vectors
  \[
    \nabla_\tau^i v
    \qquad\mbox{(for $0\leq i\leq n$)}
  \]
  form a basis of $V$.
\end{rmenv}

\begin{itenv}{Lemma 1.3}
\label{II.1.3}
  Under the above hypotheses, and if $K$ is of characteristic~$0$, then there exists a cyclic vector.
\end{itenv}

\begin{proof}
  Let $t\in K$ be such that $\dd t\neq0$, and let $\tau=t/\dd t\in\Omega^\vee$.
  Then $\partial_\tau(t^k)=kt^k$.

  Let $m\leq n$ be the largest integer such that there exists a vector $e$ such that the vectors $\partial_\tau^i e$ (for $0\leq i\leq m$) are linearly independent.
  If $m\neq n$, then there exists a vector $f$ that is linearly independent of the $\partial_\tau^i e$.
  For any rational number $\lambda$ and integer $k$, the vectors
  \[
    \partial_\tau^i(e+\lambda t^k f)
    \qquad\mbox{(for $0\leq i\leq m$)}
  \]
  are linearly dependent, and their exterior product $\omega(\lambda,k)$ is thus zero.
  We have that
  \[
    \partial_\tau^i(e+\lambda t^k f)
    = \partial_\tau^i e + \sum_{0\leq k\leq i} k^j t^k \partial_\tau^{i-j} f.
  \]

  From this equation, we obtain a finite decomposition
  \[
    \omega(\lambda,k)
    = \sum_{\substack{0\leq a\leq m\\0\leq b}} \lambda^a t^{ka} k^b \omega_{a,b}
  \]
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  where $\omega_{a,b}$ is independent of $\lambda$ and $k$.
  Since $\omega(\lambda,k)=0$ for all $\lambda\in\QQ$, and since
  \[
    \omega(\lambda,k) = \sum \lambda^a \omega_a(k)
  \]
  where $\omega_a(k) = t^{ka}(\sum k^b \omega_{a,b}) = t^{ka} \omega'_a(k)$, we have that $\omega_a(k) = \omega'_a(k) = 0$.
  Since
  \[
    \omega'_a(k) = \sum k^b \omega_{a,b} = 0
  \]
  for all $k\in\ZZ$, we have that $\omega_{a,b}=0$.
  In particular,
  \[
    \omega_{1,m}
    = e\wedge\partial_\tau^1 e\wedge\ldots\wedge\partial_\tau^{m-1} e\wedge f
    = 0,
  \]
  and $f$ is then linearly dependent of the $\partial_\tau^i e$ (for $0\leq i\leq m$), which contradicts the hypothesis.
  Thus $m=n$, and so $e$ is a cyclic vector
\end{proof}

\begin{rmenv}{1.4}
\label{II.1.4}
  Let $\cal{O}$ be a discrete valuation ring of \emph{equal characteristic~$0$}, with maximal ideal $\fk{m}$, residue field $k=\cal{O}/\fk{m}$, and field of fractions $K$.
  Suppose that $\cal{O}$ is endowed with a free rank-$1$ $\cal{O}$-module $\Omega$ along with a derivation $\dd\colon\cal{O}\to\Omega$ that satisfies
  \begin{rmenv}{1.4.1}
  \label{II.1.4.1}
    \itshape
    There exists a uniformiser $t$ such that $\dd t$ generates $\Omega$.
  \end{rmenv}
  (For less hyper-generality, see \hyperref[II.1.7]{(1.7)}).

  If $t_1$ is another uniformiser, then $t_1=at$ for some $a\in\cal{O}^*$, and, by hypothesis, $\dd a$ is a multiple of $\dd t$, i.e. $\dd a=\lambda\dd t$.
  We thus have that
  \[
    \dd t_1
    = a\dd t + \dd a\cdot t
    = (a+\lambda t)\dd t
  \]
  and so
  \begin{rmenv}{1.4.2}
    \itshape
    For every uniformiser $t$, $\dd t$ generates $\Omega$.
  \end{rmenv}

  We denote by
  \[
    v\colon K^* \to \ZZ
  \]
  the valuation of $K$ defined by $\cal{O}$;
  we also denote by $v$ the valuation of $\Omega\otimes K$ defined by the lattice $\Omega$.
  If $t$ is a uniformiser, then
  \[
    v(\omega) = v(\omega/\dd t).
  \]

  If $f\in K^*$ with $f=at^n$ (for $a\in\cal{O}$), then
  \[
    \dd f = \dd a\cdot t^n + nat^{n-1}\dd t
  \]
  and thus
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  \begin{enumerate}
    \item[(1.4.3)] \label{II.1.4.3}
      $v(\dd f) \leq v(f) - 1$; and
    \item[(1.4.4)] \label{II.1.4.4}
      $v(f)\neq0 \implies v(\dd f) = v(f) - 1$.
  \end{enumerate}

  In particular, $\dd$ is continuous and extends to $\dd\colon\cal{O}^\wedge\to\Omega^\wedge$, and the triple $(\cal{O}^\wedge,\dd,\Omega^\wedge)$ again satisfies \hyperref[II.1.4.1]{(1.4.1)}.
\end{rmenv}

\begin{itenv}{Lemma 1.5}
\label{II.1.5}
  If $\cal{O}$ is complete, then the triple $(\cal{O},\dd,\Omega)$ is isomorphic to the triple $(k[[t]],\partial_t,k[[t]])$.
\end{itenv}

\begin{proof}
  The homomorphisms
  \[
    \Gr(\dd)\colon \fk{m}^i/\fk{m}^{i+1} \to \fk{m}^{i-1}\Omega/\fk{m}^i\Omega
  \]
  induced by $\dd$ are linear and bijective \hyperref[II.1.4.4]{(1.4.4)}.
  Since $\cal{O}$ is complete, $\dd\colon\fk{m}\to\Omega$ is surjective, and $\Ker(\dd)\simto k$.
  This gives us a field of representatives that is annihilated by $\dd$, and the choice of a uniformiser $t$ gives the desired isomorphism $k[[t]]\simto\cal{O}$.
\end{proof}

\begin{rmenv}{1.6}
\label{II.1.6}
  If an $\cal{O}$-algebra $\cal{O}'$ is a discrete valuation ring with a field of fractions $K'$ that is algebraic over $K$, then the derivation $\dd$ extends uniquely to $\dd\colon K'\to\Omega\otimes_{\cal{O}}K'$.
  Let $e$ be the ramification index of $\cal{O}'$ over $\cal{O}$, and let $t'$ be a uniformiser of $\cal{O}'$.
  We set
  \[
    \Omega' = 1/(t')^{e-1}\Omega\otimes_{\cal{O}}\cal{O}'.
  \]
\end{rmenv}

We can easily show, using \hyperref[II.1.6]{(1.6)}, that the triple $(\cal{O}',\dd,\Omega')$ again satisfies \hyperref[II.1.4.1]{(1.4.1)}.

\begin{rmenv}{1.7}
\label{II.1.7}
  We will mostly be interested in the following examples.
  Let $X$ be a non-singular complex algebraic curve, and let $x\in X$.
  We choose one of the following:
  \begin{enumerate}
    \item[(1.7.1)]\label{II.1.7.1}
      $\cal{O}=\cal{O}_{x,X}$ (the local ring for the Zariski topology), $\Omega=(\Omega_{X/\CC}^1)_x$, and $\dd=\mbox{the differential}$ ;
    \item[(1.7.2)]\label{II.1.7.2}
      $\cal{O}=\cal{O}_{x,X^\an}$ (the local ring of germs at $x$ of holomorphic functions), $\Omega=(\Omega_{X^\an/\CC}^1)_{(x)}$, and $\dd=\mbox{the differential}$ ; or
    \item[(1.7.3)]\label{II.1.7.3}
      the common completion of \hyperref[II.1.7.1]{(1.7.1)} and \hyperref[II.1.7.2]{(1.7.2)}.
  \end{enumerate}
\end{rmenv}
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\begin{rmenv}{1.8}
\label{II.1.8}
  Under the hypotheses of \hyperref[II.1.4]{(1.4)}, let $V$ be a finite-dimensional vector space over $K$, and $V_0$ a lattice in $V$, i.e. a free sub-$\cal{O}$-module of $V$ such that $KV_0=V$.
  For every homomorphism $e\colon\cal{O}^n\to V$, we define the \emph{valuation $v(e)$ of $e$} to be the largest integer $m$ such that $e(\cal{O}^n)\subset\fk{m}^m V_0$.
  If $V_0$ and $V_1$ are two lattices, then there exists an integer $s$ that is independent of $e$ and $n$ and is such that
  \[
  \label{II.1.8.1}
    |v_0(e) - v_1(e)| \leq s.
  \tag{1.8.1}
  \]
\end{rmenv}

\begin{itenv}{Theorem 1.9}
\label{II.1.9}
  \emph{[N. Katz].}
  Under the hypotheses of \hyperref[II.1.4]{(1.4)}, and with the notation of \hyperref[II.1.8]{(1.8)}, let $\nabla$ be a connection \hyperref[II.1.2]{(1.2)} on a vector space $V$ of dimension~$n$ over $K$.
  Then one of the following conditions is satisfied:
  \begin{enumerate}[a)]
    \item For any lattice $V_0$ in $V$, any basis $e\colon K^n\simto V$ of $V$, any differential form with a simple pole $\omega$ and $\tau=\omega^{-1}\in\Omega_K$, the numbers $-v(\nabla_\tau^i e)$ are bounded above ; or
    \item There exists a rational number $r>0$, with denominator at most $n$, such that, for any $V_0$, $e$, and $\tau$ as above, the family of numbers
      \[
        |-v(\nabla_\tau^i e) - ri|
      \]
      is bounded.
  \end{enumerate}
\end{itenv}

Conditions~a) and b) of \hyperref[II.1.9]{(1.9)} are more manageable in a different form:

\begin{itenv}{Lemma 1.9.1}
\label{II.1.9.1}
  Let $V_0$, $\tau$, and $e$ be as in \hyperref[II.1.9]{(1.9)}.
  Then, for any given value of $r$, the bound~b) is equivalent to
  \[
  \label{II.1.9.2}
    |\sup_{j\leq i}(-v\nabla_\tau^i e)-ri| \leq C^{te}.
  \tag{1.9.2}
  \]
  The bound~a) is equivalent to the same bound \hyperref[II.1.9.2]{(1.9.2)} for $r=0$.
\end{itenv}

\begin{proof}
  Going from \hyperref[II.1.9]{(1.9)} to \hyperref[II.1.9.2]{(1.9.2)} is clear, as is the converse for $r=0$.
  So suppose that \hyperref[II.1.9.2]{(1.9.2)} holds true for $r>0$ and some value $C_0$ for the constant.
  We have
  \[
  \label{II.1.9.a}
    -v\nabla_\tau^i e - ri \leq C_0.
  \tag{a}
  \]
  We immediately see that there exists a constant $k$ such that
  \[
    -v\nabla_\tau^n(\nabla_\tau^i e) \leq -v\nabla_\tau^i e + kn.
  \]
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  Thus
  \[
    \begin{aligned}
      -C_0 + r(i+n)
      \leq& \sup_{j\leq i+n} -v\nabla_\tau^j e
    \\=& \sup(\sup_{j\leq i} -v\nabla_\tau^j e, -v\nabla_\tau^i e+kn)
    \\\leq& \sup(C_0+ri, -v\nabla_\tau^i e+kn)
    \end{aligned}
  \]
  and, if $-C_0+r(i+n) > C_0+ri$, i.e. if $n>2C_0/r$, then we have
  \[
  \label{II.1.9.b}
    -v\nabla_\tau^i e \geq (-C_0-kn-rn)+ri.
  \tag{b}
  \]

  The inequalities \hyperref[II.1.9.a]{(a)} and \hyperref[II.1.9.b]{(b)} then imply the inequality of the form \hyperref[II.1.9]{(1.9)}:
  \[
    |-v\nabla_\tau^i e - ri| \leq C_0+kn+rn.
  \]
\end{proof}

\begin{itenv}{Lemma 1.9.3}
\label{II.1.9.3}
  Let $(V_0,\tau_0,e_0)$ and $(V_1,\tau_1,e_1)$ be two systems as in \hyperref[II.1.9]{(1.9)}.
  Then
  \[
    |\sup_{j\leq i}(-v_1\nabla_{\tau_1}^j e_1) - \sup_{j\leq i}(-v_0\nabla_{\tau_0}^j e_0)| \leq C^{te}.
  \]
\end{itenv}

\begin{proof}
  It suffices to establish an inequality like \hyperref[II.1.9.3]{(1.9.3)} when we change only one of the data $V_0$, $\tau_0$, or $e$.
  The case where we change only the reference lattice $V_0$ follows from \hyperref[II.1.8.1]{(1.8.1)}.

  We will systematically use the fact that, for $f\in K$, we have, by \hyperref[II.1.4.3]{(1.4.3)},
  \[
  \label{II.1.9.4}
    v(\partial_{\tau_i}f) \geq v(f)
  \tag{1.9.4}
  \]
  (using the notation of \hyperref[II.1.2.3]{(1.2.3)}).

  If $e$ and $f$ are two bases, then $e=fa$ for some $a\in\GL_n(K)$, whence
  \[
    \nabla_\tau^i(e) = \sum_j\binom{i}{j}\nabla_\tau^j(f)\cdot\nabla_\tau^{i-j}a,
  \]
  and, by \hyperref[II.1.9.4]{(1.9.4)},
  \[
    v(\nabla_\tau^i(e)) \geq \inf_{j\leq i}v(\nabla_\tau^j f) + C^{te}
  \]
  whence
  \[
    \sup_{j\leq i}(-v\nabla_\tau^j e) - \sup_{j\leq i}(-v\nabla_\tau^j f) \leq C^{te}.
  \]

  Reversing the roles of $e$ and $f$, we similarly have that
  \[
    \sup_{j\leq i}(-v\nabla_\tau^j f) - \sup_{j\leq i}(-v\nabla_\tau^j e) \leq C^{te}
  \]
  whence the inequality \hyperref[II.1.9.3]{(1.9.3)} for a change of basis.
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  If $\tau$ and $\omega$ are vectors as in \hyperref[II.1.9]{(1.9)}, then $\sigma=f\tau$, with $f$ invertible, whence
  \[
    \nabla_\sigma = f\nabla_\tau
    \qquad\mbox{(with $f\in\cal{O}^*$)}
  \]
  and we can show by induction that
  \[
    \nabla_\sigma^i = \sum_{j\leq i}\varphi_j\nabla_\tau^j
    \qquad\mbox{(with $\varphi_j\in\cal{O}$)}.
  \]
  From this we deduce that
  \[
    v\nabla_\sigma^i(e) \geq \inf_{j\leq i}v\nabla_\tau^j(e),
  \]
  whence
  \[
    \sup_{j\leq i}(-v\nabla_\sigma^j(e)) \leq \sup_{j\leq i}(-v\nabla_\tau^j(e)).
  \]
  Reversing the roles of $\sigma$ and $\tau$, we thus conclude that
  \[
  \label{II.1.9.5}
    \sup_{j\leq i}(-v\nabla_\sigma(e)) = \sup_{j\leq i}(-v\nabla_\tau^j(e)).
  \tag{1.9.5}
  \]
\end{proof}

By \hyperref[II.1.9.1]{(1.9.1)} and \hyperref[II.1.9.3]{(1.9.3)} it suffices, to prove \hyperref[II.1.9]{(1.9)}, to prove an upper bound of the form \hyperref[II.1.9.2]{(1.9.2)} for \emph{one} choice of $(V_0,\tau,e)$.

\begin{itenv}{Lemma 1.9.6}
\label{II.1.9.6}
  Under the hypotheses of \hyperref[II.1.9]{(1.9)}, let $e\colon K^n\to V$ be a basis of $V$, $t$ a uniformiser, $\omega$ a differential form presenting a simple pole (i.e. a basis of $t^{-1}\Omega$), set $\tau=\omega^{-1}\in\Omega$, and let $\Gamma=(\Gamma_j^i)$ be the connection matrix in the bases $e$ and $\omega$.
  Let $s$ and $(r_i)_{1\leq i\leq n}$ be rational numbers, and set $r_{i,j}=s+r_i-r_j$, and suppose that
  \[
    -v(\Gamma_j^i) \leq r_{i,j}.
  \]
  Finally, let $\gamma\in \MM_n(k)$ be the matrix whose coefficients are ``$t^{r_{i,j}}\Gamma_j^i\mod m$'', i.e.
  \[
    \gamma_j^i =
    \begin{cases}
      0 & \mbox{if $-v(\Gamma_j^i)<r_{i,j}$ ;}
    \\t^{r_{i,j}}\Gamma_j^i\mod m & \mbox{if $-v(\Gamma_j^i)=r_{i,j}$.}
    \end{cases}
  \]

  Suppose that $s\leq0$, or that $\gamma$ is not nilpotent.
  Then the upper bound \hyperref[II.1.9.2]{(1.9.2)} is satisfied for $r=\sup\{s,0\}$.
\end{itenv}

\begin{proof}
  Let $N$ be an integer such that the $r_iN$ are integers, and set $\cal{O}'=\cal{O}(\sqrt[N]{t})$.
  Let $K'$ be the field of fractions of $K$, $v\colon {K'}^*\to\frac1N\ZZ$ the valuation of $K'$ that extends $v$,
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  and $\Lambda$ the diagonal matrix with coefficients being the $t^{-r_i}$.

  On $\cal{O}'$, let $\omega'$ be the basis of $\Omega\otimes K'$ given by the inverse image of $\omega$, let $\tau'$ be the corresponding basis of ${\Omega'}^\vee\otimes K'$, and let $e'=e\Lambda$ be a new basis of $V'=V\otimes K'$.
  In these bases, the connection matrix is
  \[
    \Gamma' = \Lambda^{-1}\Gamma\Lambda + \Lambda^{-1}\partial_{\tau'}\Lambda.
  \]

  The matrix $\Lambda^{-1}\partial_{\tau'}\Lambda$ has coefficients in $\cal{O}'$, and so either
  \begin{enumerate}[(a)]
    \item $s\leq0$, and $\Gamma'$ has coefficients in $\cal{O}'$ ; or
    \item $s>0$, $-v(\Gamma')=s$, and the ``most polar part'' $\gamma$ of $\Gamma'$ is not nilpotent, so that $-v({\Gamma'}^\ell)=\ell s$.
  \end{enumerate}

  By the definition of $\Omega'$ \hyperref[II.1.6]{(1.6)}, $\omega'$ presents a simple pole.
  In case~(a), we thus conclude by induction on $\ell$ that
  \[
    v(\nabla_{\tau'}^\ell,e') \geq 0.
  \]

  We can prove by induction on $m$ that, in the basis $e'$,
  \[
    \nabla_{\tau'}^m = \sum_{0\leq k\leq n}({\Gamma'}^{m-i}+\Delta_i)\partial_\tau^i
  \]
  where $\Delta_i$ is the algebraic sum of the products of at most $m-i-1$ factors $\partial_{\tau'}^\ell\Gamma$.
  In particular,
  \[
    \nabla_\tau^m e' = {\Gamma'}^m+\Delta_m
  \]
  and, in case~(b),
  \[
    -v(\nabla_{\tau'}^m,e') = ms.
  \]

  This satisfies \hyperref[II.1.9.2]{(1.9.2)} on $\cal{O}'$ (for suitable bases), and \hyperref[II.1.9.6]{(1.9.6)} then follows from \hyperref[II.1.9.3]{(1.9.3)}.
\end{proof}

Theorem~\hyperref[II.1.9]{(1.9)} follows from the following proposition and from \hyperref[I.1.3]{(I.1.3)}.

\begin{itenv}{Proposition 1.10}
\label{II.1.10}
  Under the hypotheses of \hyperref[II.1.9]{(1.9)}, let $X$ be a basis of $\Omega^\vee$, $t$ a uniformiser, set $\tau=tX$, and let $v$ be a cyclic vector \hyperref[II.1.2]{(1.2)} of $V$.
  Set
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  \[
    \begin{aligned}
      \nabla_X^n v &= \sum_{i<n}s_i\nabla_X^i v
    \\\nabla_\tau^n v &= \sum_{i<n}b_i\nabla_\tau^i v.
    \end{aligned}
  \]
  Then the bound \hyperref[II.1.9.2]{(1.9.2)} holds true for
  \[
    \begin{aligned}
      r
      &= \sup\big\{0,\sup\{-v(b_i)/n-i\}\big\}
    \\&= \sup\big\{0,\sup\{-v(a_i)/n-i\}-1\big\}.
    \end{aligned}
  \]
  The same conclusion holds for a cyclic vector $v$ of $V^\vee$.
\end{itenv}

This proposition gives us a procedure for calculating $r$ for a given vector bundle $V$ with a connection defined by an $n$\textsuperscript{th} order differential equation (cf. \hyperref[I.4.8]{(I.4.8)}).

\begin{proof}
  We have the identities
  \[
    \begin{aligned}
      (t\nabla_X)^n-\sum b_i(t\nabla_X)^i &= t^n\big(\nabla_X^n-\sum a_i\nabla_X^i\big)
    \\(t^{-1}\nabla_\tau)^n-\sum a_i(t^{-1}\nabla_\tau)^i &= t^{-n}\big(\nabla_\tau^n-\sum b_i\nabla_\tau^i\big).
    \end{aligned}
  \]
  From these identities, we see that
  \[
    \begin{aligned}
      a_i &= g_{n,i}+\sum_{j\geq i}g_{j,i}b_j,
      \quad v(g_{j,i})\geq i-n
    \\b_i &= h_{n,i}+\sum_{j\geq i}h_{j,i}a_j,
      \quad v(h_{i,j})\geq n-j
    \end{aligned}
  \]
  and, for $i\geq0$,
  \[
    \sup\{0,\sup_{j\geq i}\{-v(b_j)\}\} = \sup\{0,\sup_{j\geq i}\{-v(a_j)-(n-j)\}\}.
  \]
  The two expressions given for $r$ thus agree.

  If $v\in V$ is a cyclic vector, then the matrix of the connection, in the bases $(\nabla_\tau^i v)_{0\leq i\leq n}$ of $V$ and $\tau$ of $\Omega^\vee$, is
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  \[
    \Gamma =
    \left(
      \def\arraystretch{1.8}
      \begin{array}{rrrrrr}
        0 & 0 & 0 & 0 & \cdots & b_0
      \\1 & 0 & 0 & 0 & \cdots & b_1
      \\0 & 1 & 0 & 0 & & \vdots
      \\\vdots & & \ddots & \ddots & & \vdots
      \\\vdots & & & 1 & 0 & b_{n-2}
      \\0 & \cdots & \cdots & \cdots & 1 & b_{n-1}
      \end{array}
    \right).
  \]
  If $v\in V^\vee$ is a cyclic vector, then the matrix of the connection, in the basis of $V$ given by the dual of $(\nabla_\tau^iv)_{0\leq i\leq n}$ and the basis $\tau$ of $\Omega^\vee\otimes K$, is
  \[
    \Gamma =
    -\left(
      \def\arraystretch{1.8}
      \begin{array}{rrrrrr}
        0 & 1 & 0 & 0 & \cdots & 0
      \\0 & 0 & 1 & 0 & & \vdots
      \\0 & 0 & 0 & 1 & & \vdots
      \\\vdots & \vdots & & \ddots & \ddots & \vdots
      \\\vdots & \vdots & & & 0 & 1
      \\b^0 & b^1 & \cdots & \cdots & b^{n-2} & b^{n-1}
      \end{array}
    \right)
  \]

  It remains only to apply \hyperref[II.1.9.6]{(1.9.6)}.
  For $v\in V$, we take $r_i=-ri$ and $s=r$.
  For $v\in V^\vee$, we take $r_i=ri$ and $s=r$.
  In the first (resp. second) case, if $s=r>0$, then the matrix $\gamma$ is of the type
  \[
    \gamma =
    \left(
      \def\arraystretch{1.8}
      \begin{array}{rrrrrr}
        0 & 0 & 0 & 0 & \cdots & *
      \\1 & 0 & 0 & 0 & \cdots & *
      \\0 & 1 & 0 & 0 & & \vdots
      \\\vdots & & \ddots & \ddots & & \vdots
      \\\vdots & & & 1 & 0 & *
      \\0 & \cdots & \cdots & \cdots & 1 & *
      \end{array}
    \right)
  \]
  with one of the coefficients of the last column being non-zero (resp. of the type given by the transpose of this).
  The coefficients are those of the characteristic polynomial of $\gamma$, which is thus not nilpotent for $s>0$.
\end{proof}

\begin{rmenv}{Definition 1.11}
\label{II.1.11}
  Under the hypotheses of \hyperref[II.1.9]{(1.9)}, we say that the connection $\nabla$ is \emph{regular} if condition~a) of \hyperref[II.1.9]{(1.9)} is satisfied.
\end{rmenv}

\begin{itenv}{Theorem 1.12}
\label{II.1.12}
  \emph{[N. Katz].}
  Under the hypotheses of \hyperref[II.1.9]{(1.9)}, we have the following:
  \begin{enumerate}[(i)]
    \item For the connection $\nabla$ to be regular, it is necessary and sufficient for $V$ to admit
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      a basis $e$ such that the matrix of the connection, in this basis, is a matrix of differential forms presenting, at worst, simple poles.
    \item For the connection $\nabla$ to be irregular, and to satisfy a bound of the form \hyperref[II.1.9.2]{(1.9.2)} for $r=a/b>0$, it is necessary and sufficient for $V$ to admit a basis $e$ (after a change of rings from $\cal{O}$ to $\cal{O}'=\cal{O}(\sqrt[b]{t})$, and for the natural valuation, with values in $\ZZ$, of $\cal{O}'$) such that the matrix of the connection, in this basis, presents a pole of order $a+1$, and for the polar part of order $a+1$ of this matrix (which is in $\MM_n(k)$ and determined up to a scalar multiple) to be non-nilpotent.
  \end{enumerate}
\end{itenv}

\begin{proof}
  By extension of scalars, the number $r$ such that $\nabla$ satisfies \hyperref[II.1.9.2]{(1.9.2)} is multiplied by the ramification index.
  This leads us to the case where $b=1$.
  Conditions~(i) and (ii) are then sufficient, by \hyperref[II.1.9.6]{(1.9.6)}.
  Conversely, let $v$ be a cyclic vector \hyperref[II.1.3]{(1.3)}, $t$ a uniformiser, and $\tau\in\Omega^\vee$ of valuation~$1$.
  Then it follows from the proofs of \hyperref[II.1.9.6]{(1.9.6)} and of \hyperref[II.1.10]{(1.10)} that the basis $e_i=t^{ri}\nabla_\tau^i v$ (for $0\leq i\leq\dim V$) satisfies (i) or (ii).
\end{proof}

\begin{itenv}{Proposition 1.13}
\label{II.1.13}
  \begin{enumerate}[(i)]
    \item For every horizontal exact sequence
      \[
        V' \to V \to V'',
      \]
      if the connections on $V'$ and $V''$ are regular, then the connection on $V$ is regular.
    \item If the connections on $V_1$ and $V_2$ are regular, then the natural connections of
      \[
        V_1\otimes V_2,
        \quad \Hom(V_1,V_2),
        \quad V_1^\vee,
        \quad \bigwedge^p V_1,
        \quad \ldots
      \]
      are regular.
    \item If $\cal{O}'$ is a discrete valuation ring with field of fractions $k'$ that is algebraic over the field of fractions $K$ of $\cal{O}$, and if $V'=V\otimes_K K'$, then the connection on $V'$ is regular if and only if the connection on $V$ is regular.
  \end{enumerate}
\end{itenv}

\begin{proof}
  Claim~(iii), already utilised in \hyperref[II.1.12]{(1.12)}, follows for example from the calculation in \hyperref[II.1.10]{(1.10)} and from the fact that the inverse image of a differential form presenting a simple pole again presents a simple pole.
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  Claim~(ii) follows immediately from criterion~(i) in \hyperref[II.1.12]{(1.12)}.

  Claim~(i) implies that, for every short exact sequence
  \[
    0 \to V' \to V \to V'' \to 0,
  \]
  $V$ is regular if and only if $V'$ and $V''$ are regular.
  After an eventual extension of scalars, we choose bases $e'$ and $e''$ of $V'$ and $V''$ (respectively) satisfying (i) or (ii) in \hyperref[II.1.12]{(1.12)}.
  Lift $e''$ to a family of vectors $e''_0$ of $V$.
  For large enough $N$, the basis $e'\cup t^{-N}e''_0$ of $V$ will satisfy (i) in \hyperref[II.1.12]{(1.12)} if $e'$ and $e''$ satisfy (i) in \hyperref[II.1.12]{(1.12)}, and will satisfy (ii) in \hyperref[II.1.12]{(1.12)} in the contrary case.
\end{proof}

\begin{rmenv}{1.14}
\label{II.1.14}
  Let $S$ be a Riemann surface, $p\in S$, and $z$ a uniformiser at $p$.
  We denote by $j$ the inclusion of $S^*=S\setminus\{p\}$ in $S$.
  We say that a (holomorphic) vector bundle on $S^*$ is \emph{meromorphic} at $p$ if we have the data of
  \begin{enumerate}[(i)]
    \item a vector bundle $V$ on $S^*$ ; and
    \item an equivalence class of extensions of $V$ to a vector bundle on $S$, with two extensions $V_1$ and $V_2$ being equivalent if there exists an integer $n$ such that $z^nV_1\subset V_2\subset z^{-n}V_1\subset j_*V$.
  \end{enumerate}

  Such a bundle defines a vector space $V_K$ over the field of fractions $K$ of the local ring $\cal{O}_{p,S}$.
  We talk of a \emph{basis} of $V$ to mean a basis that extends to a basis of one of the permissible extensions of $V$.
  It is clear that $V$ admits bases of this type on a neighbourhood of $p$.
  A connection $\nabla$ on $V$ is said to be \emph{meromorphic} at $p$ if its coefficients (in any basis of $V$) are meromorphic at $p$.
  Such a connection defines a connection \hyperref[II.1.2]{(1.2)} on $V_K$ (cf. \hyperref[II.1.7.2]{(1.7.2)}).
  We say that a connection $\nabla$ on $V$ is \emph{regular} at $p$ if it is meromorphic at $0$ and if the induced connection on $V_K$ is regular in the sense of \hyperref[II.1.11]{(1.11)}, i.e. if there exists a basis of $V$ close to $p$ in which the matrix of the connection presents at most a simple pole at $p$ \hyperref[II.1.12]{(1.12)}.
\end{rmenv}

\begin{rmenv}{1.15}
\label{II.1.15}
  Let $D$ be the open unit disc
  \[
    D = \{z : |z|<1\}
  \]
  and let $D^*=D\setminus\{0\}$.
  The group $\pi_1(D^*)$ is cyclic, generated by the loop
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  $t\mapsto\lambda e^{2\pi it}$ (for $0\leq t\leq1$).
  The fundamental groupoid is thus the constant group $\ZZ$.
  It acts on any local system on $D^*$.
  Using the dictionary \hyperref[I.2]{(I.2)}, every vector bundle $V$ with connection is thus endowed with an action of the local fundamental group $\ZZ$.
  The generator $T$ of this action is called the \emph{monodromy transformation}.
\end{rmenv}

\begin{rmenv}{1.16}
\label{II.1.16}
  Let $V$ be a vector bundle on $D$, and $\nabla$ a connection on $V|D^*$ that is meromorphic at $0$.
  If $e_1$ (resp. $e_2$) is a basis of $V$ in which $\nabla$ is represented by $\Gamma_1\in\Omega^1(\End(V|D^*))$ (resp. $\Gamma_2$), then the difference $\Gamma_1-\Gamma_2$ is holomorphic at $0$.
  Thus the polar part of $\Gamma$ does not depend on the choice of $e$.

  Suppose that $\Gamma_i$ presents only a simple pole at $0$, and thus has ``polar part'' equal to some element $\gamma_i$ in
  \[
    \HH^0\left( \left(\frac1z\Omega^1/\Omega^1\right)\otimes\shEnd(V) \right).
  \]
  The ``residue'' map $\HH^0((1/z)\Omega^1/\Omega^1)\to\CC$ then associates to $\gamma_i$ an endomorphism of the fibre $V_0$ of $V$ at $0$.
  We call this endomorphism the \emph{residue} of the connection at $0$, and denote it by
  \[
    \Res(\Gamma_i)\in\End(V_0).
  \]
\end{rmenv}

\begin{itenv}{Theorem 1.17}
\label{II.1.17}
  Under the hypotheses of \hyperref[II.1.16]{(1.16)}, the monodromy transformation $T$ extends to an automorphism of $V$ whose fibre at $0$ is given by
  \[
    T_0 = \exp(-2\pi i\Res(\Gamma)).
  \]
\end{itenv}

\begin{proof}
  We can take $V=\cal{O}^n$;
  the differential equation for the horizontal sections is then
  \[
    \partial_z v = -\Gamma v,
  \]
  and the differential equation for a horizontal basis $e\colon\cal{O}^n\to V$ is thus
  \[
  \label{II.1.17.proof.1}
    \partial_z e = -\Gamma\circ e.
  \tag{1}
  \]

  In polar coordinates $(r,\theta)$,
  \[
    \begin{aligned}
      z &= re^{i\theta}
    \\\dd z &= rie^{i\theta}\dd\theta+\dd re^{i\theta},
    \end{aligned}
  \]
  and this equation gives
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  \[
    \partial_\theta e = -ir\Gamma\circ e.
  \]
  Set $\Gamma=\frac{\Gamma_0}{z}+\Gamma_1$, where $\Gamma_0$ is constant and $\Gamma_1$ is holomorphic.
  The above equation can then be rewritten as
  \[
    \partial_\theta e = -(ie^{-i\theta}\Gamma_0+ir\Gamma_1)e.
  \]

  The monodromy transformation at $(r,\theta)$ is the value at $(r,\theta+2\pi)$ of the solution of this differential equation which is the identity at $(r,\theta)$.
  As $r\to0$, the aforementioned solution tends to the solution of the limit equation
  \[
  \label{II.1.17.proof.2}
    \partial_\theta e = -ie^{-i\theta}\Gamma_0\circ e.
  \tag{2}
  \]

  We thus deduce that $T$ has a limit value as $z\to0$, for $\theta$ fixed, and that this value depends continuously on $\theta$.
  In particular, $T$ is bounded near $0$, and thus extends to an endomorphism $T$ of $V$ on $D$.
  We conclude that $T$ has a limit value as $z\to0$;
  this value, given by integrating \hyperref[II.1.17.proof.1]{(1)}, depends only on $\Gamma_0$.
  To calculate this limit value, it suffices to calculate it for an arbitrary connection $\Gamma'$ that has the same residue as $\Gamma$.

  For example, we can prove:
  \begin{itenv}{Lemma 1.17.1}
  \label{II.1.17.1}
    Let $\nabla$ be the connection on $\cal{O}^n$ given by the matrix $U\cdot\frac{\dd z}{z}$ for some $U\in\GL_n(\CC)$.
    Then the general solution of the equation $\nabla e=0$ is
    \[
      e = \exp(-\log z\cdot U)f \coloneqq z^{-U}\cdot f
    \]
    and thus the monodromy is the automorphism of $\cal{O}^n$ given by the constant matrix $\exp(-2\pi iU)$.
  \end{itenv}

  \begin{itenv}{Corollary 1.17.2}
  \label{II.1.17.2}
    Under the above hypotheses, the automorphism $\exp(-2\pi i\Res(\Gamma))$ of the fibre of $V$ at $0$ is the limit of the conjugates of the monodromy automorphism.
  \end{itenv}

  Note that it is not true in general that $T_0$ is conjugate to $T_x$ for $x$ close to $0$.
  For example, if $\nabla$ is the connection on $\cal{O}^2$ for which
  \[
    \nabla\begin{pmatrix}u\\v\end{pmatrix}
    = \\d\begin{pmatrix}u\\v\end{pmatrix} + \begin{pmatrix}0&0\\0&-1\end{pmatrix}\begin{pmatrix}u\\v\end{pmatrix}\frac{\dd z}{z} + \begin{pmatrix}0&0\\1&0\end{pmatrix}\begin{pmatrix}u\\v\end{pmatrix},
  \]
  then the general horizontal section is
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  \[
    \begin{aligned}
      u &= a
    \\v &= az\log z+bz
    \end{aligned}
  \]
  and the monodromy transform is
  \[
    T = \begin{pmatrix}1&2\pi iz\\0&1\end{pmatrix}.
  \]

  However, it follows from \hyperref[II.1.17.2]{1.17.2} that \emph{$T$ and $T_0$ have the same characteristic polynomial}.
  See also \hyperref[II.5.6]{5.6}.
\end{proof}

\begin{rmenv}{1.18}
\label{II.1.18}
  Let $f$ be a multivalued function on $D^*$.
  Let $D_1$ be the disc $D^*$ minus the ``cut'' $\RR^+\cap D^*$.
  We say that \emph{$f$ is of moderate growth at $0$} if all the determinations of $f$ on $D_1$ grow as $1/r^n$ for some suitable $n$:
  \[
    f \leq A|z|^{-n}.
  \]
  Here we allow $n$ to vary with the determination.
  It is evident, however, that, for $f$ of moderate growth and of finite determination, there exists some $n$ that works for all the determinations.
  The fact that $f$ is of moderate growth also implies that the function $f(e^{2\pi iz})$ is of at most exponential order in each vertical strip.

  If $f$ is a multivalued section of a vector bundle $V$ on $D^*$ that is meromorphic at $0$, then we say that \emph{$f$ is of moderate growth at $0$} if its coordinates, in an arbitrary base of $V$ near $0$, are of moderate growth.
\end{rmenv}

\begin{itenv}{Theorem 1.19}
\label{II.1.19}
  Let $V$ be a vector bundle on $D^*$ that is meromorphic at $0$, endowed with a connection $\nabla$.
  Then the following conditions are equivalent:
  \begin{enumerate}[(i)]
    \item $\nabla$ is regular; and
    \item the (multivalued) horizontal sections of $V$ are of moderate growth at $0$.
  \end{enumerate}
\end{itenv}

\begin{proof}
  \mbox{(i)$\implies$(ii).}
  Choose, near to $0$, an isomorphism $V\sim\cal{O}^n$, under which
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  the differential equation for the horizontal sections is of the form
  \[
    \partial_z v = \Gamma v,
  \]
  where $\Gamma$ has at most a simple pole at $0$.
  We then have, for $|z|\leq\lambda<1$,
  \[
    |\partial_z v| \leq \frac{k}{|z|}|v|
  \]
  and, on $D_1$ \hyperref[II.1.18]{(1.18)}, this inequality integrates, for $|z|\leq\lambda$, to
  \[
    |v| \leq \frac{1}{|z|^k}\sup_{|z|=\lambda}|v|.
  \]

  \mbox{(ii)$\implies$(i).}
  Let $T$ be the monodromy transformation of $V$, and let $U\in\GL_n(\CC)$ be a matrix such that $\exp(2\pi iU)$ is conjugate to $T$.
  Let $V_0$ be the vector bundle $\cal{O}^n$ endowed with the regular connection with matrix
  \[
    \Gamma = \frac{U}{z}.
  \]
  The bundles $V$ and $V_0$ have the same monodromy.
  By the dictionaries in \hyperref[I.1]{I.1} and \hyperref[I.2]{I.2}, they are thus isomorphic as bundles with connections on $D^*$.
  Let
  \[
    \varphi\colon V_0|D^* \to V|D^*
  \]
  be an isomorphism.
  It suffices to prove that $\varphi$ is compatible with the structures on $V_0$ and $V$ of bundles that are meromorphic at $0$;
  this is the case if and only if $\varphi$ is of moderate growth at $0$.
  Let $e$ be a (multivalued) horizontal basis of $V_0|D^*$, and let $f$ be a (multivalued) horizontal basis of $V|D^*$.
  \[
  \label{II.1.19.proof.i}
    \begin{tikzcd}
      V_0 \rar
      & V
    \\\cal{O}^n \uar["e"] \rar
      & \cal{O}^n \uar[swap,"f"]
    \end{tikzcd}
  \tag{i}
  \]

  The morphism $f$ is, by hypothesis, of moderate growth.
  The morphism $e^{-1}$ has horizontal sections of the regular bundle $V_0^\vee$ as its coordinates, and is thus of moderate growth.
  The morphism $\psi$ that makes \hyperref[II.1.19.proof.i]{diagram~(i)} commute is horizontal with respect to the usual connection on $\cal{O}^n$, and is thus constant.
  The composite $\varphi= f\psi e^{-1}$ is thus of moderate growth.
\end{proof}
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\begin{itenv}{Corollary 1.20}
\label{II.1.20}
  Let $V_1$ and $V_2$ be vector bundles on $D^*$ that are meromorphic at $0$, and endowed with regular connections $\nabla_1$ and $\nabla_2$ (respectively).
  Then every horizontal homomorphism $\varphi\colon V_1\to V_2$ is meromorphic at zero.
  In particular, $V_1$ and $V_2$ are isomorphic if and only if they have the same monodromy.
\end{itenv}

\begin{proof}
  Indeed, $\varphi$, thought of as a section of $\shHom(V_1,V_2)$, is horizontal, and thus of moderate growth, since the connection on $\shHom(V_1,V_2)$ is regular.
\end{proof}

\begin{rmenv}{1.21}
\label{II.1.21}
  Let $X$ be a smooth algebraic curve over a field $k$ of characteristic~$0$, and $V$ a vector bundle on $X$ endowed with a connection
  \[
    \nabla\colon V \to \Omega_{X/k}^1(V).
  \]
  Let $\overline{X}$ be the smooth projective curve given by the completion of $X$, and $x_\infty\in\overline{X}\setminus X$ a ``point at infinity'' of $X$.
  The local ring $\cal{O}_{x_\infty}$, endowed with
  \[
    \dd\colon \cal{O}_{x_\infty} \to \Omega_{x_\infty}^1
  \]
  satisfies \hyperref[II.1.4.1]{(1.4.1)}, and $V$ induces a vector space $V_K$ endowed with a connection, in the sense of \hyperref[II.1.2]{(1.2)}, over the field of fractions $K$ of $\cal{O}_{x_\infty}$ (which is equal to the field of functions of $X$ in the case when $X$ is connected).
  We say that the connection on $V$ is \emph{regular at $x_\infty$} if this induced connection on $V_K$ is \emph{regular} in the sense of \hyperref[II.1.10]{(1.10)}.

  If $\overline{X}_1$ is an arbitrary curve that contains $X$ as a dense open subset, and if $S\subset\overline{X}_1\setminus X$, then we say that the connection $\nabla$ is \emph{regular at $S$} if it is regular at all points of the inverse image of $S$ in $\overline{X}$ (which makes sense, since the normalisation of $\overline{X}_1$ can be identified with an open subset of $\overline{X}$).

  Finally, we say that the connection $\nabla$ is \emph{regular} if it is regular at all points at infinity of $X$.
\end{rmenv}

\begin{rmenv}{1.22}
\label{II.1.22}
  If $k=\CC$, then every vector bundle $V$ on $X$ can be extended to a vector bundle on the completed curve $\overline{X}$.
  If $V_1$ and $V_2$ are two extensions of $V$, and if $t$ is a uniformiser at a point $x_\infty\in\overline{X}\setminus X$, then there exists some $N\in\NN$ such that, in a neighbourhood of $x_\infty$, the subsheaves $V_1$ and $V_2$ of the direct image of $V$
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  satisfy
  \[
    t^N V_1\subset V_2 \subset t^{-N}V_1.
  \]

  The bundle $V^\an$ is thus canonically endowed with a structure that is meromorphic at every $x_\infty\in\overline{X}\setminus X$.

  If $V$ is endowed with a connection, then we can immediately see \hyperref[II.1.12]{(I.12)} that $(V,\nabla)$ is regular at $x_\infty\in\overline{X}\setminus X$, in the sense of \hyperref[II.1.21]{(1.21)}, if and only if $(V^\an,\nabla)$ is regular at $x_\infty$, in the sense of \hyperref[II.1.14]{(1.14)}.
\end{rmenv}

\medskip
\hrule
\medskip

\emph{[Translator] Theorem~1.23 and Proposition~1.24 have been removed from this edition, due to the following comment from the errata:}
\begin{quote}
  \itshape
  I thank B.~Malgrange for having shown me that the ``theorem'' in (II.1.23) is false.
  We incorrectly suppose, in the proof, that the vector field $\tau$ has no poles.
  The statement of (II.1.23) was used in the proof of the key theorem (II.4.1), and only there.
\end{quote}

\medskip
\hrule
\medskip

% The following are removed by the errata

% \begin{itenv}{Theorem 1.23}
% \label{II.1.23}
%   Consider a commutative diagram
%   \[
%     \begin{tikzcd}
%       X \ar[rr,"j"] \ar[dr,swap,"f"]
%       && \overline{X} \ar[dl,"\overline{f}"]
%     \\&S&
%     \end{tikzcd}
%   \]
%   in which
%   \begin{enumerate}[a)]
%     \item $S$ is a Noetherian scheme of characteristic~$0$, and $j$ is an open immersion of finite type of $S$-schemes;
%     \item $f$ is smooth of pure relative dimension~$1$; and
%     \item $T=\overline{X}\setminus X$ is quasi-finite over $S$.
%   \end{enumerate}

%   Let $V$ be a vector bundle on $X$ endowed with a relative connection $\nabla\colon V\to\Omega_{X/S}^1(V)$.
%   Then the set of points $s\in S$ such that the restriction of $(V,\nabla)$ to the fibre $X_s$ of $X$ at $s$ is regular at $T_s$ is closed in $S$.
% \end{itenv}

% \begin{proof}
%   It is clear, by \hyperref[II.1.12]{(1.12)}, that the set in question in constructable (as is its complement, which satisfies the property that it contains, for any point $\eta$, a neighbourhood of $\eta$ in the closure $\overline{\eta}$).
%   It remains to show that it is stable under specialisation, which can be shown by proving that, if $S$ is the spectrum of a discrete valuation ring, with generic point $\eta$ and closed point $s$, and if $(V_\eta,\nabla)$ on $X_\eta$ is regular at $T_\eta$, then $(V_s,\nabla)$ on $X_s$ is regular at $T_s$.
%   By replacing $\overline{X}$ with its normalisation, if necessary, we can suppose that $\overline{X}$ is flat over $S$ and normal.

%   Let $x\in T_s$.
%   Let $\overline{X}'$ be an affine neighbourhood of $x$ in $\overline{X}$ such that the
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%   restriction of $V$ to $\overline{X}'\cap X_s$ is free, with basis $e_i$, and such that there exists an open affine subset $X''$ of $X$ such that $X''_s=\overline{X}'\cap X_s$ (for there to exist such an $X''$, it suffices to take $\overline{X}$ to be small enough such that $\overline{X}_s\setminus X_s$ is defined by one single equation, for example).
%   We lift $e_i$ to a section $\widetilde{e}_i$ of $V$ over $X''$, and we let $X'$ be the open subset of $X''$ on which $(\widetilde{e}_i)$ is a basis.

%   The hypotheses of \hyperref[II.1.23]{(1.23)} are again satisfied for $X'\hookrightarrow\overline{X}'$, and $V|X'_\eta$ is regular at $\overline{X}'\setminus X'$.
%   To show that $V|X'_s=V|X_s$ is regular at $x$, we can thus restrict to the case where $V$ is free;
%   we can thus suppose that $V$ extends to a vector bundle on $\overline{X}$, with basis $(e)$.

%   Let $f$ be a section of $\cal{O}_{\overline{X}}$ that is non-constant on $X_s$ and zero on $\overline{X}\setminus X$.
%   Let $\tau$ be the relative vector field such that $\langle\tau,\dd f/f\rangle=1$.

%   By construction, the vector field $\tau$ induces, on the normalisation $\overline{X}_s^\mathrm{n}$ of $\overline{X}_s$, a vector field that vanishes simply on $\overline{X}_s\setminus X_s$.
%   To show that $V|X_s$ is regular at $x$, it thus suffices to show that there exists some $n$ such that the
%   \[
%     f^n\nabla_\tau^i e_k|\overline{X}_s
%   \]
%   (for $i\geq0$) are all regular.
%   By hypothesis, there exists some $n$ such that the
%   \[
%     f^n\nabla_\tau^i e_k|\overline{X}_\eta
%   \]
%   are regular.
%   The $f^n\nabla_\tau^i e_k$ are thus regular over $\overline{X}_\eta\cup X_s$, and so the complement is of dimension~$2$;
%   since $\overline{X}$ is normal, the $f^n\nabla_\tau^i e_k$ are automatically everywhere regular, and thus in particular over $\overline{X}_s$.
% \end{proof}

% We can similarly prove the following analytic variant of \hyperref[II.1.23]{(1.23)}.

% \begin{itenv}{Proposition 1.24}
%   Consider a commutative diagram
%   \[
%     \begin{tikzcd}
%       X \ar[rr,"j"] \ar[dr,swap,"f"]
%       && \overline{X} \ar[dl,"\overline{f}"]
%     \\&D&
%     \end{tikzcd}
%   \]
%   in which
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%   \begin{enumerate}[a)]
%     \item $D$ is the unit disc;
%     \item $f$ is smooth of pure relative dimension~$1$; and
%     \item $j$ is an open immersion, and $T=\overline{X}\setminus X$ is an analytic subspace that is quasi-finite over $D$.
%   \end{enumerate}

%   Let $V$ be a vector bundle on $X$, extending to a coherent analytic sheaf on $\overline{X}$, and endowed with a relative connection on $X$.
%   For all $\lambda$, the restriction of $V$ to $f^{-1}(\lambda)$ is endowed with a structure that is meromorphic \hyperref{II.1.14}{(1.14)} at all points in the inverse image of $T$ in the Riemann surface given by the normalisation of $\overline{f}^{-1}(\lambda)$.
%   If, for $\lambda\neq0$, $V|f^{-1}(\lambda)$ is regular at these points, then $V|f^{-1}(0)$ has the analogous property.
% \end{itenv}


\section{Growth conditions}
\label{II.2}

\begin{rmenv}{2.1}
\label{II.2.1}
  Let $X^*$ be a separated scheme of finite type over $\CC$.
  By Nagata \cite{20} (see also EGA~II, 2nd edition), $X^*$ can be represented by a dense Zariski open subset of a scheme $X$ that is proper over $\CC$ (here, proper = complete = compact).
  Furthermore, if $X_1$ and $X_2$ are two ``compactifications'' of $X^*$, then there exists a third compactification $X_3$ along with two commutative diagrams
  \[
    \begin{tikzcd}
      X^* \rar[hook] \dar[equal]
      & X_3 \dar
    \\ X^* \rar[hook]
      & X_i
    \end{tikzcd}
  \]
  We can take $X_3$ to be the scheme-theoretic closure of the diagonal image of $X$ in $X_1\times X_2$.

  This makes schemes over $\CC$ much more well behaved at infinity than analytic varieties are.
  Often, an algebraic object or construction with respect to some scheme $X^*$ can be seen as an analogous analytic object or construction, plus a ``growth condition at infinity''.
\end{rmenv}
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\begin{rmenv}{2.2}
\label{II.2.2}
  Let $X$ be a separated complex-analytic space, and $Y$ a closed analytic subset of $X$.
  Let $X^*=X\setminus Y$, and let $j\colon X^*\hookrightarrow X$ be the inclusion morphism of $X^*$ into $X$.
  In what follows, $X$ is seen as a ``partial compactification'' of $X^*$, with $Y$ being the ``at infinity''.
  We will not lose much generality in supposing that $X^*$ is dense in $X$.
\end{rmenv}

\begin{rmenv}{2.3}
\label{II.2.3}
  Suppose that $X^*$ is smooth, and that $X$ admits an embedding into some $\CC^n$ (or, more generally, into some smooth analytic space).
  If $j_1$ and $j_2$ are embeddings of $X$ into $\CC^{n_i}$, then the two Riemannian structures on $X^*$ induced by $\CC^{n_i}$, say $j_1^*g$ and $j_2^*$, satisfy the following:

  \begin{itenv*}
  \label{II.2.3.*}
    For every compact subset $K$ of $X$, there exist constants $A,B>0$ such that
    \[
      j_1^*g \leq Aj_2^*g \leq Bj_2^*g \leq Bj_1^*g.
    \tag{$*$}
    \]
    on $K\cap X^*$.
  \end{itenv*}

  To see this, we compare $j_i^*g$ with $j_3^*g$, where $j_3$ is the diagonal embedding of $X$ into $\CC^{n_1+n_2}$.
  Locally on $X$, we have $j_3=\alpha\cdot j_i$, where $\alpha\colon\CC^{n+i}\to\CC^{n_1+n_2}$ is a holomorphic section of $\pr_i$, and the claim then follows.

  The compactification $X$ of $X^*$ thus defines an equivalence class under \hyperref[II.2.3.*]{($*$)} of Riemannian structures on $X^*$.

  Now suppose only that $X^*$ is smooth.
  A \emph{Riemannian structure $g$} on $X^*$ is said to be \emph{adapted to $X$} if, for every open subset $U$ of $X$ that admits an embedding into $\CC^n$, the restriction $g|U\cap X^*$ is in the class described above, with respect to $U\cap X^*\hookrightarrow U$.
  This condition is local on $X$.
  Using a partition of unity, we can show that there exist Riemannian structures on $X^*$ that are adapted to $X$;
  these form an equivalence class under \hyperref[II.2.3.*]{($*$)}.
\end{rmenv}

\begin{rmenv}{2.4}
\label{II.2.4}
  We situate ourselves under the hypotheses of \hyperref[II.2.2]{(2.2)}.
  We have multiple ways of defining the distance from a point of $X^*$ to the infinity $Y$.

  \begin{rmenv}{2.4.1}
  \label{II.2.4.1}
    Suppose that $Y$ is defined in $X$ by a finite family of equations $f_i=0$.
    We set
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    \[
      d_1(x) = \sum f_i(x)\overline{f_i(x)}.
    \]

    If the functions $d'_1(n)$ and $d''_1(n)$ are obtained by this procedure, then we have:

    \begin{itenv*}
    \label{II.2.4.1.*M}
      For every compact subset $K$ of $X$, there exist constants $A_1,A_2>0$ and $\rho_1,\rho_2>0$ such that, for all $x\in X^*$,
      \[
        \begin{aligned}
          d'_1(x) &\leq A_1d''_1(x)^{\rho_1}
        \\d''_1(x) &\leq A_2d'_1(x)^{\rho_2}.
        \end{aligned}
      \tag{$*$M}
      \]
    \end{itenv*}

    Indeed, let $(f'_i=0)$ and $(f''_i=0)$ be two systems of equations for $Y$.
    It suffices to verify \hyperref[II.2.4.1.*M]{($*$M)} locally on $X$.
    Locally, by the analytic Nullstellensatz, we know that, for large enough $N$, the ${f'_i}^N$ (resp. ${f''_i}^N$) are linear combinations of the $f''_i$ (resp. $f'_i$), and \hyperref[II.2.4.1.*M]{($*$M)} then follows formally.
  \end{rmenv}

  \begin{rmenv}{2.4.2}
  \label{II.2.4.2}
    Suppose that $X$ admits an embedding $j\colon X\hookrightarrow\CC^n$.
    Let $U$ be a relatively compact open subset of $X$.
    In $U$, we set
    \[
      d_2(x) = d(j(x),j(Y\cap U))
    \]
    where $d$ is the Euclidean distance in $\CC^n$.

    We can show, as in \hyperref[II.2.3]{(2.3)}, that, if $d'_2$ and $d''_2$ are obtained by this method, with respect to two different embeddings, then we have:

    \begin{itenv*}
    \label{II.2.4.2.*R}
      For every compact subset $K$ of $U$, there exist constants $A,B>0$ such that, for all $x\in K\cap X^*$,
      \[
        d'_2(x) \leq Ad''_2(x) \leq Bd'_2(x).
      \tag{$*$R}
      \]
    \end{itenv*}

    Furthermore, it follows immediately from the Lojasiewicz inequalities \cite[Th.~1, p.~85]{18} that the ``distances at infinity'' \hyperref[II.2.4.1]{(2.4.1)} and \hyperref[II.2.4.2]{(2.4.2)} are equivalent in the sense of \hyperref[II.2.4.1.*M]{($*$M)}.
  \end{rmenv}
\end{rmenv}

\begin{rmenv}{Definition 2.5}
\label{II.2.5}
  Under the hypotheses of \hyperref[II.2.2]{(2.2)}, a norm $\|x\|$ on $X^*$ is said to be \emph{adapted to $X$} if it is a function from $X^*$ to $\RR^+$ such that, for every open subset $U$ of $X$ on which $Y$ is defined by a finite family of equations $(f_i=0)$, and for every compact subset $K$ of $U$, there exist constants $A_1,A_2>0$ and $\rho_1,\rho_2>0$ such that, for all $x\in K\cap X^*$, we have
  \[
    \begin{aligned}
      (1+\|x\|)^{-1}
      &\leq A_1\left(\sum f_i(x)\overline{f_i(x)}\right)^{\rho_1}
    \\\sum f_i(x)\overline{f_i(x)}
      &\leq A_2(1+\|x\|)^{-\rho2}.
    \end{aligned}
  \]
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  These conditions are local on $X$.
  We can show, using a partition of unity, that there always exist norms on $X^*$ that are adapted to $X$.
  These form an equivalence class under the equivalence relation

  \begin{itenv*}
  \label{II.2.5.*'M}
    For every compact subset $K$ of $X$, there exist constants $A_1,A_2>0$ and $\rho_1,\rho_2>0$ such that, for all $x\in K\cap X^*$,
    \[
      (1+\|x\|_i) \leq A_i(1+\|x\|_j)^{\rho_i}
    \tag{$*'$M}
    \]
    for $i=1,2$.
  \end{itenv*}
\end{rmenv}

\begin{rmenv}{Definition 2.6}
\label{II.2.6}
  A function $f$ on $X^*$ is said to be of \emph{moderate growth along $Y$} if there exists a norm $\|x\|$ on $X^*$ that is adapted to $X$ and such that, for all $x\in X^*$,
  \[
    |f(x)| \leq \|x^*\|.
  \]

  This condition is local on $X$.
\end{rmenv}

\begin{rmenv}{2.7}
\label{II.2.7}
  More precise information about the structure at infinity of $X^*$ is necessary in order to reasonably define what a multivalued function with moderate growth at infinity on $X^*$ is.

  The fundamental example is that of the logarithm function.
  Denote by $\widetilde{D}^*$ the universal covering of the punctured disc.
  At an arbitrary point of $D^*$, the set of determinations of $\log\colon\widetilde{D}^*\to\CC$ is not bounded.
  We only have a bound
  \[
    |\log(z)| \leq A(1/|z|)^\varepsilon
  \]
  in a subset of $\widetilde{D}^*$ where the argument $\arg(z)$ of $z$ is bounded.

  The delicate results of Lojasiewicz used below will only be essential in what follows for trivial cases (cf. \hyperref[II.2.20]{(2.20)}).
\end{rmenv}

\begin{rmenv}{2.8}
\label{II.2.8}
  In \cite{17}, Lojasiewicz proves results which are more precise than \hyperref[II.2.8.2]{(2.8.2)} given below.

  \begin{rmenv}{2.8.1}
  \label{II.2.8.1}
    Let $X$ be a separated analytic space.
    In the following, we understand ``semi-analytic triangulation of $X$'' in the following weak sense: a semi-analytic triangulation of $X$ is a set $\scr{T}$ of closed semi-analytic subsets of $X$ (the simplices of the triangulation) such that
    \begin{enumerate}[(a)]
      \item $\scr{T}$ is locally finite and stable under intersection; and
      \item for every $\sigma\in\scr{T}$, there exists a homeomorphism $\gamma$ between $\sigma$ and a simplex
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        of the form $\Delta_n$ such that
        \begin{enumerate}[(b1)]
          \item the graph $\Gamma\subset\RR\times X$ of $\gamma$ is semi-analytic, and even semi-algebraic in the first variable; and
          \item $\gamma$ sends the set of faces of $\Delta_n$ to the set of $\tau\in\scr{T}$ contained in $\sigma$.
        \end{enumerate}
    \end{enumerate}
  \end{rmenv}

  \begin{rmenv}{2.8.2}
  \label{II.2.8.2}
    Let $X$ be separated analytic space, and $\scr{F}$ a locally finite set of semi-analytic subsets of $X$.
    Then, locally on $X$, there exists a semi-analytic triangulation $\scr{T}$ of $X$ such that every $F\in\scr{F}$ is the union of the simplices of the triangulation that it contains.
  \end{rmenv}
\end{rmenv}

\begin{rmenv}{Definition 2.9}
\label{II.2.9}
  Under the hypotheses of \hyperref[II.2.2]{(2.2)}, a subset $P$ of a covering $\pi\colon\widetilde{X}^*\to X^*$ of $X^*$ is said to be \emph{vertical} along $Y$ if there exists a finite family of compact semi-analytic subsets $P_i$ of $X$ such that the $P_i\setminus Y$ are simply connected, and lifts $\widetilde{P_i}$ of the $P_i\setminus Y$ on $\widetilde{X}^*$ such that
  \[
    P \subset \bigcup_i\widetilde{P_i}.
  \]

  \begin{rmenv}{2.9.1}
  \label{II.2.9.1}
    If $\scr{T}$ is a semi-analytic triangulation of $X$ that induces a semi-analytic triangulation of $Y$, then a subset $P$ of $\widetilde{X}^*$ is vertical if and only if it is contained in the union of a finite nubmer of lifts of open simplices of $\scr{T}$.
  \end{rmenv}

  \begin{rmenv}{2.9.2}
  \label{II.2.9.2}
    If $X$ is a finite union of open subsets $U_i$, then, for a subset $P$ of $\widetilde{X}^*$ to be vertical, it is necessary and sufficient for $P$ to be a union of subsets $P_i\subset\pi^{-1}(U_i)$ that are vertical along $Y\cap U_i$.
  \end{rmenv}

  \begin{rmenv}{2.9.3}
  \label{II.2.9.3}
    If $U$ is an open subset of $X$, and $P$ is a vertical subset of $\widetilde{X}^*$, then, for every compact subset $K$ of $U$, $P\cap\pi^{-1}(K)$ is vertical in $\pi^{-1}(U)$ along $U\cap Y$.
  \end{rmenv}
\end{rmenv}

\begin{rmenv}{Definition 2.10}
\label{II.2.10}
  Under the hypotheses of \hyperref[II.2.2]{(2.2)}, let $\pi\colon\widetilde{X}^*\to X^*$, and let $f$ be a function on $\widetilde{X}^*$.
  We say that $f$ is \emph{of moderate growth along $Y$} if, for every norm
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  $\|x\|$ on $X^*$ that is adapted to $X$, and for every vertical subset $P$ of $\widetilde{X}^*$, there exist $A,N>0$ such that, for all $x\in P$,
  \[
    |f(x)| \leq A(1+\|x\|)^N.
  \]

  This condition is of a local nature on $X$.
\end{rmenv}

\begin{rmenv}{Example 2.11}
\label{II.2.11}
  Let $X$ be the disc, $X^*$ the punctured disc, and $\widetilde{X}^*$ the universal covering of $X^*$.
  The multivalued functions on $X^*$ (or functions on $\widetilde{X}^*$) defined by $z\mapsto z^\rho$ (for $\rho\in\CC$), and also $z\mapsto\log z$, are of moderate growth at the origin.
\end{rmenv}

\begin{itenv}{Lemma 2.12}
\label{II.2.12}
  Under the hypotheses of \hyperref[II.2.2]{(2.2)}, let $\cal{V}$ be a coherent analytic sheaf on $X^*$, and $\cal{V}_1$ and $\cal{V}_2$ extensions of $\cal{V}$ to a coherent analytic sheaf on $X$.
  Then the following conditions are equivalent.
  \begin{enumerate}[(i)]
    \item There exists an extension $\cal{V}'$ of $\cal{V}$ on $X$, as well as homomorphisms from $\cal{V}'$ to $\cal{V}_1$ and to $\cal{V}_2$.
    \item There exists an extension $\cal{V}''$ of $\cal{V}$ on $X$, as well as homomorphisms from $\cal{V}_1$ and from $\cal{V}_2$ to $\cal{V}''$.
    \item The two previous conditions are locally satisfied on $Y$.
  \end{enumerate}
\end{itenv}

\begin{proof}
  To prove that (i)$\iff$(ii), we take
  \[
    \cal{V}'' = (\cal{V}_1\oplus \cal{V}_2)/\cal{V}'
  \]
  where
  \[
    \cal{V}' = \cal{V}_1\cap \cal{V}_2.
  \]
  If (i) is locally true, then a global solution is given by the sum of the images of $\cal{V}_1$ and $\cal{V}_2$ in $j_*\cal{V}$, where $j$ is the inclusion of $X^*$ into $X$.
\end{proof}

\begin{rmenv}{2.13}
\label{II.2.13}
  We say that two extensions $\cal{V}_1$ and $\cal{V}_2$ of $\cal{V}$ are \emph{meromorphically equivalent} if the conditions of \hyperref[II.2.2]{(2.2)} are satisfied;
  we say that a coherent analytic sheaf on $X^*$ is \emph{meromorphic along $Y$} if it is locally endowed with an equivalence class of extensions of $\cal{V}$ to a coherent analytic sheaf on $X$.
  If there exists an extension of $\cal{V}$ on $X$ that is, locally on $Y$, meromorphically equivalent to the pre-given extensions, then this extension is unique up to meromorphic equivalence;
  we then say that $\cal{V}$ is \emph{effectively meromorphic along $Y$}.
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  I do not know if there exist coherent analytic sheaves on $X^*$ that are meromorphic along $Y$ but not effectively meromorphic along $Y$.

  Let $\cal{V}$ be a coherent analytic sheaf on $X^*$ that is meromorphic along $Y$;
  a \emph{section} $v\in\HH^0(X^*,\cal{V})$ is said to be \emph{meromorphic along $Y$} if, locally on $X$, it is defined by a section of one of the pre-given extensions of $\cal{V}$.
  The information of the sheaf $j_*^\mathrm{mero}\cal{V}$ on $X$ of sections of $\cal{V}$ which are meromorphic along $Y$ is equivalent to the information of the meromorphic structure along $Y$ of $\cal{V}$.
\end{rmenv}

\begin{rmenv}{2.14}
\label{II.2.14}
  Suppose that $X^*$ is reduced, and let $\cal{V}$ be a vector bundle on $X^*$ which is meromorphic along $Y$.
  We will define an equivalence class of ``norms'' on $\cal{V}$.
  The ``norms'' in question will be continuous families of norms on the $\cal{V}_x$ (for $x\in X^*$).
  If $v$ is a continuous section of $\cal{V}$, then $|v|$ is a positive function on $X^*$, which is zero at exactly the points where $v=0$.
  Two norms $|v|_1$ and $|v|_2$ will be said to be equivalent if we have the following:
  \begin{rmenv}{2.14.1}
  \label{II.2.14.1}
    For any norm $\|x\|$ on $X^*$, and any compact subset $K$ of $X$, there exist $A_1,A_2,N_1,N_2>0$ such that
    \[
      \begin{aligned}
        |v|_1 &\leq A_1(1+\|x\|)^{N_1}|v|_2
      \\|v|_2 &\leq A_2(1+\|x\|)^{N_2}|v|_1
      \end{aligned}
    \]
    on $K\cap X^*$.
  \end{rmenv}
\end{rmenv}

\begin{rmenv}{2.15.1}
\label{II.2.15.1}
  If $\cal{V}=\cal{O}^n$, then we set $|v|=\sum|v_i|$.
\end{rmenv}

\begin{rmenv}{2.15.2}
\label{II.2.15.2}
  Let $x\in Y$, and let $\cal{V}_1$ be a pre-given extension of $\cal{V}$ on a neighbourhood of $x$.
  Then there exists an open neighbourhood $U$ of $x$, along with $\omega\colon\cal{V}_1\to\cal{O}^n$, such that $\omega$ is a monomorphism on $U\cap X^*$.
  We set
  \[
    |v|_\omega = |\omega(v)|
  \]
  in $U\cap X^*$.
\end{rmenv}

\begin{rmenv}{2.15.3}
\label{II.2.15.3}
  For $x$ and $\cal{V}_1$ as in \hyperref[II.2.15.1]{(2.15.1)}, there exists a neighbourhood $U$ of $x$, and an epimorphism $\eta\colon\cal{O}^n\to\cal{V}_1$ on $U$.
  We set
  \[
    |v|_\eta = \inf_{\eta(w)=v}|w|
  \]
  in $U\cap X^*$.
\end{rmenv}
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\begin{rmenv}{2.15.4}
\label{II.2.15.4}
  We now compare \hyperref[II.2.15.2]{(2.15.2)} and \hyperref[II.2.15.3]{(2.15.3)}.
  Consider $U$ along with the meromorphic homomorphisms
  \[
    \cal{O}^n \xrightarrow{\eta} \cal{V} \xrightarrow{\omega} \cal{O}^m
  \]
  defined on $U\setminus Y$, with $\eta$ an epimorphism and $\omega$ a monomorphism.
  The meromorphic homomorphism $\omega\eta$ is such that its kernel and image are locally direct factors.
  This still holds true in the scheme $\Spec(\cal{O}_{x,X})\setminus Y_x$.
  We thus easily deduce that, for every holomorphic function $f$ on $U$ that vanishes on $Y$, there exists $N>0$, and open neighbourhood $U_1\subset U$ of $x$, and some $\alpha\colon\cal{O}^m\to\cal{O}^n$ such that
  \[
    \eta\alpha\omega = f^N.
  \]
  Let $K$ be a compact subset of $U_1$.
  It is clear that there exists $M>0$ such that
  \[
    \begin{aligned}
      |\omega\eta(v)| &\leq C^{te}(1+\|x\|)^M |v|
    \\|\alpha(v)| &\leq C^{te}(1+\|x\|)^M |v|
    \end{aligned}
  \]
  on $K$, and thus
  \[
  \label{II.2.15.4.1}
    |v|_\omega \leq C^{te}(1+\|x\|)^M |v|_\eta
  \tag{1}
  \]
  \[
  \label{II.2.15.4.2}
    |v|_\eta \leq C^{te}(1+\|x\|)^M |f^N| |v|_\omega
  \tag{2}
  \]
  on $K$.

  We can apply \hyperref[II.2.15.4.2]{(2)} to a finite family of functions $f_i$ that generates an ideal of definition of $Y$.

  By \hyperref[II.2.4]{(2.4)} and \hyperref[II.2.5]{(2.5)}, there exists $M'$ such that
  \[
  \label{II.2.15.4.3}
    \sum_i |f_i^N| \leq C^{te}(1+\|x\|)^{M'}
  \tag{3}
  \]
  on $K$, and it thus follows that, in a small enough neighbourhood of $x$, $|v|_\omega$ and $|v|_\eta$ are equivalent, in the sense of \hyperref[II.2.14.1]{(2.14.1)}.
  The equivalence \hyperref[II.2.14.1]{(2.14.1)} is of a local nature on $X$.
  We can thus prove, by using a partition of unity, the following proposition:
\end{rmenv}

\begin{itenv}{Proposition 2.16}
\label{II.2.16}
  Under the hypotheses of \hyperref[II.2.14]{(2.14)}, there exists exactly one equivalence class \hyperref[II.2.14.1]{(2.14.1)} of norms on $\cal{V}$ which are locally equivalent (in the sense of \hyperref[II.2.14.1]{(2.14.1)}) to the norms \hyperref[II.2.15.2]{(2.15.2)} and \hyperref[II.2.15.3]{(2.15.3)}.
\end{itenv}

We say that the norms whose existence is guaranteed by \hyperref[II.2.16]{(2.16)} are \emph{moderate}.
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\begin{rmenv}{Definition 2.17}
\label{II.2.17}
  Under the hypotheses of \hyperref[II.2.14]{(2.14)}, let $|v|$ be a moderate norm on $\cal{V}$, $\pi\colon\widetilde{X}^*\to X^*$ a covering of $X^*$, and $v$ a continuous section of $\pi^*\cal{V}$.
  We say that $v$ is \emph{of moderate growth along $Y$} if $|v|$ is of moderate growth along $Y$ \hyperref[II.2.10]{(2.10)}.
\end{rmenv}

In the particular case where $\pi$ is the identity, we can instead use \hyperref[II.2.6]{Definition~2.6}.
This is the case in the following well-known proposition, which shows that the knowledge of moderate norms on $\cal{V}$ is equivalent to the knowledge of the meromorphic structure of $\cal{V}$ along $Y$.

\begin{itenv}{Proposition 2.18}
\label{II.2.18}
  Under the hypotheses of \hyperref[II.2.14]{(2.14)}, for a holomorphic section $v$ of $\cal{V}$ over $X^*$ to be meromorphic along $Y$, it is necessary and sufficient for it to be of moderate growth along $Y$.
\end{itenv}

\begin{proof}
  The claim is local on $X$, and we can reduce, by \hyperref[II.2.16]{(2.16)} and \hyperref[II.2.15.2]{(2.15.2)} to the classical case where $\cal{V}=\cal{O}$.
\end{proof}

\begin{itenv}{Proposition 2.19}
\label{II.2.19}
  Consider a commutative diagram of separated analytic spaces
  \[
    \begin{tikzcd}
      X_1^* \rar[hook] \dar
      & X_1 \dar["f"]
      & Y_1 \lar[hook'] \dar
    \\X_2^* \rar[hook]
      & X_2
      & Y_2 \lar[hook']
    \end{tikzcd}
  \]
  where $Y_i$ is closed in $X_i$, and $X_i^*=X_i\setminus Y_i$, and thus $Y_1=f^{-1}(Y_2)$.

  Consider the hypotheses:
  \begin{enumerate}[(a)]
    \item There exists a subset $K$ of $X_1$ that is proper over $X_2$ and such that $f(K_1)\supset\overline{X_2^*}$.
    \item $f$ is proper and induces an isomorphism $X_1^*\simto X_2^*$.
  \end{enumerate}

  It is clear that \mbox{(b)$\implies$(a)}.
  We have
  \begin{enumerate}
    \item[{\rm(i\textsubscript{a})}] If $\|x\|$ is a norm on $X_2^*$ adapted to $X_2$, then $\|f(x)\|$ is a norm on $X_1^*$ adapted to $X_1$.
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    \item[{\rm(i\textsubscript{b})}] Conversely, if {\rm(a)} is satisfied, and if $\|x\|$ is a function on $X_2^*$ such that $\|f(x)\|$ is a norm on $X_1^*$, then $\|x\|$ is a norm on $X_2^*$.
    \item[{\rm(i\textsubscript{c})}] In particular, if {\rm(b)} is satisfied, then the norms on $X_1^*=X_2^*$ adapted to $X_1$ or $X_2$ agree.
  \end{enumerate}

  Let $\pi_2\colon\widetilde{X_2}^*\to X_2^*$ be a covering, and $\pi_1\colon\widetilde{X_1}^*\to X_1^*$ its inverse image over $X_1^*$.
  \begin{enumerate}
    \item[{\rm(ii\textsubscript{a})}] If $P$ is a subset of $\widetilde{X_1}^*$ which is vertical along $Y_1$, then $f(P)$ is vertical along $Y_2$.
    \item[{\rm(ii\textsubscript{b})}] Conversely, if {\rm(a)} is satisfied, then every vertical subset of $\widetilde{X_2}^*$ is the image of a vertical subset of $\widetilde{X_1}^*$.
    \item[{\rm(ii\textsubscript{c})}] In particular, if {\rm(b)} is satisfied, then the subsets of $\widetilde{X_1}^*=\widetilde{X_2}^*$ which are vertical along $Y_1$ or $Y_2$ agree.
  \end{enumerate}

  Let $\cal{V}_2$ be a vector bundle on $X_2^*$ that is meromorphic along $Y_2$, and let $\cal{V}_1$ be its inverse image.
  The inverse images of the pre-given extensions of $\cal{V}_2$ define a meromorphic structure along $Y_1$ on $\cal{V}_1$, and we have
  \begin{enumerate}
    \item[{\rm(iii\textsubscript{a})}] The inverse image of a moderate norm on $\cal{V}_2$ is a moderate norm on $\cal{V}_1$.
    \item[{\rm(iii\textsubscript{b})}] Conversely, if {\rm(a)} is satisfied, then a norm on $\cal{V}_2$ is moderate if its inverse image is.
    \item[{\rm(iii\textsubscript{c})}] In particular, if {\rm(b)} is satisfied, then the moderate norms on $\cal{V}_1=\cal{V}_2$ adapted to $X_1$ or $X_2$ agree.
  \end{enumerate}
\end{itenv}

\begin{proof}
  We trivially have that \mbox{(i\textsubscript{a})~+~(i\textsubscript{b})$\implies$(i\textsubscript{c})}, \mbox{(ii\textsubscript{a})~+~(ii\textsubscript{b})$\implies$(ii\textsubscript{c})}, \mbox{(iii\textsubscript{a})~+~(iii\textsubscript{b})$\implies$(iii\textsubscript{c})}, and almost trivially that \mbox{(i\textsubscript{a})$\implies$(i\textsubscript{b})} and \mbox{(i\textsubscript{a})~+~(iii\textsubscript{a})$\implies$(iii\textsubscript{b})}.

  If $Y_2$ is defined by equations $f_i=0$, then $Y_1$ is defined by the inverse image of the $f_i$, and (i\textsubscript{a}) follows from \hyperref[II.2.5]{Definition~2.5} (along with \hyperref[II.2.4.1]{(2.4.1)}).

  By \hyperref[II.2.15.2]{(2.15.2)} and \hyperref[II.2.16]{(2.16)}, we can reduce to proving (iii\textsubscript{a}) in the trivial case where $\cal{V}=\cal{O}$.
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  Finally, if $\scr{T}_2$ is a semi-analytic triangulation of the pair $(X_2,Y_2)$, then the $f^{-1}(\sigma)$ (for $\sigma\in\scr{T}_2$) form a locally finite set of semi-analytic subsets of $X_1$, and, by \hyperref[II.2.8.2]{2.8.2}, there exists, locally on $X_1$, a semi-analytic triangulation $\scr{T}_1$ of the pair $(X_1,Y_1)$ such that
  \[
    \forall\,\sigma\in\scr{T}_1
    \quad
    \exists\,\tau\in\scr{T}_2
    \quad
    \mbox{such that $f(\sigma)\subset\tau$}.
  \]
  Claims {\rm(ii\textsubscript{a})} and {\rm(ii\textsubscript{b})} thus follow immediately.
\end{proof}

\begin{rmenv}{Remarks 2.20}
\label{II.2.20}
  \begin{enumerate}[(i)]
    \item Let $X=D^{n+m}$ and $X^*=(D^*)^n\times D^m$;
      then $Y$ is a normal crossing divisor in $X$.
      On the universal covering $\widetilde{X}^*$ of $X^*$, the functions $\arg(z_i)$ (for $1\leq i\leq n$) are defined.
      It is clear that a subset $P$ of $\widetilde{X}^*$ is vertical along $Y$ if and only if its image in $X$ is relatively compact and if the functions $\arg(z_i)$ (for $1\leq i\leq n$) are bounded on $P$.
    \item Hironaka's resolution of singularities, along with (ii\textsubscript{c}) of \hyperref[II.2.19]{(2.19)}, allows us, in the general case, to make explicit the idea of vertical subsets, starting from the particular case of~(i).
  \end{enumerate}
\end{rmenv}

\begin{rmenv}{2.21}
\label{II.2.21}
  \hyperref[II.2.19]{Proposition~2.19} allows us to pursue the programme of \hyperref[II.2.1]{(2.1)}.
  So let $X^*$ be a separated scheme of finite type over $\CC$, and $X$ a proper scheme over $\CC$ that contains $X^*$ as a Zariski open subset.
  If $\scr{F}$ is a coherent algebraic sheaf on $X^*$, then we know (EGA~I, 9.4.7) that $\scr{F}$ can be extended to a coherent algebraic sheaf $\scr{F}_1$ on $X$.
  The various sheaves $\scr{F}_1^\an$ define on $\scr{F}^\an$ (effectively) the same meromorphic structure along $Y=X\setminus X^*$.
\end{rmenv}

We further immediately deduce, from \cite{GAGA}, the following:

\begin{itenv}{Proposition 2.22}
\label{II.2.22}
  Under the hypotheses of \hyperref[II.2.21]{(2.21)}, the functor $\scr{F}\mapsto\scr{F}^\an$ induces an equivalence between the category of coherent algebraic sheaves on $X^*$ and the category of coherent analytic sheaves on $(X^*)^\an$ that are effectively meromorphic along $Y$.
\end{itenv}

\begin{rmenv}{Definition 2.23}
\label{II.2.23}
  Let $X^*$ be a separated scheme of finite type over $\CC$, and let $X$ be as in \hyperref[II.2.21]{(2.21)}.
  Let $\pi\colon\widetilde{X}^*\to(X^*)^\an$ be a covering of $(X^*)^\an$, and $\cal{V}$ an
\oldpage{71}
  algebraic vector bundle on $X^*$.
  \begin{enumerate}[(i)]
    \item A \emph{norm on $X^*$} is defined to be a norm on $(X^*)^\an$ that is adapted to $X^\an$ \hyperref[II.2.5]{(2.5)}.
    \item A \emph{vertical subset of $\widetilde{X}^*$} is defined to be a subset of $\widetilde{X}^*$ that is vertical along $Y=X\setminus X^*$ \hyperref[II.2.9]{(2.9)}.
    \item A \emph{moderate norm on $\cal{V}$} is defined to be a moderate norm on $\cal{V}^\an$ with respect to the meromorphic structure at infinity of $\cal{V}^\an$ \hyperref[II.2.16]{(2.16)}.
    \item A continuous section $v$ of $\pi^*\cal{V}$ is said to be of \emph{moderate growth} if it is of moderate growth along $Y$ \hyperref[II.2.17]{(2.17)}.
  \end{enumerate}
\end{rmenv}

By \hyperref[II.2.19]{(2.19)}, these definitions do not depend on the choice of compactification $X$ of $X^*$.

We can also immediately deduce, from \hyperref[II.2.18]{(2.18)} and \cite{GAGA} (as in \hyperref[II.2.22]{(2.22)}), the following:

\begin{itenv}{Proposition 2.24}
\label{II.2.24}
  Let $X$ be a separated scheme that is reduced and of finite type over $\CC$, and let $\cal{V}$ be an algebraic vector bundle on $X$.
  Then a holomorphic section $v$ of $\cal{V}^\an$ is algebraic if and only if it is of moderate growth.
\end{itenv}

\begin{rmenv}{Problem 2.25}
\label{II.2.25}
  Let $X=G/K$ be a Hermitian symmetric domain (with $G$ a real Lie group, and $K$ a compact maximal subgroup), and $\Gamma$ an arithmetic subgroup of $G$.
  The quotient $\Gamma\backslash G/K$ is then naturally a quasi-projective algebraic variety \cite{2}.
  Is it true that a subset $P$ of $G/K$ is vertical \hyperref[II.2.23]{(2.23)} if and only if it is contained in the union of a finite number of Siegel domains?
\end{rmenv}



\section{Logarithmic poles}
\label{II.3}
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This section brings together some constructions that are ``local at infinity'' of which we will later have use.

\begin{rmenv}{Definition 3.1}
\label{II.3.1}
  Let $Y$ be a normal crossing divisor in a complex-analytic variety $X$, and let $j$ be the inclusion of $X^*=X\setminus Y$ into $X$.
  We define the \emph{logarithmic de Rham complex} of $X$ along $Y$ to be the smallest sub-complex $\Omega_X^\bullet\langle Y\rangle$ of $j_*\Omega_{X^*}^\bullet$ that containing $\Omega_X^\bullet$ that is stable under the exterior product, and such that $\dd f/f$ is a local section of $\Omega_X^1\langle Y\rangle$ for all local sections $f$ of $j_*\Omega_X^\bullet$ that are meromorphic along $Y$.

  A section of $j_*\Omega_{X^*}^p$ is said to present a \emph{logarithmic pole} along $Y$ if it is a section of $\Omega_X^p\langle Y\rangle$.
\end{rmenv}

\begin{itenv}{Proposition 3.2}
\label{II.3.2}
  Under the hypotheses of \hyperref[II.3.1]{(3.1)},
  \begin{enumerate}[(i)]
    \item For a section $\alpha$ of $j_*\Omega_{X^*}^p$ to present a logarithmic pole along $Y$, it is necessary and sufficient for $\alpha$ and $\dd\alpha$ to present at worst simple poles along $Y$.
    \item The sheaf $\Omega_X^1\langle Y\rangle$ is locally free, and
      \[
        \Omega_X^p\langle Y\rangle = \bigwedge^p \Omega_X^1\langle Y\rangle.
      \]
    \item If the pair $(X,Y)$ is a product $(X,Y)=(X_1,Y_1)\times(X_2,Y_2)$, i.e. if
      \[
        X = X_1\times X_2
        \quad\mbox{and}\quad
        Y = X_1\times Y_2 \cup X_2\times Y_1,
      \]
      then the isomorphism between $\Omega_{X^*}^\bullet$ and the external tensor product $\Omega_{X_1^*}^\bullet\boxtimes\Omega_{X_2^*}^\bullet$ (defined by $\pr_1^*\Omega_{X_1^*}^\bullet\otimes\pr_2^*\Omega_{X_2^*}^\bullet$) induces an isomorphism
      \[
        \Omega_{X_1}^\bullet\langle Y_1\rangle \boxtimes \Omega_{X_2}^\bullet\langle Y_2\rangle
        \simto \Omega_X^\bullet\langle Y\rangle.
      \]
    \item Let $Y_i$ be a normal crossing divisor in $X_i$ (for $i=1,2$), and $f\colon X_1\to X_2$ a morphism such that $f^{-1}(Y_2)=Y_1$.
      Then the morphism $f^*\colon f^*((j_2)_*\Omega_{X_2^*}^\bullet)\to (j_1)_*\Omega_{X_1^*}^\bullet$ induces an ``inverse image'' morphism
      \[
        f^*\colon f^*\Omega_{X_2}^\bullet\langle Y_2\rangle \to \Omega_{X_1}^1\langle Y_1\rangle.
      \]
  \end{enumerate}
\end{itenv}
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\begin{proof}
  Claim~(iv) is trivial, given the definition.
  Let $D$ be the open unit disc, and $D^*=D\setminus\{0\}$.
  To prove (i), (ii), and (iii), we can assume that $X$ is the polydisc $D^n$, and that $X^*=(D^*)^k\times D^{n-k}$, and $Y=\bigcup_{1\leq i\leq k}Y_i$, where $Y_i=\pr_i^{-1}(0)$.
  Under these hypotheses, we have

  \begin{itenv}{Lemma 3.2.1}
  \label{II.3.2.1}
    The sheaf $\Omega_X^1\langle Y\rangle$ is free, with basis $(\dd z_i/z_i)_{1\leq i\leq k}\cup(\dd z_j)_{k<j\leq n}$.
  \end{itenv}

  \begin{proof}
    Indeed, every section of $j_*\cal{O}_{X^*}^*$ that is meromorphic along $Y$ can be written locally as $f=g\cdot\prod_{i=1}^k z_i^{k_i}$ with $g$ invertible, and
    \[
      \dd f/f = \dd g/g + \sum_{i=1}^k k_i\dd z_i/z_i
    \]
    is a linear combination of the proposed basis vectors, which are clearly independent.
  \end{proof}

  From this lemma, we immediately deduce (ii), (iii), and the necessity of the condition in~(i).

  Let $\alpha$ be a section of $j_*\Omega_{X^*}^p$ satisfying the condition of~(i).
  To prove that $\alpha$ is a section of $\Omega_{X^*}^p\langle Y\rangle$, it suffices (since this sheaf is locally free) to prove this outside of a set of complex codimension~$\geq2$.
  This allows us to suppose that the hypotheses of \hyperref[II.3.2.1]{(3.2.1)} are satisfied, with $k=1$.
  The form $\alpha$ can thus be written in the form $\alpha=\alpha_1+\alpha_2\wedge\dd z_1/z_1$ in exactly one way, with the forms $\alpha_1$ and $\alpha_2$ being such that they do not contain any $\dd z_1$ term.

  The hypotheses imply that
  \begin{itemize}
    \item $\alpha_2$ is holomorphic;
    \item $z_1\alpha_1$ is holomorphic; and
    \item $z_1\dd\alpha = z_1\dd\alpha_1+\dd\alpha_2\wedge\dd z_1$ is holomorphic.
  \end{itemize}

  From this,
  \[
    \dd z_1\wedge\alpha_1 = \dd(z_1\wedge\alpha_1) + z_1\dd\alpha - \dd\alpha_2\wedge\dd z_1
  \]
  is holomorphic, and thus so too is $\alpha_1$, which proves~(i).
\end{proof}

\begin{rmenv}{Variants 3.3}
\label{II.3.3}
  \begin{rmenv}{3.3.1}
  \label{II.3.3.1}
    Let $f\colon X\to S$ be a smooth morphism of schemes of characteristic~$0$, or a smooth morphism of analytic spaces, and let $Y$ be a relative normal crossing divisor in $X$.
    \hyperref[II.3.1]{Definition~3.1} still makes sense, and defines a sub-complex $\Omega_{X/S}^\bullet\langle Y\rangle$ of $j_*\Omega_{X^*/S}^\bullet$ (where $j$ is the inclusion $j\colon X^*=X\setminus Y\to X$).
    \hyperref[II.3.2]{Proposition~3.2} still holds true, mutatis mutandis.
    Forming the complex $\Omega_{X/S}^\bullet\langle Y\rangle$ is compatible with any base change, and with \'{e}tale localisation on $X$.
  \end{rmenv}

  \begin{rmenv}{3.3.2}
  \label{II.3.3.2}
    Let $f\colon X\to S$ be a morphism of smooth analytic spaces, $0$ a point of $S$, and $Y$ a normal crossing divisor in $X$.
    Let $S^*=S\setminus\{0\}$, and $X^*=X\setminus Y$, and let $j$ be the inclusion of $X^*$ into $X$.
    Suppose that
    \begin{enumerate}[(a)]
      \item $\dim(S)=1$;
      \item $f|f^{-1}(S^*)$ is smooth, and $Y\cap f^{-1}(S^*)$ is a relative normal crossing divisor in $f^{-1}(S^*)$; and
      \item $Y\supset f^{-1}(0)$.
    \end{enumerate}

    We can then define the complex $\Omega_{X/S}^\bullet\langle Y\rangle$ as the image of $j_*\Omega_{X^*}^\bullet$ in $\Omega_X^\bullet\langle Y\rangle$.

    Locally, close to $0$ and $f^{-1}(0)$, we can find coordinate systems $(z_i)_{0\leq i\leq n}$ on $X$, and $z$ on $S$, such that $z(0)=0$, such that $z\circ f = \prod_{i=0}^k z_i^{e_i}$ (for $k\leq n$ and $e_i>0$), and such that $Y$ can be described by the equation $\prod_{i=0}^l z_i=0$ (for $k\leq l\leq n$).
    In such a coordinate system, the sheaf $\Omega_{X/S}^1\langle Y\rangle$ is free, with basis given by $(\dd z_i/z_i)_{1\leq i\leq l}\cup(\dd z_j)_{l<j\leq n}$.
    In $\Omega_{X/S}^1\langle Y\rangle$, we have the equation
    \[
      \dd f/f = \sum_{i=0}^k e_i\dd z_i/z_i = 0.
    \]
    We thus deduce that $\Omega_{X/S}^1\langle Y\rangle$ is \emph{locally free}, that
    \[
    \label{II.3.3.2.1}
      \bigwedge^p \Omega_{X/S}^1\langle Y\rangle
      \simto \Omega_{X/S}^p\langle Y\rangle,
    \tag{3.3.2.1}
    \]
    and that the sequence
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    \[
    \label{II.3.3.2.2}
      0
      \to f^*\Omega_S^1\langle0\rangle
      \xrightarrow{f^*} \Omega_X^1\langle Y\rangle
      \to \Omega_{X/S}^1\langle Y\rangle
      \to 0
    \tag{3.3.2.2}
    \]
    is exact and \emph{locally split}.
    This will play a key role in \hyperref[II.7]{(II.7)}, in the following form:

    \begin{itenv}{Lemma 3.3.2.3}
    \label{II.3.3.2.3}
      Every vector field $v_0$ on $S$ that vanishes at $0$ can be locally lifted to a vector field $v$ on $X$ satisfying
      \[
        \big\langle v,\Omega_X^1\langle Y\rangle\big\rangle \subset \cal{O}_X.
      \]
    \end{itenv}

    Indeed, the transpose of the direct monomorphism $f^*$ in \hyperref[II.3.3.2.2]{(3.3.2.2)} is an epimorphism.
  \end{rmenv}

  \begin{rmenv}{3.3.3}
  \label{II.3.3.3}
    The reader can translate \hyperref[II.3.3.2]{(3.3.2)} into the setting of a morphism $f\colon X\to S$ of schemes of finite type over $\CC$ that satisfies the conditions analogous to \hyperref[II.3.3.2]{(3.3.2.a,b,c)}.
  \end{rmenv}
\end{rmenv}

\begin{rmenv}{3.4}
\label{II.3.4}
  Let $Y$ be a normal crossing divisor in $S$.
  Locally on $X$, we can write $Y$ as a sum of smooth divisors $Y_i$.
  We denote by $Y^p$ (resp. $\widetilde{Y}^p$) the union (resp. disjoint sum) of the $p$-fold intersections of the $Y_i$;
  the $Y^p$, thus locally defined, glue to give a subspace $Y^p$ of $X$, and the $\widetilde{Y}^p$ glue to give the normalised variety of $Y^p$.
  We have $\widetilde{Y}^0=Y^0=X$, and we set $\widetilde{Y}=Y^1$.
  Let $a\colon Y^p\to X$ be the projection.

  If, to each point $y\in\widetilde{Y}^p$, we associate the set of $p$ germs of the local components of $Y$ at $a(y)$ that contain the image in $X$ of the germ of the neighbourhoods of $Y$ in $\widetilde{Y}^p$, then this defines a local system $E_p$ on $\widetilde{Y}^p$ of sets with $p$~elements.

  Denote by $\epsilon^p$ the rank-$1$ local system
  \[
    \epsilon^p = \bigwedge^p \underline{\CC}^{E_p}
  \]
  on $\widetilde{Y}^p$.
  We have that $(\epsilon^p)^{\otimes2}\simeq\underline{\CC}$.
  If $Y$ is the sum of smooth divisors $(Y_i)_{i\in I}$, then the choice of a total order on $I$ trivialises the $\epsilon^p$.
\end{rmenv}

\begin{rmenv}{3.5}
\label{II.3.5}
  Denote by $W_n(\Omega_X^\bullet\langle Y\rangle)$ the smallest sub-$\cal{O}$-module of $\Omega_X^\bullet\langle Y\rangle$ that is stable under the exterior product with the local sections of $\Omega_X^\bullet$ and that contains the products
  \[
    \dd f_1/f_1\wedge\ldots\wedge\dd f_k/f_k
  \]
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  for $k\leq n$, and local sections $f_i$ of $j_*\cal{O}_{X^*}^*$ that are meromorphic along $Y$.
  Then the $W_n$ form an \emph{increasing} filtration of $\Omega_X^\bullet\langle Y\rangle$ by sub-complexes, called the \emph{weight filtration}.
  We have that
  \[
  \label{II.3.5.1}
    W_n(\Omega_X^\bullet\langle Y\rangle) \wedge W_m(\Omega_X^\bullet\langle Y\rangle)
    \subset W_{n+m}(\Omega_X^\bullet\langle Y\rangle).
  \tag{3.5.1}
  \]

  Locally on $X$, we can write $Y$ as a finite sum of smooth divisors $(Y_i)_{i\in I}$ defined by equations $t_i=0$.
  Let $q$ be an injection of $[1,n]$ into $I$, let $e(q)$ be the corresponding section $e_{q(1)}\wedge\ldots\wedge e_{q(n)}$ of $\epsilon^n$ on the component $Y_q=\bigcap_{1\leq i\leq n}Y_{q(i)}$ of $\widetilde{Y}^n$, and let $a_q\colon Y_q\to X$ be the projection.

  The map $\rho_0$ from $\Omega_X^p$ to $W^n/W^{n-1}(\Omega_X^{p+n}\langle Y\rangle)$ given by
  \[
  \label{II.3.5.2}
    \alpha
    \longmapsto \dd t_{(q_1)}/t_{q(1)}\wedge\ldots\wedge\dd t_{q(n)}/t_{q(n)}\wedge\alpha
  \tag{3.5.2}
  \]
  does not depend on the choice of the $t_i$, since, if $t'_i$ are a different choice, then the $\dd t_i/t_i-\dd t'_i/t'_i=\dd(t_i/t'_i)/(t_i/t'_i)$ are holomorphic, and $\rho_0(\alpha)-\rho'_0(\alpha)\in W^{n-1}(\Omega_X^{p+n}\langle Y\rangle)$.
  Similarly, $\rho_0(t_{q(i)}\cdot\beta)=0$, and $\rho_0(\dd t_{q(i)}\wedge\beta)=0$, and so $\rho_0$ factors through
  \[
    \rho_1\colon (a_q)_*\Omega_{Y_q}^p \to W^n/W^{n-1}(\Omega_X^{p+n}\langle Y\rangle).
  \]
  The trivialisation $e(q)$ of $\epsilon^n|Y_q$ identifies $\rho_1$ with
  \[
    \rho_2\colon (a_q)_*\Omega_{Y_q}^\bullet(\epsilon^n)[-n] \to \Gr_n^W(\Omega_X^\bullet\langle Y\rangle).
  \]
  Finally, the sum of the morphisms $\rho_2$ for the different $q$ defines a morphism of complexes
  \[
  \label{II.3.5.3}
    \rho\colon a_*\Omega_{\widetilde{Y}^n}^\bullet(\epsilon)[-n] \to \Gr_n^W(\Omega_X^\bullet\langle Y\rangle).
  \tag{3.5.3}
  \]
  This morphism, defined locally by \hyperref[II.3.5.2]{(3.5.2)}, glues to give a morphism of complexes on $X$.
\end{rmenv}

\begin{itenv}{Proposition 3.6}
\label{II.3.6}
  The morphisms \hyperref[II.3.5.3]{(3.5.3)} are isomorphisms.
\end{itenv}

\begin{proof}
  If the pair $(X,Y)$ is a product $(X,Y)=(X_1,Y_1)\times(X_2,Y_2)$, i.e. if
  \[
    X = X_1\times X_2
    \quad\mbox{and}\quad
    Y = X_1\times Y_2 \cup X_2\times Y_1,
  \]
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  then the weight filtration on $\Omega_X^\bullet\langle Y\rangle$ is the external tensor product, via \hyperref[II.3.2]{(3.2.iii)}, of the weight filtrations on the $\Omega_{X_i}^\bullet\langle Y_i\rangle$.
  We thus have
  \[
  \label{II.3.6.1}
    \Gr^W(\Omega_{X_1}^\bullet\langle Y\rangle) \boxtimes \Gr^W(\Omega_{X_2}^\bullet\langle Y_2\rangle)
    \simto \Gr^W(\Omega_X^\bullet\langle Y\rangle).
  \tag{3.6.1}
  \]

  The isomorphisms
  \[
    \begin{aligned}
      \widetilde{Y}^n
      &= \coprod_{p+q=n} \widetilde{Y}^p\boxtimes\widetilde{Y}^q
    \\\epsilon^n
      &= \coprod_{p+q=n} \epsilon^p\boxtimes\epsilon^q
    \end{aligned}
  \]
  induce an isomorphism
  \[
  \label{II.3.6.2}
    \sum_p a_*\Omega_{\widetilde{Y}^p}^\bullet(\epsilon^p)[-p]
    \boxtimes
    \sum_q a_*\Omega_{\widetilde{Y}^q}^\bullet(\epsilon^q)[-q]
    \simto
    \sum_n a_*\Omega_{\widetilde{Y}^n}^\bullet(\epsilon^n)[-n].
  \tag{3.6.2}
  \]
  Further, via \hyperref[II.3.6.1]{(3.6.1)} and \hyperref[II.3.6.2]{(3.6.2)}, we have
  \[
  \label{II.3.6.3}
    \rho_1\boxtimes\rho_2 = \rho.
  \tag{3.6.3}
  \]

  For $\rho$ to be an isomorphism, it is thus sufficient that the $\rho_i$ be isomorphisms.
  Since the problem is local on $X$, this allows us to restrict to the trivial case where $\dim(X)=1$.
\end{proof}

\begin{rmenv}{3.7}
\label{II.3.7}
  The isomorphism inverse to $\rho$ is called the \emph{Poincar\'{e} residue}
  \[
  \label{II.3.7.1}
    \Res\colon \Gr_n^W(\Omega_X^p\langle Y\rangle) \to \Omega_{\widetilde{Y}^n}^p(\epsilon^n)[-n].
  \tag{3.7.1}
  \]
  We will only need the case where $p=1$, which gives
  \[
  \label{II.3.7.2}
    \Res\colon \Omega_X^1\langle Y\rangle \to \cal{O}_{\widetilde{Y}}.
  \tag{3.7.2}
  \]

  If $\cal{V}$ is a vector bundle on $X$, then the morphism \hyperref[II.3.7.2]{(3.7.2)} extends by linearity to
  \[
  \label{II.3.7.3}
    \Res\colon \Omega_X^1\langle Y\rangle(\cal{V}) \to \cal{O}_{\widetilde{Y}}\otimes\cal{V}.
  \tag{3.7.3}
  \]
  For each smooth component $Y_i$ of $Y$, this gives
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  \[
  \label{II.3.7.4}
    \Res_{Y_i}\colon \Omega_X^1\langle Y\rangle(\cal{V}) \to \cal{V}|Y_i.
  \tag{3.7.4}
  \]
\end{rmenv}

\begin{rmenv}{3.8}
\label{II.3.8}
  Under the hypotheses of \hyperref[II.3.1]{(3.1)}, let $\cal{V}_0$ be a vector bundle on $X*$, endowed with an integrable connection $\nabla$.
  Suppose that $\cal{V}_0$ is given as the restriction to $X^*$ of a vector bundle $\cal{V}$ on $X$.
  Locally on $X$, the choice of a basis $e$ of $\cal{V}$ allows us to define the ``connection matrix''
  \[
  \label{II.3.8.1}
    \Gamma \in j_*\Omega_{X^*}^1(\shEnd(\cal{V})).
  \tag{3.8.1}
  \]
  A change of basis $e\mapsto e'$ modifies $\Gamma$ by addition of a section of $\Omega_X^1(\shEnd(\cal{V}))$ \hyperref[I.3.1.3]{(I.3.1.3)}.
  Thus the ``polar part of $\Gamma$''
  \[
  \label{II.3.8.2}
    \dot{\Gamma} \in j_*\Omega_{X^*}^1\big(\shEnd(\cal{V}_0))\big/\Omega_X^1(\shEnd(\cal{V})\big)
  \tag{3.8.2}
  \]
  depends only on $\cal{V}$ and on $\nabla$.
  We say that \emph{the connection $\nabla$ has at worst a logarithmic pole along $Y$} if, in every local basis of $\cal{V}$, the connection forms present at worst a logarithmic pole along $Y$.
  In this case, \emph{the residue of the connection $\Gamma$} along a local component $Y_i$ of $Y$ is defined \hyperref[II.3.7.4]{(3.7.4)}
  \[
  \label{II.3.8.3}
    \Res_{Y_i}(\Gamma) \in \shEnd(\cal{V}|Y_i)
  \tag{3.8.3}
  \]
  and it depends only on $\cal{V}$ and on $\nabla$.
  More globally, if $i\colon\widetilde{Y}\to X$ is the projection of the normalisation of $Y$ onto $X$, then the residue of the connection along $Y$ is an endomorphism of $i^*\cal{V}$
  \[
  \label{II.3.8.4}
    \Res_Y(\Gamma) \in \shEnd(i^*\cal{V}).
  \tag{3.8.4}
  \]
\end{rmenv}

\begin{rmenv}{3.9}
\label{II.3.9}
  We place ourselves under the hypotheses of \hyperref[II.3.8]{(3.8)}, and make the following additional hypotheses:
  \begin{enumerate}[a)]
    \item $Y$ is the sum of smooth divisors $(Y_i)_{1\leq i\leq n}$ (which is always the case locally).
      For $P\subset[1,n]$, we set $Y_P=\bigcap_{i\in P}Y_i$ and $Y'_P=Y_P\setminus\bigcup_{i\not\in P}Y_i$.
    \item The connection on $\cal{V}$ has at worst a logarithmic pole along $Y$.
  \end{enumerate}

  The dual of the vector bundle $\Omega_X^1\langle Y\rangle$ is the bundle $T_X^1\langle-Y\rangle$ of vector fields $v$ on $X$ that satisfy
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  \begin{rmenv}{3.9.1}
  \label{II.3.9.1}
    For $P\subset[1,n]$, $v|Y_P$ is tangent to $Y_P$.
  \end{rmenv}

  If a vector field $v$ satisfies \hyperref[II.3.9.1]{(3.9.1)}, and if $g$ is a section of $\cal{V}$, then $\nabla_v(g)$ is again a regular section of $\cal{V}$.
  Its restriction to $Y_P$ depends only on $g|Y_P$ and on the image of $v$ in $T_X^1\langle-Y\rangle\otimes\cal{O}_{Y_P}$.
  If $s$ is a local section of the evident epimorphism from $T_X^1\langle-Y\rangle\otimes\cal{O}_{Y_P}$ to its image in the tangent bundle to $Y_P$, then $\nabla_{s(v)}(g)$ defines a connection ${}_s\nabla$ on $\cal{V}|Y'_P$.
  There is a Lie bracket defined, by passing to the quotient, on $T_X^1\langle-Y\rangle\otimes\cal{O}_{Y_P}$.
  The connection ${}_s\nabla$ is integrable if $s$ commutes with the bracket;
  it presents at worst a logarithmic pole along $Y_P\cap\bigcup_{i\not\in P}Y_i$.
\end{rmenv}

An easy calculation shows the following:

\begin{itenv}{Proposition 3.10}
\label{II.3.10}
  Under the previous hypotheses, and with the above notation,
  \begin{enumerate}[(i)]
    \item $[\Res_{Y_i}(\Gamma),\Res_{Y_j}(\Gamma)]=0$ on $Y_i\cap Y_j$; and
    \item if $i\in P$, then ${}_s\nabla\Res_{Y_i}(\Gamma)=0$ on $Y'_P$.
  \end{enumerate}
\end{itenv}

We deduce from \hyperref[II.3.10]{(3.10.ii)}, for $P=\{i\}$, that the characteristic polynomial of $\Res_{Y_i}(\Gamma)$ is constant on $Y_i$.

We can also deduce \hyperref[II.3.10]{(3.10)} from the following proposition, which can be proven similarly to \hyperref[II.1.17]{(1.17)}:

\begin{itenv}{Proposition 3.11}
\label{II.3.11}
  Let $\cal{V}$ be a vector bundle on $X=D^n$, let $Y=\{0\}\times D^{n-1}$, and $X^*=X\setminus Y$, and let $\Gamma$ be an integrable connection on $\cal{V}|X^*$ presenting a logarithmic pole along $Y$.
  Let $T$ be the monodromy transformation of $\cal{V}|X^*$ defined by the positive generator of $\pi_1(X^*)\cong\pi_1(D^*)\cong\ZZ$ (cf. \hyperref[II.1.15]{(1.15)}).
  Then the horizontal automorphism $T$ of $\cal{V}|X^*$ can be extended to an automorphism of $\cal{V}$, again denoted by $T$, and
  \[
    T|Y = \exp(-2\pi i\Res_Y(\Gamma)).
  \]
\end{itenv}

\begin{rmenv}{3.12}
\label{II.3.12}
  Let $X$ be a complex-analytic variety, $Y$ a normal crossing divisor in $X$, and $j\colon X^*=X\setminus Y\to X$ the inclusion.
  For a vector bundle $\cal{V}$ on $X$, we denote by $j_*^\mathrm{m}j^*\cal{V}$ the sheaf of sections of $\cal{V}$ over $X^*$ that are meromorphic along $Y$.
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  Locally on $X$, $Y$ is the union of smooth divisors $Y_i$, and we define the \emph{pole-order filtration $P$} of $j_*^\mathrm{m}j^*\cal{O}=j_*^\mathrm{m}\cal{O}_{X^*}$ by the equation
  \[
  \label{II.3.12.1}
    P^k(j_*^\mathrm{m}j^*\cal{O})
    = \sum_{\underline{n}\in A_k}\cal{O}(\sum(n_i+1)Y_i)
  \tag{3.12.1}
  \]
  where
  \[
    A_k = \big\{
      (n_i) \mid \mbox{$\sum_i n_i\leq-k$ and $n_i\geq0$ for all $i$}
    \big\}.
  \]

  This construction can be made global, and endows $j_*^\mathrm{m}\cal{O}_{X^*}$ with an exhaustive filtration such that $P^k=0$ for $k>0$.

  Let $\cal{V}$ be a vector bundle on $X$, and $\Gamma$ an integrable connection on $\cal{V}|X^*$ presenting a logarithmic pole along $Y$.
  We define a filtration $P$, again called the \emph{pole-order filtration}, of the complex $j_*^\mathrm{m}j^*\Omega_X^\bullet(\cal{V})=j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V})$ by
  \[
  \label{II.3.12.2}
    P^k\big(j_*^\mathrm{m}\Omega_{X^*}^p(\cal{V})\big)
    = P^{k-p}(j_*^\mathrm{m}\cal{O}_{X^*})\otimes\Omega_X^p\otimes\cal{V}.
  \tag{3.12.2}
  \]

  From the fact that $\Gamma$ presents at worst logarithmic poles along $Y$, we deduce that
  \begin{enumerate}[a)]
    \item the filtration $P$ in \hyperref[II.3.12.2]{(3.12.2)} is compatible with the differentials; and
    \item $\Omega_X^\bullet\langle Y\rangle(\cal{V})$ is a sub-complex of $j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V})$.
  \end{enumerate}

  Furthermore,
  \begin{enumerate}
    \item[{\rm c)}] the operators $\dd$ are $\cal{O}_X$-linear on the complexes $\Gr_p^n(j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}))$; and
    \item[{\rm d)}] the filtration $P$ induces the \emph{Hodge filtration} $F$ on $\Omega_X^\bullet\langle Y\rangle(\cal{V})$ by the stupid truncations $\sigma_{\geq p}$, whence we have a morphism of filtered complexes
    \[
    \label{II.3.12.3}
      \big(\Omega_X^\bullet\langle Y\rangle(\cal{V}), F\big)
      \to
      \big(j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}), P\big).
    \tag{3.12.3}
    \]
  \end{enumerate}
\end{rmenv}

\begin{itenv}{Proposition 3.13}
\label{II.3.13}
  With the hypotheses and notation of \hyperref[II.3.12]{(3.12)}, if the residues of the connection $\Gamma$ along all the local components of $Y$ do not admit any strictly positive integer as an eigenvalue, then
  \begin{enumerate}[(i)]
    \item the morphism of complexes \hyperref[II.3.12.3]{(3.12.3)} is a quasi-isomorphism; and
    \item more precisely, it induces a quasi-isomorphism
\oldpage{81}
      \[
      \label{II.3.13.1}
        \Gr_F\big(\Omega_X^\bullet\langle Y\rangle(\cal{V})\big)
        \to \Gr_P\big(j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V})\big).
      \tag{3.13.1}
      \]
  \end{enumerate}
\end{itenv}

\begin{proof}
  It suffices to prove (ii), which also implies that, for each $p$, $\Gr_P^p(j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}))[p]$ is a resolution of $\Omega_X^p\langle Y\rangle(\cal{V})$.

  \begin{itemize}
    \item[] \textbf{First reduction (Extensions).}
      If $\cal{V}$ is an extension of bundles with connections satisfying \hyperref[II.3.13]{(3.13)}, as in
      \[
        0 \to \cal{V}' \to \cal{V} \to \cal{V}'' \to 0
      \]
      then the lines of the diagram
      \[
        \begin{tikzcd}
          0 \rar
          & \Gr_F\Omega_X^\bullet\langle Y\rangle(\cal{V}') \rar \dar
          & \Gr_F\Omega_X^\bullet\langle Y\rangle(\cal{V}) \rar \dar
          & \Gr_F\Omega_X^\bullet\langle Y\rangle(\cal{V}'') \rar \dar
          & 0
        \\0 \rar
          & \Gr_Pj_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}') \rar
          & \Gr_Pj_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}) \rar
          & \Gr_Pj_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}'') \rar
          & 0
        \end{tikzcd}
      \]
      are exact.
      For \hyperref[II.3.13.1]{(3.13.1)} to be a quasi-isomorphism, it thus suffices to prove the analogous claim for $\cal{V}'$ and $\cal{V}''$.
    \item[] \textbf{Second reduction (Products).}
      Suppose that $(X,Y)$ is the product of $(X_1,Y_1)$ and $(X_2,Y_2)$, and that $\cal{V}$ is the external tensor product $\cal{V}=\cal{V}_1\boxtimes\cal{V}_2$ of bundles $\cal{V}_i$ with connections satisfying the hypotheses of \hyperref[II.3.13]{(3.13)} on $(X_i,Y_i)$.

      The isomorphism \hyperref[II.3.2]{(3.2.iii)} identifies the Hodge filtration of $\Omega_X^\bullet\langle Y\rangle$ with the external tensor product of the Hodge filtrations of the $\Omega_{X_i}^\bullet\langle Y_i\rangle$, whence the evident isomorphism
      \[
      \label{II.3.13.2}
        \Gr_F\big(\Omega_{X_1}^\bullet\langle Y_1\rangle(\cal{V}_1)\big)
        \boxtimes \Gr_F\big(\Omega_{X_2}^\bullet\langle Y_2\rangle(\cal{V}_2)\big)
        \simto \Gr_F\big(\Omega_X^\bullet\langle Y\rangle(\cal{V})\big).
      \tag{3.13.2}
      \]

      The evident isomorphism
      \[
        j_*^\mathrm{m}\Omega_{X_1^*}^\bullet
        \boxtimes j_*^\mathrm{m}\Omega_{X_2^*}^\bullet
        \simto j_*^\mathrm{m}\Omega_{X^*}^\bullet
      \]
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      identifies the filtration $P$ of $j_*^\mathrm{m}\Omega_{X^*}^\bullet$ with the external tensor product of the filtrations $P$ of the $j_*^\mathrm{m}\Omega_{X_i^*}^\bullet$.
      We thus have
      \[
      \label{II.3.13.3}
        \Gr_P\big(j_*^\mathrm{m}\Omega_{X_1^*}^\bullet(\cal{V}_1)\big)
        \boxtimes \Gr_P\big(j_*^\mathrm{m}\Omega_{X_2^*}^\bullet(\cal{V}_2)\big)
        \simto \Gr_P\big(j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V})\big).
      \tag{3.13.3}
      \]
      The morphism \hyperref[II.3.13.1]{(3.13.1)} can be identified, via \hyperref[II.3.13.2]{(3.13.2)} and \hyperref[II.3.13.3]{(3.13.3)}, with the external tensor product of the analogous morphisms for $\cal{V}_1$ and $\cal{V}_2$.
      Since the complexes in question have $\cal{O}_X$-linear differentials \hyperref[II.3.12]{(3.12.d)}, to prove that \hyperref[II.3.13.3] is a quasi-isomorphism, it suffices to prove the analogous claim for $\cal{V}_1$ and $\cal{V}_2$.
    \item[] \textbf{Case of constant coefficients.}
      We first prove \hyperref[II.3.13]{(3.13.ii)} in the case where the following conditions are satisfied:
      \begin{itemize}
        \item[(3.13.4)]\label{II.3.13.4}
          $X$ is the open polydisc $D^n$;
        \item[(3.13.5)]\label{II.3.13.5}
          $Y=\bigcup_{1\leq i\leq k}Y_i$, with $Y_i=\pr_i^{-1}(0)$; and
        \item[(3.13.6)]\label{II.3.13.6}
          $\cal{V}$ is the constant vector bundle defined by a vector space $V$, and the connection is of the form
          \[
            \Gamma = \sum_i\Gamma_i\frac{\dd z_i}{z_i}
          \]
          with $\Gamma_i\in\End(V)$ and $\Gamma_i=0$ for $i>k$.
      \end{itemize}

      Since the connection is integrable, the $\Gamma_i$ pairwise commute, and there exists a finite filtration $G$ of $V$ that is stable under the $\Gamma_i$, and such that $\dim\Gr_G^l(V)\leq1$.
      By the first reduction, we can assume that $V=\CC$, in which case the $\Gamma_i$ can be identified with a scalar $\gamma_i$.
      The bundle $\cal{V}$ with connection is then the external tensor product of the bundles $(\cal{O},\gamma_i\dd z/z)$ on $D$.
      The second reduction allows us to assume that $n=1$.
      If $k=0$, i.e. if $Y=\varnothing$, then $\Omega_X^\bullet\langle Y\rangle=j_*^\mathrm{m}\Omega_{X^*}^\bullet$ and $F=P$.
      If $k=1$, i.e. if $Y=\{0\}$, then
      \begin{enumerate}[a)]
        \item $P^i(j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}))=0$ for $i>-1$;
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        \item $P^{-1}(j_*^\mathrm{m}\Omega_{X^*}^p(\cal{V}))$ is equal to $0$ if $p=0$, and to $\Omega_X^1\langle Y\rangle(\cal{V})$ if $p=1$;
        \item $\Gr_P^0(j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}))$ is the complex
          \[
            \frac{1}{z}\cal{O}
            \xrightarrow{\partial_z+\gamma} \frac{1}{z^2}\cal{O}\bigg/\frac{1}{z}\cal{O}
          \]
          and if $\gamma-1\neq0$ then $\Coker(\dd)=0$ and $\Ker(\dd)=\cal{V}=\Omega_X^0\langle Y\rangle(\cal{V})$; and
        \item $\Gr_P^{-n}(j_*^\mathrm{m}\Omega_{X^*}^\bullet(\cal{V}))$, for $n>0$, is the complex
          \[
            \frac{1}{z^{n+1}}\cal{O}\bigg/\frac{1}{z^{n}}\cal{O}
            \xrightarrow{\partial_z+\gamma} \frac{1}{z^{n+2}}\cal{O}\bigg/\frac{1}{z^{n+1}}\cal{O}.
          \]
      \end{enumerate}
      This satisfies \hyperref[II.3.13]{(3.13.ii)} case by case.
    \item[] \textbf{General case.}
      Since the problem is local, we can suppose that conditions \hyperref[II.3.13.4]{(3.13.4)} and \hyperref[II.3.13.5]{(3.13.5)} are satisfied, and it suffices to prove that the germ at $0$ of \hyperref[II.3.13.1]{(3.13.1)} is a quasi-isomorphism.

      For $0<|t|\leq1$, let $\cal{V}_t$ be the bundle with connection given by the inverse image of $\cal{V}$ under the homothety $H_t$ with ratio $t$.
      As $t\to0$, the $\cal{V}_t$ ``tend'' to the constant vector bundle $\cal{V}_0$ defined by the fibre $V_0$ of $\cal{V}$ at $0$, endowed with a connection satisfying \hyperref[II.3.13.4]{(3.13.4)}, \hyperref[II.3.13.5]{(3.13.5)}, and \hyperref[II.3.13.6]{(3.13.6)}.

      More precisely, let $H$ and $i_t$ be the morphisms
      \[
        \begin{aligned}
          H\colon &D^n\times D \to D^n
          \colon &(x,t) \mapsto t\cdot x
        \\i_t\colon &D^n \to D^n\times D
          \colon &x\mapsto (x,t).
        \end{aligned}
      \]
      Then $H_t=H\circ i_t$.
      The inverse image of the connection $\nabla$ on $\cal{V}$ is $\nabla_1$ on $H^*\cal{V}|H^{-1}(X^*)$.
      The corresponding relative connection (relative to $\pr_2$) extends to $H^*(\cal{V})|X^*\times D$.
      If we set $\cal{V}_t=i_t^*H^*\cal{V}$, then, for $t\neq0$, we have an isomorphism of bundles with connections
      \[
      \label{II.3.13.7}
        \cal{V}_t \cong H_t^*(\cal{V}).
      \tag{3.13.7}
      \]
      For $t=0$, we have an isomorphism of vector bundles
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      \[
      \label{II.3.13.8}
        \cal{V}_0 = H_0^*(\cal{V}) = \cal{O}_X\otimes_{\CC}V_0
      \tag{3.13.8}
      \]
      and the connection on $\cal{V}_0|X^*$ satisfies \hyperref[II.3.13.4]{(3.13.4)}, \hyperref[II.3.13.5]{(3.13.5)}, and \hyperref[II.3.13.6]{(3.13.6)}.

      The relative version of \hyperref[II.3.12]{(3.12)} gives a morphism of filtered complexes
      \[
      \label{II.3.13.9}
        \varphi\colon
        \big(
          \Omega_{X\times D/D}^\bullet\langle Y\times D\rangle(H^*\cal{V}),F
        \big)
        \to
        \big(
          j_*^\mathrm{m}\Omega_{X^*\times D}^\bullet(H^*\cal{V}),P
        \big).
      \tag{3.13.9}
      \]
      The associated graded complexes are flat over $D$ (via $\pr_2$), and their homogeneous graded components are coherent, and the differentials are $\cal{O}_{X\times D}$-linear.
      We already know that $i_0^*\Gr(\varphi)$ is a quasi-isomorphism.
      It thus follows that $i_t^*\Gr^p(\varphi)$ (the arrow \hyperref[II.3.13.1]{(3.13.1)} for $\cal{V}_t$) is a quasi-isomorphism near to $0$, for $t$ small enough.
      Since the $\cal{V}_t$ are isomorphic to one another, close to $0$, for $t\neq0$ \hyperref[II.3.13.7]{(3.13.7)}, $i_1^*\Gr^p(\varphi)$ is a quasi-isomorphism near to $0$, which proves \hyperref[II.3.13].
  \end{itemize}
\end{proof}

\begin{itenv}{Corollary 3.14}
\label{II.3.14}
  Let $X$ be a smooth scheme over $\CC$, $Y$ a normal crossing divisor in $X$, $j$ the inclusion of $X^*=X\setminus Y$ into $X$, $\cal{V}$ a vector bundle on $X$, and $\Gamma$ an integrable connection on $\cal{V}|X^*$ that presents a logarithmic pole along $Y$.
  Suppose that the residues of the connection along $Y$ do not admit any strictly positive integer as an eigenvalue.
  Then
  \begin{enumerate}[(i)]
    \item the homomorphism of complexes
      \[
        i\colon \Omega_X^\bullet\langle Y\rangle(\cal{V}) \to j_*\Omega_{X^*}^\bullet(\cal{V})
      \]
      induces an isomorphism on the cohomology sheaves (for the Zariski topology); and
    \item more precisely, $i$ is injective, and there exists an exhaustive increasing filtration of the complex $\Coker(i)$ whose successive quotients are acyclic complexes whose differentials are linear.
  \end{enumerate}
\end{itenv}

\begin{proof}
  The filtration $P$ of \hyperref[II.3.12]{(3.12)} has an evident algebraic analogue, which also satisfies conditions~a) to d) of \hyperref[II.3.12]{(3.12)}.
  The corollary follows from the statement, which is more precise than (ii), saying that the complexes
  \[
    G^i = \Gr^i_P\big(j_*\Omega_{X^*}^\bullet(\cal{V})\big/\Omega_X^\bullet\langle Y\rangle(\cal{V})\big)
  \]
  are acyclic.
  These complexes have $\cal{O}_X$-linear differentials, and, by \hyperref[II.3.13]{(3.13)},
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  the $(G^i)^\an$ are acyclic.
  By the flatness of $\cal{O}_{X^\an}$ over $\cal{O}_X$, the $G^i$ are thus acyclic, which finishes the proof.
\end{proof}

\begin{itenv}{Corollary 3.15}
\label{II.3.15}
  Under the hypotheses of \hyperref[II.3.14]{(3.14)}, we have
  \[
    \mathbb{H}^k\big(X,\Omega_X^\bullet\langle Y\rangle(\cal{V})\big)
    \simto \mathbb{H}^k\big(X^*,\Omega_{X^*}^\bullet(\cal{V})\big).
  \]
\end{itenv}

\begin{proof}
  Since the morphism $j$ is affine, we have
  \[
    \RR^kj_*\Omega_{X^*}^p(\cal{V})=0
    \quad\mbox{for $k>0$}
  \]
  and so
  \[
    \mathbb{H}^\bullet\big(X,j_*\Omega_{X^*}^\bullet(\cal{V})\big)
    \simto \mathbb{H}^\bullet\big(X^*,\Omega_{X^*}^\bullet(\cal{V})\big).
  \]
  Also, by \hyperref[II.3.14]{(3.14.i)}, we have
  \[
    \mathbb{H}^\bullet\big(X,\Omega_X^\bullet\langle Y\rangle(\cal{V})\big)
    \simto \mathbb{H}^\bullet\big(X,j_*\Omega_{X^*}^\bullet(\cal{V})\big)
  \]
  whence the corollary.
\end{proof}

\begin{rmenv}{Remark 3.16}
\label{II.3.16}
  It is easy to generalise \hyperref[II.3.13]{(3.13)} and \hyperref[II.3.14]{(3.14)} to the relative situation, where $f\colon X\to S$ is a smooth morphism (with $S$ an analytic space, or scheme of characteristic~$0$), and $Y$ is a relative normal crossing divisor.
\end{rmenv}


\section{Regularity in dimension \texorpdfstring{$n$}{n}}
\label{II.4}

\medskip
\hrule
\medskip

\emph{[Translator] The proof of \hyperref[II.4.1]{Theorem~4.1} has been replaced with the proof given in the errata, which also cites the following:}
\begin{quote}
  N.~Katz.
  The regularity theorem in algebraic geometry.
  \emph{Actes du Congr\`{e}s intern. math.} \textbf{1} (1970), 437--443.
\end{quote}
\emph{Note that pages 87 and 88 are thus missing from this translation.}

\medskip
\hrule
\medskip

\begin{itenv}{Theorem~4.1}
\label{II.4.1}
  Let $X$ be a complex-analytic space, $Y$ a closed analytic subset of $X$ such that $X^*=X\setminus Y$ is smooth, $X'$ the normalisation of $X$, and $Y'$ the inverse image of $Y$ in $X'$.
  Let $\cal{V}$ be a vector bundle on $X^*$ that is meromorphic along $Y$, and let $\nabla$ be a connection on $\cal{V}$.
  Then the following conditions are equivalent:
  \begin{enumerate}[(i)]
    \item there exists an open subset $U$ of $Y'$ that contains a point of each codimension~$1$ component of $Y'$, and an isomorphism $\varphi$ from a neighbourhood of $U$ in $X'$ to $U\times D$ (where $D$ is the unit disc) that induces the identity map from $U$ to $U\times\{0\}$, such that, for all $u\in U$, the restriction of $\varphi^*\cal{V}$ to $\{u\}\times D$ is regular at~$0$;
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    \item for every map $\varphi\colon D\to X$ with $\varphi^{-1}(Y)=\{0\}$, the inverse image of $V$ under $\varphi$ is regular; and
    \item the (multivalued) horizontal sections of $\cal{V}$ are of moderate growth along $Y$.
  \end{enumerate}

  By (i), these conditions hold ``in codimension~$1$ at infinity'' on the normalisation of $X$.
  If $Y$ is a smooth normal crossing divisor in $X$, then the above three conditions are also equivalent to the following:
  \begin{enumerate}
    \item[(iv)] for all $y\in Y$, there exists an open neighbourhood $U$ of $y$, and a basis $e\colon\cal{O}^d\to\cal{V}$ of $\cal{V}$ on $U\setminus Y$ that is meromorphic along $Y$, such that the connection matrix (which is a matrix of differential forms) presents at worst a logarithmic pole along $Y$.
  \end{enumerate}
\end{itenv}

\begin{proof}
  We will use constructions \hyperref[II.5.1]{(5.1)} to \hyperref[II.5.5]{(5.5)}; the reader can verify the lack of circularity.

  The theorem is local along $Y$, which allows us to suppose that
  \begin{enumerate}[a)]
    \item the meromorphic structure of $\cal{V}$ along $Y$ is defined by a coherent extension $\widetilde{\cal{V}}$ of the vector bundle $\cal{V}$ on $X$; and
    \item there exists a resolution of singularities $\pi\colon X_1\to X$ such that $X_1$ is smooth, $\pi$ is proper, $\pi^{-1}(X^*)\simto X^*$, and such that $Y_1=X_1\setminus\pi^{-1}(X^*)$ is a normal crossing divisor in $X_1$.
  \end{enumerate}

  We can think of $\cal{V}$ as a vector bundle with integrable connection on $X_1^*=\pi^{-1}(X^*)$, and $\widetilde{\cal{V}}$ as its canonical extension on $X_1$.
  The vector bundle $\cal{V}_0=\pi_*\widetilde{\cal{V}}$ is a coherent extension of $\cal{V}$ on $X$.
  We will show that conditions~(i), (ii), and (iii) are all equivalent to the following:
  \begin{enumerate}
    \item[\textit{(v)}] \textit{The extensions $\widetilde{\cal{V}}$ and $\cal{V}_0$ of $\cal{V}$ are meromorphically equivalent.}
  \end{enumerate}

  First we prove that \mbox{(i)$\implies$(v)}.
  If $X$ is of dimension~$1$, then this is a consequence of \hyperref[II.1.20]{(1.20)}.
  Let $u$ be the identity map from $\cal{V}_0|X^*$ to $\widetilde{\cal{V}}|X^*$.
  We need to show that, for every open subset $W\subset X$, for every linear form $w\in\HH^0(W,\cal{V}^\vee)$, and for every local section $e\in\HH^0(W,\cal{V}_0)$, the function $f=\langle w,u(e)\rangle$ is meromorphic along $Y\cap W$.

  Suppose that $X$ is smooth, that $Y$ is a smooth divisor in $X$, and that $X_1=X$.
  The fact that $f$ is meromorphic follows from the already discussed dimension~$1$ case, and from two applications of the following lemma (once to show that $f$ is meromorphic along $U$, and once again to show that $f$ is meromorphic along $Y$).

  \begin{itenv}{Lemma 4.1.1}
  \label{II.4.1.1}
    Let $f$ be an analytic function on $D^{m+1}\setminus(\{0\}\times D^m)$.
    Suppose that there exists a non-empty open subset $U$ of $D^m$ such that, for all $u\in U$, $f|(D^*\times\{u\})$ is meromorphic at $0$.
    Then there exists some $n$ such that $f$ has a pole of order at most $n$ along $\{0\}\times D^m$.
  \end{itenv}

  \begin{proof}
    Let $F_n\subset D^m$ be the set of $u$ such that $f|D^*\times\{u\}$ presents at worst a pole of order~$n$ at $0$.
    Let
    \[
      A_k(u) = \oint f(z,u)z^k\dd z.
    \]
    Then $A_k(u)$ is holomorphic, and $F_n$ is defined by the equations $A_k(u)=0$ for $k\geq n$.
    By hypothesis, the union of the closed subsets $F_n$ has an interior point.
    By Baire, there exists some $n$ such that $F_n$ has an interior point, and $A_k(u)$ is thus zero on an open subset (and thus everywhere) for all $k\geq n$.
    But then $f$ has at worst a pole of order~$n$ along $\{0\}\times D^m$.
  \end{proof}

  To pass from here to the case where $X$ is normal, we note that the above conditions are then satisfied outside of a subset $Z$ of $Y$ of codimension~$\geq2$ in $X$.
  We conclude by noting that a function $f$ on $X\setminus Y$ which is meromorphic along $Y$ outside of $Z$ is meromorphic along $Y$.
  Indeed, the proof of \hyperref[II.4.1.1]{(4.1.1)} shows that, locally on $Y$, the product of $f$ with a high enough power $g^k$ of a function that vanishes on $Y$ is holomorphic on $X\setminus Z$, and this product extends to a holomorphic function on $X$.

  In the general case, we note that condition~(i) (resp.~(v)) is equivalent to condition~(i) (resp.~(v)) on the normalisation of $X$.

  It is trivial that \mbox{(ii)$\implies$(i)}, and it follows from \hyperref[II.1.19]{(1.19)} that \mbox{(iii)$\implies$(i)}.

  Under the hypotheses of (iv), and for $X_1=X$, it is clear that \mbox{(v)$\implies$(iv)};
  by \hyperref[II.5.5]{(5.5.i)}, \mbox{(v)$\implies$(iii)};
  since the inverse image of a differential form that presents at worst a simple pole also presents at worst a simple pole, \mbox{(iv)$\implies$(ii)}.
  Under these hypotheses, claims~(i) to (v) are thus equivalent.

  It follows from \hyperref[II.2.19]{(2.19)} and from the above that \mbox{(v)$\implies$(iii)}.
  To prove that \mbox{(v)$\implies$(ii)}, we can either use \hyperref[II.1.19]{(1.19)} and \hyperref[II.2.19]{(2.19)} to show that \mbox{(iii)$\implies$(ii)}, or we can note that condition~(ii) for $\cal{V}$ on $X^*\subset X$ is equivalent to condition~(ii) for $\pi^{-1}\cal{V}$ on $X^*\subset X_1$.
  Conditions~(i), (ii), (iii), and (v) are thus equivalent.
  In particular, condition~(v) is independent of the choice of $X_1$;
  we thus deduce that, under the hypotheses of (iv), \mbox{(iv)$\iff$(v)}, and this finishes the proof.
\end{proof}

We note that the above proof already contains the essential part of the proof of \hyperref[II.5.7]{(5.7)} and \hyperref[II.5.9]{(5.9)} (the existence theorem).
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\begin{rmenv}{Definition 4.2}
\label{II.4.2}
  Under the hypotheses of \hyperref[II.4.1]{(4.1)}, we say that $(\cal{V},\nabla)$ is \emph{regular along $Y$} if any of the equivalent conditions of \hyperref[II.4.1]{(4.1)} are satisfied.
\end{rmenv}

\begin{itenv}{Proposition 4.3}
\label{II.4.3}
  With the hypotheses and notation of \hyperref[II.2.19]{(2.19)}, let $\cal{V}$ be a vector bundle on $X_2^*$ that is meromorphic along $Y_2$, endowed with an integrable connection.
  Then
  \begin{enumerate}[(a)]
    \item if $\cal{V}$ is regular, then $f^*\cal{V}$ is regular; and
    \item if condition~\hyperref[II.2.19]{(2.19.a)} is satisfied, and if $f^*\cal{V}$ is regular, then $\cal{V}$ is regular.
  \end{enumerate}
\end{itenv}

\begin{proof}
  By \hyperref[II.2.19]{(2.19)}, this is clear from \hyperref[II.4.1]{(4.1.iii)}.
\end{proof}

\begin{itenv}{Proposition 4.4}
\label{II.4.4}
  Let $\cal{V}$ be a vector bundle on a smooth separated complex-algebraic variety $X$.
  Let $\overline{X}$ be a compactification of $X$, so that $\cal{V}^\an$ is meromorphic along $Y=\overline{X}\setminus X$.
  Let $\nabla$ be a connection on $\cal{V}^\an$.
  Then the following conditions are equivalent:
  \begin{enumerate}[(i)]
    \item $\cal{V}^\an$ is regular along $Y$; and
    \item for every smooth algebraic curve $C$ on $X$ (and locally closed in $X$), $\cal{V}|C$ is regular \hyperref[II.1.21]{(1.21)}.
  \end{enumerate}

  If $\overline{X}$ is normal, then the above two conditions are also equivalent to the following:
  \begin{enumerate}
    \item[(iii)] $\nabla$ is algebraic, and, for every generic point $\eta$ of a codimension~$1$ component of $Y$, there exists an algebraic vector field $v$ on a neighbourhood of $\eta$, with $v$ transversal to $Y$ (so that the triple $(\cal{O}_\eta,\cal{O}_\eta,\partial_v)$ satisfies \hyperref[II.1.4.1]{(1.4.1)}), such that
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    $\cal{V}$ induces, over the field of fractions $K$ of $\cal{O}_\eta$, endowed with $\partial_v$, a vector space with regular connection, in the sense of \hyperref[II.1.11]{(1.11)}; and
    \item[(iii')] \emph{idem.} for every field $v$ of this type.
  \end{enumerate}
\end{itenv}

\begin{proof}
  We have \mbox{(ii)$\implies$\hyperref[II.4.1]{(4.1.i)}$\implies$\hyperref[II.4.1]{(4.1.ii)}$\implies$(ii)}.
  Also, \hyperref[II.4.1]{(4.1.iv)} implies that $\nabla$ is meromorphic in codimension~$1$ on $\overline{X}$, and thus meromorphic, and thus algebraic (by \cite{GAGA}).
  We thus have
  \[
    \mbox{(iii')}
    \implies \mbox{(iii)}
    \implies \mbox{\hyperref[II.4.1]{(4.1.i)}}
    \implies \mbox{\hyperref[II.4.1]{(4.1.iv)}}
    \implies \mbox{(iii')}.
  \]
\end{proof}

\begin{rmenv}{Definition 4.5}
\label{II.4.5}
  Under the hypotheses of \hyperref[II.4.4]{(4.4)}, we say that $(\cal{V},\nabla)$ is \emph{regular} if any of the equivalent conditions of \hyperref[II.4.4]{(4.4)} are satisfied.
\end{rmenv}

If $(\cal{V},\nabla)$ is a vector bundle with integrable algebraic connection on $X$, then it is clear, by \hyperref[II.4.4]{(4.4.ii)}, that the regularity of $\nabla$ is a purely algebraic condition, independent of the choice of compactification.
We can, in many different ways, define regularity when $X$ is a smooth scheme of finite type over a field $k$ of characteristic~$0$.
For example, we can take \hyperref[II.4.4]{(4.4.ii)} or \hyperref[II.4.4]{(4.4.iii)} as a definition.
We will restrict ourselves in what follows to the case where $k=\CC$.
By the Lefschetz principle, this does not reduce the level of generality.

\begin{itenv}{Proposition 4.6}
\label{II.4.6}
  Let $X$ be a (smooth) complex-algebraic variety.
  \begin{enumerate}[(i)]
    \item If $\cal{V}'\to\cal{V}\to\cal{V}''$ is a horizontal exact sequence of vector bundles with integrable connections on $X$, and if $\cal{V}'$ and $\cal{V}''$ are regular, then $\cal{V}$ is regular.
    \item If $\cal{V}_1$ and $\cal{V}_2$ are vector bundles with regular integrable connections on $X$, then $\cal{V}_1\otimes\cal{V}_2$, $\shHom(\cal{V}_1,\cal{V}_2)$, $\cal{V}_1^\vee$, and $\bigwedge^p\cal{V}_1$ are all regular.
    \item Let $f\colon X\to Y$ be a morphism of smooth schemes over $\CC$, and $\cal{V}$ a vector bundle with integrable connection on $Y$.
      If $\cal{V}$ is regular, then $f^*\cal{V}$ is regular.
      Conversely, if $f^*\cal{V}$ is regular and $f$ is dominant, then $\cal{V}$ is regular.
  \end{enumerate}
\end{itenv}

\begin{proof}
  Claims~(i) and (ii) follow immediately from the definition, by \hyperref[II.4.4]{(4.4.ii)}
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  and \hyperref[II.1.13]{(1.13)}.
  It is clear, by \hyperref[II.4.4]{(4.4.iii)}, that regularity, being satisfied in codimension~$1$ at infinity, is a \emph{birational notion}.
  This allows us to replace ``$f$ is dominant'' in (iii) by ``$f$ is surjective''.
  We then apply \hyperref[II.4.4]{(4.4.ii)} and \hyperref[II.1.13]{(1.13.iii)} by noting that, for $f$ surjective, for every curve $C$ on $Y$, there exists a curve $C'$ on $X$ such that $\overline{f(C')}\supset C$.
\end{proof}



\section{Existence theorem}
\label{II.5}

\begin{rmenv}{5.1}
\label{II.5.1}
  Let $D$ be the open unit disk, $D^*=D\setminus\{0\}$, $X=D^{n+m}$, $Y_i=\pr_i^{-1}(\{0\})$, and $Y=\bigcup_{i=1}^n Y_i$.
  Set $X^*=X\setminus Y=(D^*)^n\times D^m$.
  We have
  \[
  \label{II.5.1.1}
    \pi_1(X^*) = \pi_1(D^*)^n = \ZZ^n
  \tag{5.1.1}
  \]
  via the identification $\pi_1(D^*)\simeq\ZZ$ from \hyperref[II.1.15]{(1.15)}.
  We denote by $T_i$ the element of the abelian group $\pi_1(X^*)$ that corresponds, by \hyperref[II.4.1.1]{(4.1.1)}, to the $i$-th basis vector of $\ZZ^n$.

  A local system $\cal{V}$ on $X^*$ is said to be \emph{unipotent along $Y$} if the fundamental group $\pi_1(X^*)$ acts on this local system \hyperref[I.1.5]{(I.1.5)} by unipotent transformations.
  We will use the same terminology for when $\cal{V}$ is a vector bundle endowed with an integrable connection on $X^*$ (via the dictionary in \hyperref[I.2.17]{(I.2.17)}).
  Since $\pi_1(X^*)$ is abelian, generated by the ``monodromy transforms'' $T_i$, it is equivalent to ask for the $T_i$ to act unipotently.
\end{rmenv}

In the following proposition, we denote by $\|\,\,\|$ an arbitrary norm on $X^*$ with respect to $Y$, for example
\[
  \|z\| = \frac{1}{d(z,Y)}
  \quad\mbox{or}\quad
  \|z\| = \frac{1}{\prod_{i=1}^n|z_i|}.
\]

\begin{itenv}{Proposition 5.2}
\label{II.5.2}
With the notation of \hyperref[II.4.1]{(4.1)}, let $\cal{V}$ be a vector bundle with integrable connection on $X^*$ that is unipotent along $Y$.
Then
\begin{enumerate}[(a)]
  \item There exists a unique extension $\widetilde{\cal{V}}$ of the vector bundle $\cal{V}$ to a vector bundle on $X$ that satisfies the following conditions:
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    \begin{enumerate}[(i)]
      \item Every (multivalued) horizontal section of $\cal{V}$ has, as a multivalued section of $\widetilde{\cal{V}}$ on $X^*$, a growth of at most $\order((\log\|x\|)^k)$ (for large enough $k$) near every compact subset of $Y$.
      \item Similarly, every (multivalued) horizontal section of $\cal{V}^\vee$ has a growth of at most $\order((\log\|x\|)^k)$ (for large enough $k$) near every compact subset of $Y$.
    \end{enumerate}
  \item The combination of conditions (i) and (ii) above is equivalent to the following conditions:
    \begin{enumerate}[(i)]
      \setcounter{enumi}{2}
      \item The matrix of the connection of $\cal{V}$, in an arbitrary local basis of $\widetilde{\cal{V}}$, has at worst a logarithmic pole along $Y$.
      \item The residue $\Res_i(\Gamma)$ of the connection along $Y_i$ (for $1\leq i\leq n$) is nilpotent.
    \end{enumerate}
  \item Let $e$ be a (multivalued) horizontal basis of $\cal{V}$.
    Then the sections of $\widetilde{\cal{V}}$ over $X$ can be identified with the sections of $\cal{V}$ over $X^*$ whose coordinates in the basis $e$ are (multivalued) functions with growth at most $\order((\log\|x\|)^k)$ (for large enough $k$) near every compact subset of $Y$.
  \item Every horizontal morphism $f\colon\cal{V}_1\to\cal{V}_2$ can be extended to $\widetilde{f}\colon\widetilde{\cal{V}}_1\to\widetilde{\cal{V}}_2$.
    The functor $\cal{V}\mapsto\widetilde{\cal{V}}$ is exact, and compatible with $\otimes$, $\shHom$, $\bigwedge^p$, \ldots
\end{enumerate}
\end{itenv}

We call $\widetilde{\cal{V}}$ the \emph{canonical extension} of $\cal{V}$.

\begin{proof}
---
  \begin{enumerate}[(a)]
    \item Let $e\colon\cal{O}^n\to\cal{V}$ be a (multivalued) horizontal basis of $\cal{V}$, and $\cal{V}_1$ an extension of $\cal{V}$.
      Condition~(i) implies that $e\colon\cal{O}^n\to\cal{V}_1|X^*$ has growth $\order((\log\|x\|)^k)$.
      Condition~(ii) implies that the dual basis $e'\colon\cal{O}^n\to\cal{V}_1|X^*$ has growth at most $\order((\log\|x\|)^k)$.
      If $\cal{V}_1$ and $\cal{V}_2$ are two extensions of $\cal{V}$ satisfying (i) and (ii), then the identity map $i$ of $\cal{V}$ fits into the commutative diagram
      \[
        \begin{tikzcd}
          \cal{V}_1|X^*
            \rar["i"] \dar[swap,"e^{-1}"]
          & \cal{V}_2|X^*
            \dar["e"]
        \\\cal{O}^n
            \rar[equal]
          & \cal{O}^n
        \end{tikzcd}
      \]
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      By hypothesis, $e^{-1}$ and $e$, and thus $i$, have growth $\order((\log\|x\|)^k)$, and so $i$ is regular, and so $i^{-1}$ is also regular:
      the identity of $\cal{V}$ extends to an isomorphism between $\cal{V}_1$ and $\cal{V}_2$.
      This proves the uniqueness of $\widetilde{\cal{V}}$.

    \item Let $\cal{V}_0$ be a vector space endowed with a unipotent action of $\pi_1(X^*)$, and let $-2\pi i U_i$ be the nilpotent determination of the logarithm of the action of $T_i$, i.e.
      \[
      \label{II.5.2.1}
        U_i = \frac{1}{2\pi i}\sum\frac{(I-T_i)^k}{k}.
      \tag{5.2.1}
      \]

      Let $\widetilde{\cal{V}}_0$ be the vector bundle on $X$ defined by $\cal{V}_0$, and endowed with the connection matrix
      \[
      \label{II.5.2.2}
        \Gamma = \sum U_i\frac{\dd z_i}{z_i}.
      \tag{5.2.2}
      \]

      The (multivalued) horizontal sections of $\widetilde{\cal{V}}_0$ are of the form
      \[
      \label{II.5.2.3}
        v(z) = \exp\left(-\sum(\log z_i) U_i\right)(v_0).
      \tag{5.2.3}
      \]
      The exponential series reduces here to a finite sum, and thus to a polynomial in the $\log z_i$.

      The vector bundle $\widetilde{\cal{V}}_0$ satisfies (i), (ii), (iii), and (iv).
      Further, if $e_0$ is a basis of $\cal{V}_0$, then the relation between the coordinates of a section $v$ of $\widetilde{\cal{V}}_0$ in the basis $e_0$, or in the horizontal basis $e_1$ given by \hyperref[II.5.2.3]{(5.2.3)}, is given by
      \[
        \begin{cases}
          e_0 &= \exp\left(\sum_{i=1}^n(\log z_i)U_i\right)e_1
        \\e_1 &= \exp\left(\sum_{i=1}^n(\log z_i)U_i\right)e_0
        \end{cases}
      \]
      and (c) is satisfied.
      Finally, $\widetilde{\cal{V}}_0$ is an exact functor in $\cal{V}_0$, and its construction is compatible with $\otimes$, $\shHom$, $\wedge^p$, \ldots.
      Given the dictionary in \hyperref[I.1.2]{(I.1.2)}, this proves (a), (c), and (d), and shows that (i)+(ii)$\implies$(iii)+(iv).

    \item Let $\cal{V}_1$ be an extension of $\cal{V}$ satisfying (iii) and (iv).
      To prove (i), we reduce to the case where $\cal{V}_1\sim\cal{O}^n$ is free.
      Let $\Gamma$ be the connection matrix, and write
      \[
        \Gamma
        = \sum\Gamma_{0,i}\frac{\dd z_i}{z_i} + \Gamma''
        = \Gamma'+\Gamma''
      \]
      with $\Gamma_{0,i}$ constant, and $\Gamma''$ holomorphic.
      Let $e$ be a (multivalued) horizontal basis for the connection $\Gamma'$ (which is of the type considered in (b)).
      If $a\cdot e$ is a (multivalued) horizontal basis for $\Gamma$, then
      \[
        \nabla (a\cdot e)
        = \dd a\cdot\nabla e + a\cdot\nabla e
        = 0
      \]
      whence the bound
      \[
        |\dd a| \leq C^{te}|a|(\log\|z\|)^k.
      \]
      This proves that $\cal{V}_1$ satisfies (i), and (ii) follows by considering $\cal{V}_1^\vee$.
  \end{enumerate}
\end{proof}

\begin{rmenv}{5.3}
\label{II.5.3}
  If we do not suppose $\cal{V}$ to be unipotent along $Y$, then it is still possible to ``make'' an extension of $\cal{V}$ on $X$, but its construction, which is much more arbitrary, depends on the choice of a section $\tau$ of the projection of $\CC$ to $\CC/\ZZ$.
  Choosing $\tau$ is equivalent to choosing a logarithm function: we set
  \[
    \log_\tau(x) = 2\pi i\tau\left(\frac{1}{2\pi i}\log z\right).
  \]
  One of the least bad choices is
  \[
  \label{II.5.3.1}
    0 \leq \Re(\tau) < 1.
  \tag{5.3.1}
  \]
\end{rmenv}

\begin{itenv}{Proposition 5.4}
\label{II.5.4}
  \emph{(Manin \cite{19}).}
  Let $\tau$ be as in \hyperref[II.5.3]{(5.3)}, and let $\cal{V}$ be a vector bundle with an integrable connection on $X^*$.
  Then there exists a unique extension $\widetilde{\cal{V}}(\tau)$ of the vector bundle $\cal{V}$ to a vector bundle on $X$ that satisfies the following conditions:
  \begin{enumerate}[(i)]
    \item The connection matrix of $\cal{V}$, in an arbitrary local basis of $\widetilde{\cal{V}}(\tau)$, presents at worst a logarithmic pole along $Y$;
    \item The residue $\Res_i(\Gamma)$ of the connection along $Y_i$ (for $1\leq i\leq n$) has eigenvalues in the image of $\tau$.
  \end{enumerate}

  The extension $\widetilde{\cal{V}}(\tau)$ of $\cal{V}$ is functorial and exact in $\cal{V}$.

  (We note that the construction of $\widetilde{\cal{V}}(\tau)$ is not, in general, compatible with $\otimes$.)
\end{itenv}
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\begin{proof}
  For every homomorphism $\lambda\colon\pi_1(X^*)\to\CC^*$, let $U_{\lambda,\tau}$ (or simply $U_\lambda$) be the vector bundle $\cal{O}$ on $X$ endowed with the connection matrix
  \[
    \Gamma_\lambda = \sum\frac{-1}{2\pi i}(\log_\tau\lambda(T_i))\frac{\dd z_i}{z_i}.
  \]

  By construction, $U_\lambda$ satisfies (i) and (ii), and admits $\lambda$ as its monodromy.

  Let $\cal{V}$ be an arbitrary vector bundle with integrable connection on $X^*$.
  Then $\cal{V}$ admits a unique decomposition
  \[
    V \simeq \bigoplus_\lambda (U_\lambda|X^*)\otimes\cal{V}_\lambda
  \]
  with $\cal{V}_\lambda$ unipotent along $Y$.
  The direct factor $(U_\lambda|X^*)\otimes\cal{V}_\lambda$ of $\cal{V}$ is the largest sub-bundle of $\cal{V}$ on which the $T_i-\lambda(T_i)$ are nilpotent.
  The extension (cf. \hyperref[II.5.2]{(5.2)})
  \[
  \label{II.5.4.1}
    \widetilde{\cal{V}}_\tau = \bigoplus_\lambda U_\lambda\otimes\widetilde{\cal{V}}_\lambda
  \tag{5.4.1}
  \]
  of $\cal{V}$ satisfies (i) and (ii), and is exact and functorial in $\cal{V}$.

  To prove that the extension problem has only one solution, it suffices to prove this locally on $Y$ outside of a subset of codimension~$\geq2$ in $X$.
  With the notation of \hyperref[II.5.1]{(5.1)}, this allows us to reduce to the case where $n=1$.
  So let $\cal{V}'$ be an extension of $\cal{V}$ satisfying (i) and (ii).
  By \hyperref[II.3.11]{(3.11)}, the monodromy transformation $T$ extends to an automorphism of $\cal{V}'$.
  The characteristic polynomial of $T$ is constant;
  the vector bundle $\cal{V}'$ thus decomposes uniquely into its $T$-stable vector sub-bundles on which an endomorphism $(T-\lambda)$ is nilpotent (i.e. the generalised eigenspaces of $T$).
  We can thus write $\cal{V}'$ uniquely as
  \[
    \cal{V}' = \bigoplus_\lambda U_\lambda\otimes\cal{V}'_\lambda
  \]
  with $\cal{V}'_\lambda|X^*$ unipotent along $Y$.
  By construction, $\cal{V}'_\lambda$ satisfies (iii) and (iv) of \hyperref[II.5.2]{(5.2)}, and so, by \hyperref[II.5.2]{(5.2)}, $\cal{V}'_\lambda=\widetilde{\cal{V}}_\lambda$.
  We thus have that $\cal{V}'=\widetilde{\cal{V}}(\tau)$ \hyperref[II.5.4.1]{(5.4.1)}.
\end{proof}

\begin{rmenv}{Remarks 5.5}
\label{II.5.5}
---
\begin{enumerate}[(i)]
  \item If we define $\tau$ by \hyperref[II.5.3.1]{(5.3.1)}, then $\widetilde{\cal{V}}(\tau)$ satisfies \hyperref[II.5.2]{(5.2)}~(c).
    We also call this extension the \emph{canonical extension} of $\cal{V}$.
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  \item An extension of the form $\widetilde{\cal{V}}(\tau)$ has the property that, in a suitable basis of $\widetilde{\cal{V}}(\tau)$, the connection matrix takes the form
    \[
      \Gamma = \sum_i\Gamma_i\frac{\dd z_i}{z_i}
    \]
    where the $\Gamma_i$ are connection matrices that commute pairwise.
\end{enumerate}
\end{rmenv}

\begin{itenv}{Corollary 5.6}
\label{II.5.6}
  \emph{(N.~Katz).}
  Let $\cal{V}$ be a vector bundle on the unit disc $D$, and $\Gamma$ a connection on $\cal{V}|D^*$ whose matrix presents a simple pole at $0$.
  Suppose that, for any distinct eigenvalues $\alpha$ and $\beta$ of $\Res(\Gamma)$, we have $\alpha-\beta\in\ZZ$.
  Then the monodromy transformation $T$ is conjugate, in the linear group, to $\exp(-2\pi i\Res(\Gamma))$.
\end{itenv}

\begin{proof}
  By \hyperref[II.5.4]{(5.4)}, $\cal{V}$ is of the form $\widetilde{\cal{V}}_0(\tau)$ for some suitable $\cal{V}_0$;
  we conclude by direct calculation \hyperref[II.1.17.1]{(1.17.1)}.
\end{proof}

\begin{itenv}{Proposition 5.7}
\label{II.5.7}
  Let $X$ be a complex-analytic space, $Y$ a closed subspace of $X$ such that $X^*=X\setminus Y$ is smooth, $j$ the inclusion of $X^*$ into $X$, and $\cal{V}$ a vector bundle with integrable connection $\nabla$ on $X^*$.
  We denote by $e$ a horizontal (multivalued) basis of $\cal{V}$, and by $\|\cdot\|$ a norm on $X^*$ with respect to $Y$.
  Then
  \begin{enumerate}[(i)]
    \item There exists exactly one meromorphic structure on $\cal{V}$ along $Y$ with respect to which $\nabla$ is a regular connection.
    \item Let $\widetilde{\cal{V}}$ be the subsheaf of $j_*\cal{V}$ consisting of sections whose coordinates in the basis $e$ have growth of at most $\order((\log\|x\|)^k)$ (for large enough $k$) along $Y$.
      Then $\widetilde{\cal{V}}$ is a coherent analytic sheaf on $X$;
      the extension $\widetilde{\cal{V}}$ of $\cal{V}$ defines the meromorphic structure in (i).
  \end{enumerate}
\end{itenv}

\begin{proof}
  Both claims (i) and (ii) are local on $X$.
  By Hironaka \cite{12}, we can assume the existence of a resolution of singularities $\pi\colon X_1\to X$ such that $\pi^{-1}(Y)$ is a normal crossing divisor and $\pi$ is an isomorphism over $X^*$.
  Let $\widetilde{\cal{V}}_1$ be the canonical extension \hyperref[II.5.5]{(5.5.i)} of $\cal{V}$ to $X_1$.
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  By \hyperref[II.5.5]{(5.5.i)} and \hyperref[II.2.19]{(2.19)}, we have that $\widetilde{\cal{V}}=\pi_*\widetilde{\cal{V}}_1$.
  By Grauert's finiteness theorem (for a projective morphism), $\widetilde{\cal{V}}$ is thus coherent analytic.

  For the meromorphic structure along $\pi^{-1}(Y)$ defined by $\widetilde{\cal{V}}_1$, the connection $\nabla$ is regular.
  Since this structure is the inverse image of that defined by $\widetilde{\cal{V}}$, we conclude, by \hyperref[II.4.3]{(4.3)} that $\nabla$ is regular with respect to the extension $\widetilde{\cal{V}}$.
  Finally, suppose that $\nabla$ is regular for the meromorphic structure defined by an extension $\cal{V}'$.
  We see, by \hyperref[II.4.1]{(4.1.iii)} applied to the dual bundle, and by \hyperref[II.5.2]{(5.2.c)}, that $\pi^*\cal{V}'$ and $\widetilde{\cal{V}}_1$ define the same meromorphic structure along $\pi^{-1}(Y)$.
  Claim (i) then follows.
\end{proof}

\begin{itenv}{Corollary 5.8}
\label{II.5.8}
  Let $X$ and $Y$ be as in \hyperref[II.5.7]{(5.7)}.
  If a vector bundle $\cal{V}$ on $X^*=X\setminus Y$ admits an integrable connection, then it admits a coherent extension on $X$;
  in particular, if $\codim_X(Y)\geq2$, then $j_*\cal{V}$ is coherent.
\end{itenv}

It immediately follows from \hyperref[II.5.7]{(5.7)} and \hyperref[II.2.22]{(2.22)} that:

\begin{itenv}{Theorem 5.9}
\label{II.5.9}
  Let $X$ be a (smooth) complex algebraic variety.
  Then the functor $\cal{V}\mapsto\cal{V}^\an$ gives an equivalence of categories between
  \begin{enumerate}[(i)]
    \item the category of algebraic vector bundles on $X$ endowed with a regular integrable connection; and
    \item the category of holomorphic vector bundles on $X^\an$ endowed with an integrable connection.
  \end{enumerate}
\end{itenv}

If $X$ is connected and endowed with a base point $x_0$, then \hyperref[II.5.9]{Theorem~5.9} gives a purely algebraic description of the category of complex finite-dimensional representations of the (usual) fundamental group $\pi_1(X,x_0)$.

We can modify the above proof of \hyperref[II.5.9]{Theorem~5.9} so that it no longer uses Lojasiewicz \cite{17}.

\hyperref[II.5.9]{Theorem~5.9} is local on $X$ for the Zariski topology.
We thus do not lose any generality in supposing that $X$ admits a normal projective compactification $\overline{X}$.

Let us prove fully faithfulness:
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a horizontal morphism $f\colon\cal{V}^\an\to\cal{W}^\an$ is identified with a horizontal section of $\shHom(\cal{V},\cal{W})^\an$.
By \hyperref[II.4.1]{(4.1.iii)}, $f$ is of moderate growth at infinity, and is thus algebraic \hyperref[II.2.24]{(2.24)}.
In fact, it even suffices to show that $f$ is of moderate growth in codimension~$1$ at infinity, and this does not require Lojasiewicz.

Finally, by Hironaka \cite{12}, we can take $\overline{X}$ to be smooth, and such that $Y=\overline{X}\setminus X$ is a normal crossing divisor.
Locally, the situation is then isomorphic to that which was studied in \hyperref[II.5.4]{(5.4)}.
A choice of $\tau$ as in \hyperref[II.5.3]{(5.3)} thus gives us an extension $\widetilde{\cal{V}}_\tau$ of $\cal{V}$ to a vector bundle on $\overline{X}$.
With respect to $\widetilde{\cal{V}}_\tau$< the connection of $\cal{V}$ is meromorphic and regular along $Y$.

By \cite{GAGA}, the bundle $\widetilde{\cal{V}}_\tau$ and the connection $\nabla$ are both algebraisable, and this solves the problem in question.



\section{Comparison theorem}
\label{II.6}

\begin{rmenv}{6.1}
\label{II.6.1}
  Let $X$ be a smooth scheme of finite type over $\CC$, and $\cal{V}$ a vector bundle on $X$ endowed with a \emph{regular} integrable connection.
  We denote by $V$ the local system of horizontal sections of $\cal{V}^\an$ on underlying the topological space $X_\cl$ of $X^\an$.
  By the PoincarÃ© lemma \hyperref[I.2.19]{(I.2.19)}, we have
  \[
  \label{II.6.1.1}
    \HH^\bullet(X_\cl,V)
    \simto \mathbb{H}^\bullet(X_\cl,\Omega_{X^\an}^\bullet(\cal{V}))
  \tag{6.1.1}
  \]
  where the right-hand side denotes the hypercohomology of the analytic de Rham complex.
  We also have an arrow
  \[
  \label{II.6.1.2}
    \mathbb{H}^\bullet(X,\Omega_X^\bullet(\cal{V}))
    \to \mathbb{H}^\bullet(X_\cl,\Omega_{X^\an}^\bullet(\cal{V}))
  \tag{6.1.2}
  \]
  from the algebraic hypercohomology to the analytic hypercohomology.
\end{rmenv}

\begin{itenv}{Theorem 6.2}
\label{II.6.2}
  Under the hypotheses of \hyperref[II.6.1]{(6.1)}, the arrow \hyperref[II.6.1.2]{(6.1.2)} is an isomorphism.
\end{itenv}
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The proof that we will give for this theorem is basically a simplification of the proof that Grothendieck \cite{9} uses for the particular case where $\cal{V}$ is the structure sheaf $\cal{O}$ endowed with the natural connection.
It will be the subject of \hyperref[II.6.3]{(6.3)} to \hyperref[II.6.9]{(6.9)}.

We note, first of all, as in loc. cit., that \hyperref[II.6.2]{(6.2)} is equivalent to the following particular case.

\begin{itenv}{Corollary 6.3}
\label{II.6.3}
  Under the hypotheses of \hyperref[II.6.1]{(6.1)}, with $X$ affine, we have
  \[
    \HH^\bullet(\Gamma(X,\Omega_X^\bullet(\cal{V})))
    \simto \HH^\bullet(X_\cl,V).
  \]
\end{itenv}

\begin{proof}
  If $X$ is affine, then $\HH^q(X,\Omega_X^p(\cal{V}))=0$ for $q>0$, and so
  \[
    \mathbb{H}^p(X,\Omega_X^\bullet(\cal{V}))
    \simeq \HH^p(\Gamma(X,\Omega_X^\bullet(\cal{V})))
  \]
  and so \hyperref[II.6.2]{(6.2)} is synonymous with \hyperref[II.6.3]{(6.3)}.
  But then, if \hyperref[II.6.2]{(6.2)} is true when $X$ is affine, then we see, as in loc. cit., via the Leray spectral sequence for an open cover applied to the two sides of \hyperref[II.6.1.2]{(6.1.2)}, that \hyperref[II.6.2]{(6.2)} is true in the general case.
\end{proof}

\begin{rmenv}{6.4}
\label{II.6.4}
  This reduction to the affine case shows that we do not lose any generality in supposing that $X$ admits a compactification $j\colon X\hookrightarrow\overline{X}$ with $\overline{X}$ complete.
  By Hironaka's resolution of singularities \cite{12}, we can thus choose $\overline{X}$ such that
  \begin{enumerate}[a)]
    \item $\overline{X}$ is smooth; and
    \item $X$ is the complement in $\overline{X}$ of a normal crossing divisor $Y$ equal to a union of smooth divisors: $Y=\cup_{i=1}^k Y_i$.
  \end{enumerate}

  The morphism $j$ is then an affine morphism;
  the morphism $j^\an$ is then a Stein morphism, i.e. the inverse image of a (small) Stein open subset of $\overline{X}$ is a Stein open subset of $X$.
  Thus
  \[
  \label{II.6.4.1}
    \RR^i j_*\Omega_X^p(\cal{V}) = 0
    \qquad\mbox{for $i>0$}
  \tag{6.4.1}
  \]
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  \[
  \label{II.6.4.2}
    \RR^i j_*^\an\Omega_{X^\an}^p(\cal{V}) = 0
    \qquad\mbox{for $i>0$}
  \tag{6.4.2}
  \]
  from which it formally follows that
  \[
  \label{II.6.4.3}
    \mathbb{H}^\bullet(\overline{X},j_*\Omega_X^\bullet(\cal{V}))
    \simto \mathbb{H}^\bullet(X,\Omega_X^\bullet(\cal{V}))
  \tag{6.4.3}
  \]
  \[
  \label{II.6.4.4}
    \mathbb{H}^\bullet(\overline{X}_\cl,j_*^\an\Omega_{X^\an}^\bullet(\cal{V}))
    \simto \mathbb{H}^\bullet(X_\cl,\Omega_{X^\an}^\bullet(\cal{V})).
  \tag{6.4.4}
  \]
\end{rmenv}

\begin{itenv}{Lemma 6.5}
\label{II.6.5}
  Let $\scr{F}$ be a \emph{quasi-coherent} algebraic sheaf on a proper scheme $X$ over $\CC$.
  Let $\epsilon\colon X_\cl\to X$ be the canonical continuous map, and $\scr{F}^\an=\cal{O}_{X^\an}\otimes_{\epsilon^*\cal{O}_X}\epsilon^*\scr{F}$.
  Then
  \[
    \HH^\bullet(X,\scr{F}) \simto \HH^\bullet(X_\cl,\scr{F}^\an).
  \]
\end{itenv}

\begin{proof}
  By (EGA~I, 9.4.9), the sheaf $\scr{F}$ is the filtrant inductive limit of its coherent algebraic subsheaves:
  \[
    \scr{F} = \varinjlim\scr{F}_i.
  \]
  The inverse image and tensor product functors commute with inductive limits, and so
  \[
    \scr{F}^\an = \varinjlim\scr{F}_i^\an.
  \]

  If $X$ is a compact topological space, then the functors $\HH^i(X,-)$ commute with filtrant inductive limits (T.F.~II, 4.12, p.~194), and so
  \[
  \label{II.6.5.1}
    \varinjlim\HH^\bullet(X_\cl,\scr{F}_i^\an) \simto \HH^\bullet(X_\cl,\scr{F}^\an).
  \tag{6.5.1}
  \]
  Similarly (loc. cit.),
  \[
  \label{II.6.5.2}
    \varinjlim\HH^\bullet(X,\scr{F}_i) \simto \HH^\bullet(X,\scr{F}).
  \tag{6.5.2}
  \]

  By GAGA, we have that
  \[
    \HH^\bullet(X,\scr{F}_i) \simto \HH^\bullet(X_\cl,\scr{F}_i^\an)
  \]
  and \hyperref[II.6.5]{(6.5)} then follows by comparing \hyperref[II.6.5.1]{(6.5.1)} and \hyperref[II.6.5.2]{(6.5.2)}.
\end{proof}
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\begin{rmenv}{6.6}
\label{II.6.6}
  Under the hypotheses of \hyperref[II.6.5]{(6.5)}, every differential operator $D\colon\scr{F}\to\scr{G}$ between coherent algebraic sheaves extends uniquely to a differential operator $D^\an\colon\scr{F}^\an\to\scr{G}^\an$.
  To construct $D^\an$, we factor $D$ as
  \[
    \scr{F} \xrightarrow{j_N} P^N(\scr{F}) \xrightarrow{L} \scr{G}
  \]
  where $L$ is linear.
  Note that $(P^N(\scr{F}))^\an=P^N(\scr{F}^\an)$, and set $D^\an=L^\an\circ j_N^\an$.

  The same construction applies to a differential operator $D\colon\scr{F}\to\scr{G}$ between quasi-coherent algebraic sheaves, and gives $D^\an\colon\scr{F}^\an\to\scr{G}^\an$.
  We can also define $D^\an$ in the quasi-coherent case by passing to the inductive limit from the coherent case.

  If $K$ is a complex of quasi-coherent sheaves on $X$, with $X$ a proper scheme over $\CC$, and with the differentials of $K$ being differential operators, then
  \[
  \label{II.6.6.1}
    \mathbb{H}^\bullet(X,K) \simto \mathbb{H}^\bullet(X_\cl,K^\an).
  \tag{6.6.1}
  \]

  Indeed, we have a morphism of spectral sequences of hypercohomology
  \[
    \begin{aligned}
      E_1^{pq} = \HH^q(X,K^p)
      &\Rightarrow \mathbb{H}^\bullet(X,K)
    \\E_1^{pq} = \HH^q(X_\cl,(K^\an)^p)
      &\Rightarrow \mathbb{H}^\bullet(X_\cl,K^\an)
    \end{aligned}
  \]
  and we conclude by applying \hyperref[II.6.5]{(6.5)} to the terms $E_1$.
\end{rmenv}

\begin{rmenv}{6.7}
\label{II.6.7}
  The complex $[j_*\Omega_X^\bullet(\cal{V})]^\an$ is exactly the sheaf of sections of $\Omega_{X^\an}^\bullet(\cal{V})$ that are meromorphic along $Y$;
  we denote this by $j_*^\mm\Omega_X^\bullet(\cal{V})$.
  The arrows in \hyperref[II.6.4.3]{(6.4.3)}, \hyperref[II.6.4.4]{(6.4.4)}, and \hyperref[II.6.6.1]{(6.6.1)} for $j_*^\mm\Omega_{X^\an}^\bullet(\cal{V})$ fit into a commutative diagram
  \[
  \label{II.6.7.1}
    \begin{tikzcd}
      \mathbb{H}^\bullet(\overline{X},j_*\Omega_X^\bullet(\cal{V}))
        \ar[r,"\sim"]
        \ar[r,swap,"\mbox{\hyperref[II.6.4.3]{(6.4.3)}}"]
        \ar[d,"\sim"]
        \ar[d,swap,"\mbox{\hyperref[II.6.6.1]{(6.6.1)}}"]
      & \mathbb{H}^\bullet(X,\Omega_X^\bullet(\cal{V}))
        \ar[dd,"\circlednumber{1}"]
    \\\mathbb{H}^\bullet(\overline{X},j_*^\mm\Omega_{X^\an}^\bullet(\cal{V}))
        \ar[d,swap,"\circlednumber{2}"]
    \\\mathbb{H}^\bullet(\overline{X}_\cl,j_*\Omega_{X^\an}^\bullet(\cal{V}))
        \ar[r,"\sim"]
        \ar[r,swap,"\mbox{\hyperref[II.6.4.4]{(6.4.4)}}"]
      & \mathbb{H}^\bullet(X_\cl,\Omega_{X^\an}^\bullet(\cal{V}))
      & \HH^\bullet(X_\cl,\cal{V})
        \ar[l,swap,"\sim"]
        \ar[l,"\mbox{\hyperref[II.6.1.1]{(6.1.1)}}"]
    \end{tikzcd}
  \tag{6.7.1}
  \]

  To prove \hyperref[II.6.2]{(6.2)}, it thus suffices to prove that the arrow $\circlednumber{2}$ is an isomorphism.
  More precisely:
\end{rmenv}
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\begin{itenv}{Proposition 6.8}
\label{II.6.8}
  The morphism of complexes
  \[
    j_*^\mm\Omega_{X^\an}^\bullet(\cal{V}) \to j_*\Omega_{X^\an}^\bullet(\cal{V})
  \]
  induces an isomorphism on the cohomology sheaves.
\end{itenv}

The GAGA theorems have thus allowed us to reduce a global algebraic/analytic comparison problem to a local meromorphic/essential singularity comparison problem.

Let $\cal{V}_0$ be an extension of the algebraic vector bundle $\cal{V}$ to a vector bundle on $X$ such that, with respect to $\cal{V}_0$, we have:

\begin{itenv}{6.8.1}
\label{II.6.8.1}
the connection on $\cal{V}$ presents at worst a logarithmic poly along $Y$, and the residues of the connection along the components of $Y$ never have positive integer eigenvalues.
\end{itenv}

We can take $\cal{V}_0$ to be the canonical extension \hyperref[II.5.6]{(5.6)} of $\cal{V}$.
By \hyperref[II.3.13]{(3.13)}, the complex
\[
  j_*^\mm\Omega_{X^\an}^\bullet(\cal{V}) / \Omega_{X^\an}^\bullet\langle Y\rangle(\cal{V}_0)
\]
is acyclic.
The claim of \hyperref[II.6.8]{(6.8)} is equivalent to the acyclicity of the analogous complex
\[
\label{II.6.8.2}
  j_*\Omega_{X^\an}^\bullet(\cal{V}) / \Omega_{X^\an}^\bullet\langle Y\rangle(\cal{V}_0).
\tag{6.8.2}
\]

If we take $\cal{V}_0$ to be an extension of the type $\cal{V}(\tau)$ (cf. \hyperref[II.5.4]{(5.4)}), then we can locally put $\cal{V}$ into a canonical form \hyperref[II.5.6]{(5.6.ii)}, and it then remains to prove the following lemma.

\begin{itenv}{Lemma 6.9}
\label{II.6.9}
Let $\Gamma_1,\ldots,\Gamma_n\in\GL_d(\CC)$ be matrices that commute with one another, and that do not have any positive integer eigenvalues.
Let $X=D^{n+m}$, $X^*=(D^*)^n\times D^m$, $j\colon X^*\hookrightarrow X$, and $Y=X\setminus X^*$, and let $\Gamma$ be the connection on $\cal{O}^d=\cal{V}$ given by
\[
  \Gamma = \sum_{i=1}^n \Gamma_i \frac{\dd z_i}{z_i}.
\]
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Then the complex of sheaves
\[
  K = j_*\Omega_{X^*}^\bullet(\cal{V}) / \Omega_X^\bullet\langle Y\rangle(\cal{V})
\]
is acyclic at $0$.
\end{itenv}

\begin{proof}
  Let $F$ be a filtration on $\CC^d$ such that the successive quotients $F^i/F^{i+1}$ are of dimension~$1$ for $0\leq i<d$, and such that the $\Gamma_i$ are compatible with $F$.

  It suffices to prove that $\Gr_F(K)$ is acyclic, and this leads us to reduce to the case where $d=1$.
  We set $\gamma_i=\Gamma_i$ (so that $\gamma_i\in\CC\setminus\NN^+$).
  The complexes $\Omega_X^\bullet\langle Y\rangle(\cal{V})$ and $j_*\Omega_{X^*}^\bullet(\cal{V})$ are then morally tensor products of analogous complexes for $n+m=1$.
  This suggests to consider first of all the case where $n=1$ and $m=0$.
  The global sections of the complexes in question are then
  \begin{enumerate}[(a)]
    \item $\mbox{functions on $D$}\xrightarrow{\nabla=\dd+\gamma\dd z/z}\mbox{differential form with a simple pole at $0$}$
    \item $\mbox{functions on $D^*$}\xrightarrow{\nabla=\dd+\gamma\dd z/z}\mbox{differential form on $D^*$}$.
  \end{enumerate}

  We write functions and differential forms as Laurent series.
  A morphism $r$ of complexes that is a left inverse to the inclusion $i\colon\mbox{(a)}\hookrightarrow\mbox{(b)}$ is then a morphism that sends $f$ (resp. $f\frac{\dd z}{z}$) to $g$ (resp. $g\frac{\dd z}{z}$), where $g$ is given by ``forgetting the polar part'' of $f$, i.e.
  \[
    f = \sum_n a_n z^n
    \implies
    g = \sum_{n\geq0} a_n z^n.
  \]
  We have that $r\circ i=\id$, and $\id-i\circ r=\nabla H+H\nabla$, where
  \[
    H\left(\sum_n a_n z^n\right)
    = \sum_{n<0} a_n(\gamma+n)^{-1}z^n.
  \]
  The same formulas still make sense for the morphism of complexes of germs of sections at $0$, i.e.
  \[
    i_0\colon \left(\Omega_X\langle0\rangle(\cal{V})\right)_0 \to \left(j_*\Omega_{X^*}(\cal{V})\right)_0
  \]
  and show that $i_0$ is a homotopy equivalence.

  We deal with the general case by transposing the fact that a tensor product of
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  homotopy equivalences is again a homotopy equivalence.

  We will write a germ at $0$ of a section of $j_*\Omega_{X^*}^\bullet(\cal{V})$ (where $\cal{V}=\cal{O}$) in the form
  \[
    \alpha = \sum_{\substack{P\subset[1,m]\\Q\subset[n+1,n+m]}} \alpha_{P,Q}\frac{\dd z^P}{z^P}\dd z^Q.
  \]
  We have
  \[
    \begin{aligned}
      \dd\alpha &= \sum_{i=1}^{n+m} \dd_i\alpha
    \\\dd_i\alpha &= \left(\dd z_i\wedge\partial_i + \frac{\dd z_i}{z_i}\wedge\gamma_i\right)\alpha.
    \end{aligned}
  \]
  These decompositions exhibit $j_*\Omega_{X^*}^\bullet(\cal{V})$ as an $(n+m)$-complex, of which $\Omega_X^*\langle Y\rangle(\cal{V})$ is an $(n+m)$-complex.

  We can expand the coefficients $\alpha_{P,Q}$ into a Laurent series
  \[
    \alpha_{P,Q} = \sum_{\underline{\ell}\in\ZZ^n\times\NN^m} a_{P,Q}^{\underline{\ell}} z^{\underline{\ell}}.
  \]
  We then set
  \[
    \begin{aligned}
      r_i(\alpha_{P,Q})
      &= \sum_{\underline{\ell}_i\geq0} a_{P,Q}^{\underline{\ell}} z^{\underline{\ell}}
      \quad\mbox{for $i\leq n$}
    \\r(\alpha_{P,Q})
      &= \sum_{\underline{\ell}\in\NN^n\times\NN^m} a_{P,Q}^{\underline{\ell}} z^{\underline{\ell}}
    \\r_i(\alpha)
      &= \sum_{P,Q} r_i(\alpha_{P,Q})\frac{\dd z^P}{z^P}\dd z^Q
      \quad\mbox{for $i\leq n$}
    \\r(\alpha)
      &= \sum_{P,Q} r(\alpha_{P,Q})\frac{\dd z^P}{z^P}\dd z^Q.
    \end{aligned}
  \]

  We can show that
  \begin{enumerate}[(a)]
    \item $r_i$ is an endomorphism of complexes;
    \item the $r_i$ commute pairwise, and their product is $r$; and
    \item $r$ is a retraction of $(j_*\Omega_{X^*}^\bullet(\cal{V}))_0$ to $(\Omega_X^\bullet\langle Y\rangle(\cal{V}))_0$.
  \end{enumerate}

  We further set
  \[
    \begin{aligned}
      H_i(\alpha_{P,Q})
      &= \sum_{\underline{\ell}_1<0} a_{P,Q}^{\underline{\ell}}(\gamma_i+\underline{\ell}_i)^{-1} z^{\underline{\ell}}
      \quad\mbox{for $i\leq n$}
    \\H_i(\alpha)
      &= \sum_{i\in P} (-1)^{k_p} H_i(\alpha_{P,Q})\frac{\dd z^{P\setminus\{i\}}}{z^{P\setminus\{i\}}}\dd z^Q
    \end{aligned}
  \]
  where $k_P=|P\cap[1,i-1]|$.

  We can show that
  \begin{enumerate}[(a)]
  \setcounter{enumi}{3}
    \item $1-r_i=d_iH_i+H_id_i$;
    \item $d_iH_j+H_jd_i=0$ for $i\neq j$; and
    \item $1-r_i=dH_i+H_id$.
  \end{enumerate}

  Since $1$ is homotopic to $r_i$, it is also homotopic to the composition $r$ of the $r_i$, and $r$ is an inverse up to homotopy of the inclusion morphism $i$ of $(\Omega_X^\bullet\langle Y\rangle(\cal{V}))_0$ into $j_*\Omega_{X^*}^\bullet(\cal{V})$.
  This finishes the proof of \hyperref[II.6.9]{(6.9)} and thus of \hyperref[II.6.2]{(6.2)}
\end{proof}

\begin{itenv}{Corollary 6.10}
\label{II.6.10}
  Let $X$ be a smooth scheme of finite type over $\CC$, $Y$ a normal crossing divisor on $X$, $\cal{V}$ a vector bundle on $X$, and $\Gamma$ a regular integrable connection on the restriction of $\cal{V}$ to $X^*=X\setminus Y$.
  Suppose that $\Gamma$ presents a logarithmic pole along $Y$, and that the residue of $\Gamma$ along the components of $Y$ does not have any positive integer eigenvalues.
  Then, denoting by $V$ the local system defined by $\cal{V}$ on $X_\cl^*$, we have
  \[
    \mathbb{H}^\bullet(X,\Omega_X^\bullet\langle Y\rangle(\cal{V}))
    \simto \HH^\bullet(X_\cl^*,V).
  \]
\end{itenv}

\begin{proof}
  This follows immediately from \hyperref[II.3.15]{(3.15)} and \hyperref[II.6.2]{(6.2)}.
\end{proof}

\begin{itenv}{Corollary 6.11}
\label{II.6.11}
  Under the hypotheses of \hyperref[II.6.10]{(6.10)}, with $X$ affine, we have
  \[
    \HH^\bullet(\Gamma(X,\Omega_X^\bullet\langle Y\rangle(\cal{V})))
    \simto \HH^\bullet(X_\cl^*,V).
  \]
\end{itenv}

In other words, to calculate the cohomology of $X^*$ with coefficients in $V$, it suffices to consider the complex of algebraic differential forms on $X^*$ with coefficients in $\cal{V}$ that present only a simple logarithmic poly along $Y$.
We suppose here that $X$, and not only $X^*$, is affine.

\begin{rmenv}{6.12}
\label{II.6.12}
  I do not have any satisfying relative analogue to \hyperref[II.6.2]{(6.2)}.
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  The main difficulty is that, for a smooth morphism $f\colon X\to S$ of smooth schemes of finite type over $\CC$, the sheaves $\RR^i f_*\underline{\CC}$ (calculated in the transcendent topology) are not in general locally constant, and thus do \emph{not} have vector bundles with integrable connections as algebraic analogues.
  It is easy, however, to make the above results more complicated by adding ``generic parameters''.
\end{rmenv}

\begin{itenv}{Theorem 6.13}
\label{II.6.13}
  Let $f_1\colon X_1\to S_1$ be a smooth morphism between smooth schemes of finite type over $\CC$.
  Then there exists a Zariski dense open subset $S$ of $S_1$ such that the morphism $f\colon X\to S$ induced by $f_1$ by the base change from $S_1$ to $S$ satisfies the following condition.

  For any vector bundle with \emph{regular} integrable connection $\cal{V}$ on $X$, defining a local system $V$ on $X_\cl$, we have that
  \begin{enumerate}[(i)]
    \item the sheaves $\RR^i f_*^\an(V)$ are local systems on $S$, and their construction is compatible with any base change;
    \item the sheaves $\mathbb{R}^i f_*(\Omega_{X/S}^\bullet(\cal{V}))$ and $\RR^i f_*^\an(\Omega_{X^\an/S^\an}^\bullet(\cal{V}))$ are locally free and of finite type, and their construction is compatible with any base change; and
    \item the canonical maps
      \[
        \cal{O}_S^\an\otimes\RR^i f_*^\an(V)
        \simto \mathbb{R}^i f_*^\an\left(\Omega_{X^\an/S^\an}^\bullet(\cal{V})\right)
        \simfrom \mathbb{R}^i f_*\left(\Omega_{X/S}^\bullet(\cal{V}\right)^\an
      \]
      are isomorphisms.
  \end{enumerate}
\end{itenv}

More precisely, we have:

\begin{itenv}{Proposition 6.14}
\label{II.6.14}
  Let $f\colon X\to S$ be a morphism between smooth schemes of finite type over $\CC$, admitting a compactification $\overline{X}$
  \[
  \label{II.6.14.1}
    \begin{tikzcd}
      X \ar[rr,hook,"j"] \drar[swap,"f"]
      && \overline{X} \dlar["\overline{f}"]
    \\&S&
    \end{tikzcd}
  \tag{6.14.1}
  \]
  that is proper and smooth over $S$, and such that there exists a relative normal crossing divisor $Y\subset\overline{X}$ of which $X$ is the complement.
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  Then the conclusions of \hyperref[II.6.13]{(6.13)} are satisfied by $f$.
\end{itenv}

We prove first of all that \hyperref[II.6.14]{(6.14)} implies \hyperref[II.6.13]{(6.13)}.
In \hyperref[II.6.13]{(6.13)}, we can reduce to the case where $S_1$ is irreducible, with generic point $\eta$.

\begin{rmenv}{6.15}
\label{II.6.15}
  Suppose first of all that $(f_1)_\eta$ admits a compactification
  \[
  \label{II.6.15.1}
    \begin{tikzcd}
      (X_1)_\eta \ar[rr,hook] \drar[swap]
      && \overline{X}_\eta \dlar
    \\&\Spec(k(\eta))&
    \end{tikzcd}
  \tag{6.15.1}
  \]
  with $\overline{X}_\eta$ proper over $k(\eta)$.
  This is the case if $(X_1)_\eta$ is quasi-projective, or even, by Nagata \cite{20}, just separated.

  By Hironaka's resolution of singularities applied to the scheme $\overline{X}_\eta$ over the field $k(\eta)$, there thus exists another compactification \hyperref[II.6.15.1]{(6.15.1)} of $(X_1)_\eta$ induced by the previous one by blowing up, and this time with $\overline{X}_\eta$ smooth and $(X_1)_\eta$ being the complement in $\overline{X}_\eta$ of a normal crossing divisor.
  Given the syllogisms of EGA~IV on $\varprojlim$ of schemes, there thus exists a Zariski open $S$ of $S_1$ along with a commutative diagram
  \[
    \begin{tikzcd}
      X_1|S \rar[hook,"j"] \dar[swap,"f"]
      & \overline{X} \dlar["\overline{f}"]
    \\S
    \end{tikzcd}
  \]
  satisfying the hypotheses of \hyperref[II.6.14]{(6.14)} and such that $\overline{f}^{-1}(\eta)=\overline{X}_\eta$.
  So, in this case, we can conclude by \hyperref[II.6.14]{(6.14)}.
\end{rmenv}

\begin{rmenv}{6.16}
\label{II.6.16}
  In the general case, let $\cal{U}=(U_i)$ be a finite cover of $X$ by open subsets that are compactifiable in the above sense, and let $S$ be the intersection of the open subsets constructed in \hyperref[II.6.15]{(6.15)} with respect to the compactifiable morphisms
  \[
  \label{II.6.16.1}
    U_{i_1}\cap\ldots\cap U_{i_k} \to S_1.
  \tag{6.16.1}
  \]
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  We have the conclusions of \hyperref[II.6.13]{(6.13)} for the morphisms induced from the morphisms in \hyperref[II.6.16.1] by restriction to $S$.
  The Leray spectral sequence for the cover $\cal{U}$ thus tells us, for $f\colon X=X_1|S\to S$, that
  \begin{enumerate}[(a)]
    \item $f$ satisfies \hyperref[II.6.13]{(6.13.i)} and \hyperref[II.6.13]{(6.13.iii)}, after any base change; and
    \item the sheaves $\mathbb{R}^i f_*\Omega_{X/S}^\bullet(\cal{V})$ are coherent, and this remains true after any base change $T\to S$.
  \end{enumerate}

  Finally, it is clear that (a)+(b)$\implies$\hyperref[II.6.13]{(6.13.ii)}.
\end{rmenv}

\begin{rmenv}{6.17}
\label{II.6.17}
  We now prove \hyperref[II.6.14]{(6.14)}.
  Under the hypotheses of \hyperref[II.6.14]{(6.14)}, the pair $(\overline{X},Y)$ is $C^\infty$-locally constant on $S$.
  We can show this by lifting vector fields on $S$ to vector fields on $\overline{X}$ tangent $Y$.
  Claim~(i) of \hyperref[II.6.13]{(6.13)} then follows.

  By \hyperref[I.2.28]{(I.2.28)}, the morphism
  \[
  \label{II.6.17.1}
    \cal{O}_S^\an \otimes \RR^i f_*^\an V
    \simto \RR^i f_*^\an\left(\Omega_{X/S}^\bullet(\cal{V}^\an)\right)
  \tag{6.17.1}
  \]
  is an isomorphism, and this remains true after any base change.

  To finish the proof, it remains to show that the sheaves $\mathbb{R}^i f_*(\Omega_{X/S}^\bullet(\cal{V}))$ are coherent, and satisfy
  \[
    \RR^i f_*\left(\Omega_{X/S}^\bullet(\cal{V})\right)^\an
    \simto \RR^i f_*^\an\left(\Omega_{X/S}^\bullet(\cal{V}^\an)\right),
  \]
  and that these two properties remain true after any base change.

  The proof is parallel to that of \hyperref[II.6.13]{(6.13)}:
  \begin{enumerate}[(a)]
    \item Let $\cal{V}_0$ be the canonical extension \hyperref[II.5.5]{(5.5)} of $\cal{V}$ to $\overline{X}$.
      By \hyperref[II.3.16]{(3.16)}, the injection
      \[
        \varphi\colon \Omega_{\overline{X}/S}^\bullet\langle Y\rangle(\cal{V})
        \to j_*\Omega_{X/S}^\bullet(\cal{V})
      \]
      is a quasi-isomorphism, and so too is
      \[
        \varphi^\an\colon \Omega_{\overline{X}^\an/S^\an}^\bullet\langle Y\rangle(\cal{V}^\an)
        \to j_*^\mm\Omega_{X^\an/S^\an}^\bullet(\cal{V});
      \]
      this remains true after any base change.
      The finiteness theorem (EGA~III, 3.2.1) then implies that, after any base change, the sheaves
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      \[
        \RR^i \overline{f}_* \left(\Omega_{\overline{X}/S}^\bullet\langle Y\rangle(\cal{V})\right)
        \simto \RR^i f_*\left(\Omega_{X/S}^\bullet\langle Y\rangle(\cal{V})\right)
      \]
      are algebraically coherent.
      Proceeding as in \hyperref[II.6.7]{(6.7)}, this time using the relative variants of GAGA, we can reduce \hyperref[II.6.14]{(6.14)} to the following lemma:
  \end{enumerate}
\end{rmenv}

\begin{itenv}{Lemma 6.18}
\label{II.6.18}
  The morphism of complexes
  \[
    j_*^\mm\Omega_{\overline{X}^\an/\overline{S}^\an}^\bullet(\cal{V})
    \to j_*\Omega_{\overline{X}^\an/\overline{S}^\an}^\bullet(\cal{V})
  \]
  induces an isomorphism on the cohomology sheaves, and this remains true after any base change.
\end{itenv}

\begin{proof}
  This is a local problem on $\overline{X}$, and we treat it by putting $\cal{V}$ into a canonical form \hyperref[II.5.6]{(5.6.ii)} and repeating the proof of \hyperref[II.6.9]{(6.9)}.
\end{proof}

\begin{rmenv}{6.19}
\label{II.6.19}
  The example that follows shows that algebraic vector bundles with irregular integrable connections can give rise to horrible pathologies.
  Let $X$ be a smooth separated complex algebraic curve, $\cal{V}$ a vector bundles of dimension~$n$ with a connection on $X$, and $V$ the local system on $X_\cl$ defined by $\cal{V}^\an$.
  Then
  \[
    \begin{aligned}
      \chi_\mathrm{DR}^\an(\cal{V})
      &\coloneqq \sum (-1)^i \dim\mathbb{H}^i\left(X_\cl,\Omega_{X^\an}^\bullet(\cal{V})\right)
    \\&= \sum (-1)^i \dim\HH^i(X_\cl,V)
    \\&= n\cdot\chi(X_\cl).
    \end{aligned}
  \]

  We also define (cf. \hyperref[II.6.20]{(6.20.i)})
  \[
    \chi_\mathrm{DR}(\cal{V})
    = \sum (-1)^i \dim\mathbb{H}^i\left(X,\Omega_X^\bullet(\cal{V})\right).
  \]
\end{rmenv}

\begin{itenv}{Proposition 6.20}
\label{II.6.20}
  Under the above hypotheses,
  \begin{enumerate}[(i)]
    \item the vector spaces $\mathbb{H}^i(X,\Omega_X^\bullet(\cal{V}))$ are of finite dimension; and
    \item the following conditions are equivalent:
      \begin{enumerate}[(a)]
        \item the connection on $\cal{V}$ is regular;
        \item $\mathbb{H}^\bullet(X,\Omega_X^\bullet(\cal{V}))\simto\mathbb{H}^\bullet(X_\cl,\Omega_{X^\an}^\bullet(\cal{V}))$;
        \item $\chi_\mathrm{DR}^\an(\cal{V})=\chi_\mathrm{DR}(\cal{V})$.
      \end{enumerate}
  \end{enumerate}
\end{itenv}

We have that (a)$\implies$(b), by \hyperref[II.6.2]{(6.2)}, and that (b)$\implies$(c).

Let $j\colon X\hookrightarrow\overline{X}$ be the smooth projective completion of $X$.
For $x\in Y=\overline{X}\setminus X$, pick, in a neighbourhood $U$ of $x$,
\begin{enumerate}[(a)]
  \item a vector field $\tau$ that disappears simply at $x$, with inverse a form with residue equal to $1$ at $x$; and
  \item a section $v$ of $\cal{V}$ such that the $\nabla_\tau^i v$ (for $0\leq i<n$) form a basis of $\cal{V}$ on $U\setminus\{x\}$.
\end{enumerate}

Let $\nabla_\tau^n v=\sum_{i=0}^{n-1}a_i\nabla_\tau^i v$.
Set
\[
  i_x(\cal{V}) = \sup\left\{0,\sup\{-v_X(a_i)\}\right\}.
\]

By \hyperref[II.1.10]{(1.10)}, $i_x(\cal{V})=0$ if and only if $\cal{V}$ is regular at $x$.

\begin{itenv}{Lemma 6.21}
\label{II.6.21}
---
\begin{enumerate}[(i)]
  \item The non-negative integer $i_x(\cal{V})$ does not depend on the arbitrary choices (a) and (b).
  \item There exist extensions $\cal{V}_1$ and $\cal{V}_2$ of $\cal{V}$ to $X'=X\cup\{x\}$ such that
    \begin{enumerate}
      \item[($\alpha$)] $\cal{V}_1\subset\cal{V}_2$ and $\dim((\cal{V}_2)_x/(\cal{V}_1)_x)=i_x(\cal{V})$;
      \item[($\beta$)] $\nabla\cal{V}_1\subset\Omega_{X'}^1\langle\{x\}\rangle(\cal{V}_2)$; and
      \item[($\gamma$)] for every $k>0$, $\nabla$ induces a bijection
        \[
          \Gr\nabla\colon
          \cal{V}_1(kx)/\cal{V}_1((k-1)x)
          \simto \Omega_{X'}^1\langle\{x\}\rangle(\cal{V}_2(kx))/\Omega_{X'}^1\langle\{x\}\rangle((k-1)x).
        \]
    \end{enumerate}
\end{enumerate}
\end{itenv}

We prove first of all that \hyperref[II.6.21]{(6.21.ii)} implies \hyperref[II.6.21]{(6.21.i)} and \hyperref[II.6.20]{(6.20)}.
By \hyperref[II.6.21]{(6.21.ii)}, for each $x\in Y$ we have extensions $\cal{V}_1$ and $\cal{V}_2$ of $\cal{V}$ to $X\cup\{x\}$ that satisfy ($\alpha$), ($\beta$), and ($\gamma$).
These extensions glue to give extensions $\cal{V}_1$ and $\cal{V}_2$ of $\cal{V}$ to $\overline{X}$.
By ($\beta$), we have complexes
\[
  K_k\colon \cal{V}_1(kY) \to \Omega_{\overline{X}}^1\langle Y\rangle(\cal{V}_2(kY))
  \qquad\mbox{(for $k\geq0$).}
\]
By ($\gamma$), the complex $K_{k+1}/K_k$ is acyclic, and
\[
  \mathbb{H}(\overline{X},K_{k+1}) \to \mathbb{H}(\overline{X},K_k)
\]
whence
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\[
  \begin{aligned}
    \mathbb{H}(\overline{X},K_0)
    \simto&\,\, \varinjlim\mathbb{H}(\overline{X},K_k)
  \\\simto&\,\, \mathbb{H}(\overline{X},\varinjlim K_k)
  \\\cong&\,\, \mathbb{H}(\overline{X},j_*\Omega_X^\bullet(\cal{V}))
  \\\simto&\,\, \mathbb{H}(X,\Omega_X^\bullet(\cal{V})).
  \end{aligned}
\]

This isomorphism proves \hyperref[II.6.20]{(6.20.i)}.
Furthermore, by ($\alpha$), we have that
\[
  \begin{aligned}
    \chi_\mathrm{DR}(\cal{V})
    &= \chi(\overline{X},\cal{V}_1) - \chi(\overline{X},\Omega_X^1\langle Y\rangle\otimes\cal{V}_2)
  \\&= \chi(\overline{X},\cal{V}_1) - \chi(\overline{X},\Omega_{\overline{X}}^1\langle Y\rangle\otimes\cal{V}_1) - \chi(\overline{X},\Omega_{\overline{X}}^1\langle Y\rangle\otimes\cal{V}_2/\cal{V}_1)
  \\&= \dim\cal{V}_1\cdot(\chi(\overline{X},\cal{O}) - \chi(\overline{X},\Omega_{\overline{X}}^1\langle Y\rangle)) - \sum_{x\in Y} i_x(\cal{V})
  \\&= n\chi(X) - \sum_{x\in Y} i_x(\cal{V})
  \end{aligned}
\]
whence
\[
\label{II.6.21.1}
  \chi_\mathrm{DR}^\an(\cal{V}) - \chi_\mathrm{DR}(\cal{V})
  = \sum_{x\in Y} i_x(\cal{V}).
\tag{6.21.1}
\]
This equation shows that \hyperref[II.6.20]{(6.20.c)}$\implies$hyperref[II.6.20]{(6.20.a)}.
It also shows that the sum of the $i_x(\cal{V})$ is independent of the arbitrary choices used for each of the $i_x(\cal{V})$, whence \hyperref[II.6.21]{(6.21.i)}.

\begin{rmenv}{6.22}
\label{II.6.22}
  We now prove \hyperref[II.6.21]{(6.21.ii)}.
  Let $e$ be the basis $(\nabla_\tau^i v)_{0\leq i<n}$ of $\cal{V}$, and denote again by $\cal{V}$ the unique extension of $\cal{V}$ to $X\cup\{x\}$ such that $e$ extends to a basis of $\cal{V}$.
  Let $\Gamma$ be the matrix of the connection in this basis of $\cal{V}$, and in the basis of $\Omega_X^1$ dual to $\tau$.
  We will show that
  \[
  \label{II.6.22.1}
    (n+\Gamma)\cal{V}_{(x)} \supset \cal{V}_{(x)}
    \qquad\mbox{for almost all $n\in\ZZ$.}
  \tag{6.22.1}
  \]

  By direct calculation, from the fact that the matrix of $\Gamma$ has only one column of coefficients presenting poles
  \[
    \Gamma =
    \begin{pmatrix}
      0 & 0 & 0 & \cdots & a_0
    \\1 & 0 & 0 & \cdots & a_1
    \\0 & 1 & 0 & & \vdots
    \\\vdots & \vdots & \ddots & & \vdots
    \\0 & \ldots & 0 & 1 & a_{n-1}
    \end{pmatrix}
  \]
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  we see that
  \[
    \dim\left((n+\Gamma)\cal{V}_{(x)} + \cal{V}_{(x)}/\cal{V}_{(x)}\right)
    = i_x(\cal{V}).
  \]

  On the other hand,
  \[
    \begin{aligned}
      \left[(n+\Gamma)\cal{V}_{(x)} : \cal{V}_{(x)}\right]
      &\coloneqq \dim\left((n+\Gamma)\cal{V}_{(x)}/(n+\Gamma)\cal{V}_{(x)}\cap\cal{V}_{(x)}\right)
    \\&= -\dim\left(\cal{V}_{(x)}/(n+\Gamma)\cal{V}_{(x)}\cap\cal{V}_{(x)}\right)
    \\&= -v_x\det(n+\Gamma).
    \end{aligned}
  \]

  For almost all $n$,
  \[
    -v_x\det(n+\Gamma) = -v_x P_\mathrm{char}(\Gamma,-n) = i_x(\cal{V})
  \]
  and \hyperref[II.6.22.1]{(6.22.1)} then follows by comparison.
  Let $z$ be a uniformiser at $x$, and set $\cal{V}_1=\cal{V}(Nx)$ and $e_1=z^{-N}e$.
  In this new basis, the matrix of the connection is $\Gamma_1=\Gamma-N$, so that, for large enough $N$, we have, for all $n\leq0$,
  \[
    (n+\Gamma_1)(\cal{V}_1)_{(x)} \supset (\cal{V}_1)_{(x)}.
  \]
  We define $\cal{V}_2$ by the formula
  \[
    (\cal{V}_2)_{(x)} = \Gamma_1((\cal{V}_1)_{(x)}).
  \]
  Since $\cal{V}_1\subset\cal{V}_2$, conditions ($\alpha$) and ($\beta$) of \hyperref[II.6.21]{(6.21)} are satisfied, and $\nabla_\tau$ sends $\cal{V}_1(kx)$ to $\cal{V}_2(kx)$ (for $k\geq0$).
  Finally, $\Gr^k(\nabla)$ from \hyperref[II.6.21]{(6.21)} can be identified with the fibre at $x$ of $\Gamma_1-k\colon\cal{V}_1(n)\to\cal{V}_2(n)$.
  This morphism is surjective, since
  \[
    (\Gamma_1-k)(\cal{V}_1)_{(x)} \supset (\cal{V}_1)_{(x)}
  \]
  and
  \[
    (\Gamma_1-k)(\cal{V}_1)_{(x)} + (\cal{V}_1)_{(x)}
    \supset \Gamma_1(\cal{V}_1)_{(x)} = (\cal{V}_2)_{(x)}.
  \]
  This finishes the proof of \hyperref[II.6.21]{(6.21)} and \hyperref[II.6.20]{(6.20)}.
\end{rmenv}




\section{Regularity theorem}
\label{II.7}
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\begin{rmenv}{7.1}
\label{II.7.1}
  In \cite{8}, P.A.~Griffiths proves the regularity theorem \hyperref[II.7.9] below in the particular case of a generically smooth projective morphism $f\colon X\to\PP^1$, and for constant coefficients.
  The principle of his method is to directly estimate the order of growth of the horizontal sections of $\RR f_*\Omega_{X/S}^\bullet$, and to apply the criterion of \hyperref[II.4.1]{(4.1.iii)}.
  His method, suitably generalised, allows us to prove \hyperref[II.7.9]{(7.9)}, but obtaining \hyperref[II.7.11]{(7.11)} seems more difficult.
  Analogous results, expressed in the language of functions in the Nilsson class, can be found in \cite{22}.

  In \cite{14}, K.~Katz gives, in the case of constant coefficients, an ``arithmetic'' proof of \hyperref[II.7.9]{(7.9)}.
  The method followed here is also equally due to him.
  It was rediscovered independently by the author.
\end{rmenv}

\begin{rmenv}{7.2}
\label{II.7.2}
  The purely algebraic construction, recalled in \hyperref[II.7.6]{(7.6)}, of the Gauss--Manin connection is due to Katz--Oda \cite{15}.
\end{rmenv}

\begin{rmenv}{7.3}
\label{II.7.3}
  Let $f\colon X\to S$ be a continuous map between topological spaces, and $\cal{U}=(U_i)_{i\in I}$ an open cover of $X$.
  We set $\Delta_n=[0,n]$, and, for $\sigma\in\Hom(\Delta_n,I)$, we denote by $j_\sigma$ the inclusion of $U_\sigma=\bigcap_{i\leq n}U_{\sigma(i)}$ into $X$.
  For $\scr{F}$ a sheaf on $X$, we denote by $f_*(U_\sigma,\scr{F})$ the sheaf
  \[
    (fj_\sigma)_* j_\sigma^* \scr{F}
  \]
  on $S$.
  The sheaves
  \[
    f_*(\cal{U},\scr{F})(\Delta_n)
    = \prod_{\sigma\in\Hom(\Delta_n,I)} f_*(U_\sigma,\scr{F})
  \]
  on $S$ form a simplicial system of sheaves, functorially in $\scr{F}$.
  If $K$ is a bounded-below complex of sheaves on $X$, then we denote by $f_*(\cal{U},K)$ the simple complex associated to the double complex of the $f_*(\cal{U},K^n)(\Delta_m)$, in which we take the first differential to be that induced by the functoriality of the differential $d$ of $K$, i.e.
  \[
  \label{II.7.3.1}
    d
    = d'+d''
    = f_*(\cal{U},d) + (-1)^n\sum(-1)^i\partial_i.
  \tag{7.3.1}
  \]
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  If $I$ is totally ordered, then we denote by $f_*(\cal{U},\alt,K)$ the sub-complex obtained by restricting to the strictly increasing maps $\sigma\in\Hom_<(\Delta_n,I)$, i.e.
  \[
    f_*(\cal{U},\alt,K)^k
    = \sum_{n+m=k} \prod_{\sigma\in\Hom_<(\Delta_m,I)} f_*(U_\sigma,K^n).
  \]

  The following are well known:

  \begin{rmenv}{7.3.2}
  \label{II.7.3.2}
    The inclusion of $f_*(\cal{U},\alt,K)$ into $f_*(\cal{U},K)$ is a homotopy equivalence.
  \end{rmenv}

  \begin{rmenv}{7.3.3}
  \label{II.7.3.3}
    If, for any $n$ and any $\sigma$, we have
    \[
      \RR^i(fj_\sigma)_* j_\sigma^* K^n = 0
      \qquad\mbox{(for $i>0$)}
    \]
    then
    \[
      \scr{H}^i f_*(\cal{U},K) \simto \RR^i f_* K.
    \]
  \end{rmenv}
\end{rmenv}

\begin{rmenv}{7.4}
\label{II.7.4}
  Let $K$ and $L$ be complexes on $X$.
  For each $i$, let $u_i$ be the morphism of complexes
  \[
  \label{II.7.4.1}
    u_i\colon K|U_i \to L|U_i
  \tag{7.4.1}
  \]
  and, for each pair $(i,j)$, let $H_{ij}$ be a homotopy
  \[
  \label{II.7.4.2}
    u_i - u_j = d H_{ij} + H_{ij}d
    \qquad\mbox{(on $U_i\cap U_j$).}
  \tag{7.4.2}
  \]

  Suppose that
  \[
  \label{II.7.4.3}
    H_{ij} + H_{jk} = H_{ik}.
  \tag{7.4.3}
  \]

  From this data, we obtain a morphism of complexes
  \[
  \label{II.7.4.4}
    u\colon f_*(\cal{U},K) \to f_*(\cal{U},L)
  \tag{7.4.4}
  \]
  as the sum of the morphisms of graded objects
  \[
    \begin{aligned}
      u_1^\bullet = f_*(U_\sigma,u_{\sigma(0)})
      &\colon f_*(U_\sigma,K^n) \to f_*(U_\sigma,L^n)
    \\u_2^\bullet = (-1)^n\prod_{\partial_0\tau=\sigma} H_{\tau(1),\tau(0)}
    &\colon f_*(U_\sigma,K^n) \to \prod_{\partial_0\tau=\sigma} f_*(U,L^{n-1}).
    \end{aligned}
  \]

  We note why $u=u'+u''$ commutes with $d=d'+d''$.
  We have
  \oldpage{115}
  \[
    [u,d] = [u_1,d'] + [u_1,d''] + [u_2,d'] + [u_2,d''].
  \]
  The bracket $[u_1,d']$ is zero, since the $u_1$ are morphisms of complexes.
  The equation $[u_2,d'']=0$ is synonymous to \hyperref[II.7.4.3]{(7.4.3)}.
  Finally, $[u_1,d'']=-[u_2,d']$ by \hyperref[II.7.4.2]{(7.4.2)}.
\end{rmenv}

\begin{rmenv}{7.5}
\label{II.7.5}
  Let $(u'_i)_{i\in I}$ and $(H'_{ij})_{i,j\in I}$ be another system satisfying \hyperref[II.7.4.1]{(7.4.1)}, \hyperref[II.7.4.2]{(7.4.2)}, and \hyperref[II.7.4.3]{(7.4.3)}, and let $H_i$ be a homotopy
  \[
  \label{II.7.5.1}
    u'_i - u_i = dH_i + H_id.
  \tag{7.5.1}
  \]
  Suppose that
  \[
  \label{II.7.5.2}
    H_i + H_{ij} = H'_{ij} + H_j
    \qquad\mbox{(on $U_i\cap U_j$).}
  \tag{7.5.2}
  \]

  We then have
  \[
    u'-u = dH+Hd
  \]
  with the homotopy $H$ having non-zero coordinates given by
  \[
    H_{\sigma(0)}\colon f_*(U_\sigma,K^n) \to f_*(U_\sigma,L^{n-1}).
  \]

  Similarly, by \hyperref[II.7.5.1]{(7.5.1)} and \hyperref[II.7.5.2]{(7.5.2)}, respectively,
  \[
    \begin{aligned}
      u'_1 - u_1 &= d'H + Hd'
    \\u'_2 - u_2 &= d''H + Hd''.
    \end{aligned}
  \]

  Equation~\hyperref[II.7.4.3]{(7.4.3)} implies that $H_{ii}=0$.
  The morphism \hyperref[II.7.4.4]{(7.4.4)} thus induces a morphism $u_\alt$ (or, simply, $u$)
  \[
  \label{II.7.5.3}
    u_\alt\colon f_*(\cal{U},\alt,K) \to f_*(\cal{U},\alt,L).
  \tag{7.5.3}
  \]
  Similarly, under the hypotheses of hyperref[II.7.5.1]{(7.5.1)} and \hyperref[II.7.5.2]{(7.5.2)}, $u_\alt$ and $u'_\alt$ are homotopic.
\end{rmenv}

\begin{rmenv}{7.6}
\label{II.7.6}
  Let $f\colon X\to S$ be a smooth morphism between smooth schemes of finite type over $\CC$, $\cal{V}$ a vector bundle with integrable connection on $X$, and $V$ the corresponding local system on $X^\an$.
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  Further, let $v$ be a vector field on $S$, $\cal{U}=(U_i)_{i\in I}$ an open cover of $X$, and $\underline{v}=(v_i)_{i\in I}$ a family of vector fields $v_i$ on the $U_i$ that lift $v$.

  Since $v_i$ lifts a vector field on $S$, the Lie derivative
  \[
    \cal{L}_{v_i}\colon \Omega_{X/S}^\bullet(\cal{V}) \to \Omega_{X/S}^\bullet(\cal{V})
  \]
  is defined.
  It commutes with the exterior differential:
  \[
  \label{II.7.6.1}
    [d,\cal{L}_{v_i}] = 0.
  \tag{7.6.1}
  \]
  The vector fields $v_i-v_j$ (on $U_i\cap U_j$) are vertical (i.e. linear forms on $\Omega_{X/S}^1$).
  They thus define contractions
  \[
    (v_i-v_j)\llcorner\colon \Omega_{X/S}^p(\cal{V}) \to \Omega_{X/S}^{p-1}(\cal{V})
  \]
  and Cartan's homotopy formula is then
  \[
  \label{II.7.6.2}
    \cal{L}_{v_i} - \cal{L}_{v_j} = d\circ((v_i-v_j)\llcorner) + (v_i-v_j)\llcorner\circ d.
  \tag{7.6.2}
  \]

  Furthermore,
  \[
  \label{II.7.6.3}
    (v_i-v_j)\llcorner + (v_j-v_k)\llcorner = (v_i-v_k)\llcorner.
  \tag{7.6.3}
  \]

  The construction in \hyperref[II.7.4]{(7.4)} then gives us a morphism
  \[
    \theta(\underline{v})\colon f_*(\cal{U},\Omega_{X/S}^\bullet(\cal{V})) \to f_*(\cal{U},\Omega_{X/S}^\bullet(\cal{V})).
  \]
  By \hyperref[II.7.5]{(7.5)}, the $\scr{H}^i(\theta(\underline{v}))$ depend only on $\underline{v}$, and not on the choice of lifts $v_i$ (take $H_i=(v'_i-v_i)\llcorner$).
  If $S$ is separated, and if $\cal{U}$ is an open affine cover of $X$, then \hyperref[II.7.3.3]{(7.3.3)} we have
  \[
    \scr{H}^i f_*(\cal{U},\Omega_{X/S}^\bullet(\cal{V})) \simto \RR^i f_*\Omega_{X/S}^\bullet(\cal{V})
  \]
  and $\scr{H}^i(\theta(\underline{v}))$ is an endomorphism of $\RR^i f_*\Omega_{X/S}^\bullet(\cal{V})$ that depends only on $\underline{v}$.

  If $\cal{V}$ is regular, if $V$ is the local system on $X^\an$ that it defines, and if conditions (i), (ii), and (iii) of \hyperref[II.6.13]{(6.13)} are satisfied, then be denote by $\nabla$ the Gauss--Manin connection on
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  \[
    \left(\RR^i f_*(\Omega_{X/S}^\bullet(\cal{V}))\right)^\an
    \simeq \RR^i f_*^\an*(\Omega_{X^\an/S^\an}^\bullet(\cal{V}))
    \simeq \RR^i f_*^\an(V)\otimes_\CC\cal{O}_{S^\an}.
  \]
\end{rmenv}

\begin{itenv}{Proposition 7.7}
\label{II.7.7}
  \emph{(Katz--Oda \cite{15}).}
  Under the hypotheses of \hyperref[II.7.6]{(7.6)}, with $X$ and $S$ separated, and $U$ affine, if $\cal{V}$ is regular, and if the hypothesis of \hyperref[II.6.14]{(6.14)} is satisfied, then the endomorphism $\scr{H}^i(\theta(\underline{v}))$ of $\RR^if_*\Omega_{X/S}^\bullet(\cal{V})$ ``agrees'' with the endomorphism $\nabla_v$ of $(\RR^if_*\Omega_{X/S}^\bullet(\cal{V}))^\an$.
\end{itenv}

\begin{proof}
  Let $\epsilon$ be the continuous identity map from $X^\an$ to $X$.
  If $\cal{U}$ is a Stein open cover of $X^\an$, and $\underline{v}$ a family of holomorphic liftings of $v$, then the construction in \hyperref[II.7.4]{(7.4)} gives us an endomorphism $\theta^\an(\underline{v})$ of $\RR^if_*^\an(\Omega_{X^\an/S^\an}^\bullet(\cal{V}))$.

  Similarly, let $\cal{O}_\infty$ be the sheaf of $C^\infty$ functions with complex values on $S$, $\Omega_{\infty,X/S}^\bullet(\cal{V})$ the complex of relative $C^\infty$ differential forms on $X$ with values in $\cal{V}$, $\cal{U}$ an open cover of $X$, and $\underline{v}$ a family of $C^\infty$ liftings of $v$.
  Then the construction in \hyperref[II.7.4]{(7.4)} gives us an endomorphism $\theta^\infty(\underline{v})$ of $\RR^if_*^\an(\Omega_{\infty,X/S}^\bullet(\cal{V}))$.

  These endomorphisms do not depend on the choice of $\cal{U}$, nor on the choice of $\underline{v}$, and are compatible with the inclusions
  \[
    \begin{tikzcd}
      \epsilon^\sbullet \RR^i f_*(\Omega_{X/S}^\bullet(\cal{V}))
        \rar[hook]
      & \RR^i f_*^\an(\Omega_{X^\an/S^\an}^\bullet(\cal{V}))
        \rar \dar[equal]
      & \RR^i f_*^\an(\Omega_{\infty,X/S}^\bullet(\cal{V}))
        \dar[equal]
    \\& \RR^i f_*^\an(V)\otimes_\CC\cal{O}_{S^\an}
        \rar
      & \RR^i f_*^\an(V)\otimes_\CC\cal{O}_\infty
    \end{tikzcd}
  \]
  It thus suffices to show that $\theta^\infty(\underline{v})$ agrees with the Gauss--Manin connection.
  To calculate $\theta^\infty(\underline{v})$, we can take $\cal{U}=\{X\}$, and $\underline{v}=\{v_0\}$ to be a $C^\infty$ lifting of $v$, and work with the complex $f_*(\cal{U},\alt,\Omega_{\infty,X/S}^\bullet(\cal{V}))$.
  We have
  \[
    f_*(\cal{U},\alt,\Omega_{\infty,X/S}^\bullet(\cal{V})) = f_*(\Omega_{\infty,X/S}^\bullet(\cal{V}))
  \]
  and $\theta(\underline{v})$ is exactly the Lie derivative along $v_0$, which evidently induces $\nabla_v$ on the cohomology.
\end{proof}

\begin{rmenv}{7.8}
\label{II.7.8}
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  Let $f\colon X\to S$ be a smooth morphism between smooth schemes of finite type over $\CC$, and $\cal{V}$ a vector bundle with integrable connection on $X$.
  The lecture will find in Katz--Oda \cite{15} a proof that the construction  in \hyperref[II.7.6]{(7.6)} always gives an integrable connection, said to be \emph{Gauss--Manin}, on the quasi-coherent sheaves $\RR^if_*\Omega_{X/S}^\bullet(\cal{V})$.
  We will not use this fact.
\end{rmenv}

\begin{itenv}{Theorem 7.9}
\label{II.7.9}
  Let $f\colon X\to S$ be a smooth morphism between smooth schemes of finite type over $\CC$ satisfying the conclusions (i), (ii), and (iii) of \hyperref[II.6.3]{(6.3)}.
  If $\cal{V}$ is a vector bundle with regular integrable connection on $X$, then the Gauss--Manin connection on $\RR^if_*(\Omega_{X/S}^\bullet(\cal{V}))$ is regular.
\end{itenv}

By \hyperref[II.4.6]{(4.6.iii)}, it suffices to prove \hyperref[II.7.4]{(7.4)} after having replaced $S$ by a Zariski dense open.
By \hyperref[II.6.13]{(6.13)} and the definition \hyperref[II.4.4]{(4.4.iii)} of regular connections, it suffices to consider the case where $S$ is separated and of dimension~$1$.

If $\cal{U}=(U_i)_{i\in I}$ is a finite open cover of $X$, then there exists a Zariski dense open subset $S_i$ of $S$ such that, for $j$ an inclusion morphism
\[
  j\colon U_{i_r}\cap\ldots\cap U_{i_p} \hookrightarrow X,
\]
the $\cal{O}_{S_1}$-modules
\[
\label{II.7.9.1}
  \RR^i(fj)_*j^*(\Omega_{X/S}^\bullet(\cal{V}))|S_1
\tag{7.9.1}
\]
are locally free.
The Leray spectral sequence for $\cal{U}$ thus induces a spectral sequence of locally free $\cal{O}_{S_1}$-modules with connections, with the differentials $d_2$ being horizontal.
By \hyperref[II.4.6]{(4.6.i)}, it suffices to show that the Gauss--Manin connections on the $\cal{O}_{S_1}$-modules \hyperref[II.7.9.1]{(7.9.1)} are regular.
This allows us to assume that $f$ factors through a proper morphism.
By further shrinking $S_1$, and using the resolution of singularities, we see that this leads us to the crucial case where the following conditions are satisfied (cf. the proof that \hyperref[II.6.14](6.14)$\implies$\hyperref[II.6.13]{(6.13)}).

\begin{rmenv}{7.9.2}
\label{II.7.9.2}
  $S$ is the complement, in a smooth projective curve $\overline{S}$, of a finite set $T$ of points;
  $X$ is the complement, in a smooth proper scheme $\overline{X}$, of a normal crossing divisor;
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  $f$ is the restriction to $X$ of a morphism $\overline{f}\colon\overline{X}\to\overline{S}$ such that $Y\supset f^{-1}(T)$;
  $\overline{f}^{-1}(S)$ is smooth over $S$, and $Y\cap\overline{f}^{-1}(S)$ is a relative normal crossing divisor on $S$.
  \[
    \begin{tikzcd}
      X \rar[hook] \dar
      & \overline{X} \dar
      & Y \lar[hook]
      & f^{-1}(T) \lar[hook] \dar
    \\S \rar
      & \overline{S}
      && T \ar[ll]
    \end{tikzcd}
  \]

  We denote again by $\cal{V}$ a locally free extension of $\cal{V}$ to $\overline{X}$ satisfying the following two conditions:
\end{rmenv}

\begin{rmenv}{7.9.3}
\label{II.7.9.3}
  The matrix of the connection of $\cal{V}|X$ presents at worst logarithmic poles along $Y$.
\end{rmenv}

\begin{rmenv}{7.9.4}
\label{II.7.9.4}
  The residues of the connection along the components of $Y\cap f^{-1}(S)$ do not have any strictly positive integer eigenvalues.
\end{rmenv}

The hypothesis of \hyperref[II.7.9.4]{(7.9.4)} guarantees \hyperref[II.3.14]{(3.14.i)} that
\[
\label{II.7.9.5}
  \RR^i f_*(\Omega_{f^{-1}(S)/S}^\bullet\langle Y\rangle(\cal{V}))
  \simto \RR^i f_*(\Omega_{X/S}^\bullet(\cal{V})).
\tag{7.9.5}
\]
Denote by $\RR_0^i(\overline{f})$ the locally free module over $\overline{S}$ given by the quotient of $\RR^i\overline{f}_*(\Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle(\cal{V}))$ (\hyperref[II.3.3.3]{(3.3.3)} and \hyperref[II.3.3.2]{(3.3.2)}) by its torsion sub-sheaf.
Let $V$ be the local system on $X^\an$ defined by $\cal{V}$.
By \hyperref[II.6.14]{(6.14)}, we have that
\[
  \RR_0^i(\overline{f})^\an \simeq \RR^i f_*^\an V\otimes_\CC\cal{O}_{S^\an}.
\]

\begin{itenv}{Lemma 7.10}
\label{II.7.10}
  The Gauss--Manin connection on $\RR_0^i(\overline{f})|S$ presents at worst a simple pole at each point $t\in T$.
\end{itenv}

\begin{proof}
  Let $t\in T$, and let $v$ be a vector field on $S$ defined on a neighbourhood of $t$ that vanishes simply at $t$.
  It suffices to show that the endomorphisms \hyperref[II.7.6]{(7.6)} $\scr{H}^i\theta(\underline{v})=\nabla_v$ of the sheaves $\RR_0^i(\overline{f})|S$ extend to endomorphisms of the sheaves $\RR_0^i(\overline{f})$.
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  Let $\cal{U}=(U_i)_{i\in I}$ be an open affine cover of $\overline{X}$.
  By \hyperref[II.3.3.2.3]{(3.3.2.3)} (or, rather, its variant \hyperref[II.3.3.3]{(3.3.3)}), we can lift $v$ to a family $\underline{v}$ of vector fields $v_i$ on the $U_i$ such that
  \[
  \label{II.7.10.1}
    \big\langle v_i,\Omega_{\overline{X}}^\bullet\langle Y\rangle\big\rangle \subset \cal{O}_{U_i}.
  \tag{7.10.1}
  \]

  From \hyperref[II.7.10.1]{(7.10.1)}, we can extract the fact that
  \[
  \label{II.7.10.2}
    v_i\llcorner\Omega_{\overline{X}}^\bullet\langle Y\rangle
    \subset \Omega_{\overline{X}}^\bullet\langle Y\rangle
    \qquad\mbox{(on $U_i$)}
  \tag{7.10.2}
  \]
  since $\Omega_{\overline{X}}^p\langle Y\rangle=\wedge^p\Omega_{\overline{X}}^1\langle Y\rangle$.
  The Lie derivative satisfies
  \[
    \cal{L}_{v_i} = d\circ(v_i\llcorner) + (v_i\llcorner)\circ d
  \]
  and we also have that
  \[
  \label{II.7.10.3}
    \cal{L}_{v_i}\Omega_{\overline{X}}^\bullet\langle Y\rangle
    \subset \Omega_{\overline{X}}^\bullet\langle Y\rangle
    \qquad\mbox{(on $U_i$).}
  \tag{7.10.3}
  \]
  Since $\Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle$ is a homomorphic image of $\Omega_{\overline{X}}^\bullet\langle Y\rangle$ \hyperref[II.3.3.2]{(3.3.2)}, we have that
  \[
  \label{II.7.10.4}
    (v_i-v_j)\llcorner\Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle
    \subset \Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle
    \qquad\mbox{(on $U_i\cap U_j$)}
  \tag{7.10.4}
  \]
  \[
  \label{II.7.10.5}
    \cal{L}_{v_i}\Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle
    \subset \Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle
    \qquad\mbox{(on $U_i$).}
  \tag{7.10.5}
  \]
  By \hyperref[II.7.9.3]{(7.9.3)}, $\nabla_{v_i}(\cal{V})\subset\cal{V}$;
  this, combined with \hyperref[II.7.10.4]{(7.10.4)} and \hyperref[II.7.10.5]{(7.10.5)}, gives us that
  \[
  \label{II.7.10.6}
    (v_i-v_j)\llcorner\Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle(\cal{V})
    \subset \Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle(\cal{V})
    \qquad\mbox{(on $U_i\cap U_j$)}
  \tag{7.10.6}
  \]
  \[
  \label{II.7.10.7}
    \cal{L}_{v_i}\Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle(\cal{V})
    \subset \Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle(\cal{V})
    \qquad\mbox{(on $U_i$).}
  \tag{7.10.7}
  \]

  The general construction \hyperref[II.7.4]{(7.4)} associates to $\cal{L}_{v_i}$ and to $(v_i-v_j)\llcorner$ an endomorphism $\theta(\underline{v})$ of $\RR^\bullet f_*(\Omega_{\overline{X}/\overline{S}}^\bullet\langle Y\rangle(\cal{V}))$.
  This endomorphism is compatible, via \hyperref[II.7.9.5]{(7.9.5)}, with the endomorphism of the same name of $\RR^\bullet f_*(\Omega_{X/S}^\bullet(\cal{V}))$.
  By \hyperref[II.7.7]{(7.7)}, it can be identified with $\nabla_v$.
  This proves \hyperref[II.7.10]{(7.10)}, and finishes the proof of \hyperref[II.7.9]{(7.9)}.
\end{proof}

The following variant of \hyperref[II.7.9]{(7.9)} can be proven in the same way as \hyperref[II.7.10]{(7.10)}.

\begin{itenv}{Proposition 7.11}
\label{II.7.11}
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  Let $D$ be the unit disc, $D^*=D\setminus\{0\}$, $X$ a smooth analytic space, $f\colon X\to D$ a proper morphism, $Y$ a normal crossing divisor of $X$ such that $Y\supset f^{-1}(0)$, $X^*=X\setminus Y$, $\cal{V}$ a vector bundle on $X$, $\Gamma$ an integrable connection on $\cal{V}|X^*$ satisfying \hyperref[II.7.9.3]{(7.9.3)} and \hyperref[II.7.9.4]{(7.9.4)}, and $V$ the corresponding local system on $(X^*)^\an$.
  Suppose that $f|f^{-1}(D^*)$ is smooth, and that $Y\cap f^{-1}(D^*)$ is a relative normal crossing divisor.
  Set
  \[
    \RR_0^i(f) = \RR^i f_*\Omega_{X/D}^\bullet\langle Y\rangle(\cal{V})/T
  \]
  where $T$ is the torsion at $\{0\}$.
  Then
  \[
    \RR_0^i(f)|D^* \simto \RR^i f_*V\otimes_\CC\cal{O}_{D^*}
  \]
  and the corresponding connection on $\RR_0^i(f)|D^*$ presents at worst a simple pole at $0$.
\end{itenv}




\chapter{Applications and examples}
\label{III}


\section{Functions in the Nilsson class}
\label{III.1}

\begin{rmenv}{1.1}
\label{III.1.1}
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  Let $X$ be a non-singular complex algebraic variety that is connected and endowed with a base point $x_0$.
  We denote by $\widetilde{X}$ the universal covering of $(X,x_0)$, and by $\widetilde{x}_0$ the base point of $\widetilde{X}$.
  Suppose that we have a given complex representation $W_0$ of finite dimension~$d$ of $\pi_1(X,x_0)$ endowed with a cyclic vector $w_0$.
  We denote by $W$ the corresponding local system \hyperref[I.1.4]{(I.1.4)}, and by $\scr{W}$ the algebraic vector bundle with regular integrable connection endowed with an isomorphism of $\pi_1(X,x_0)$-representations \hyperref[II.5.7]{(II.5.7)}
  \[
    \scr{W}_{x_0} \simeq W.
  \]
  Finally, we denote by $w$ the multivalued horizontal section of $\scr{W}^\an$ with base determination $w_0$.
\end{rmenv}

\begin{rmenv}{Definition 1.2}
\label{III.1.2}
  A section of an \emph{algebraic} vector bundle $\cal{V}$ on $X$ is said to be \emph{in the Nilsson class} if it is a multivalued holomorphic section of finite determination that is of moderate growth at infinity \hyperref[II.2.23]{(II.2.23.iv)}.

  If $\cal{V}=\cal{O}$, then we speak of \emph{functions in the Nilsson class}.
\end{rmenv}

The two following theorems will be proven simultaneously in \hyperref[III.1.5proof]{(1.5)}.
The first says that, for a function \emph{of finite determination}, various variants of the ``moderate growth at infinity'' condition are equivalent.

\begin{itenv}{Theorem 1.3}
\label{III.1.3}
  Let $s$ be a multivalued holomorphic section of finite determination of an algebraic vector bundle on $X$.
  Then the following conditions are equivalent:
  \begin{enumerate}[(i)]
    \item $s$ is in the Nilsson class; and
    \item the restriction of $s$ to every (locally closed) smooth algebraic curve along $X$ is in the Nilsson class.
  \end{enumerate}
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  If $X$ is a Zariski open subset of a compact normal variety $\overline{X}$, then the two conditions above are also equivalent to the following:
  \begin{enumerate}
    \item[{\rm(iii)}] every irreducible component of $\overline{X}\setminus X$ of codimension~$1$ in $\overline{X}$ contains a non-empty open subset $U$ along which $s$ is of moderate growth.
  \end{enumerate}
\end{itenv}

In the above, we do not lose any generality in supposing, in (iii), that $X\cup U\subset\overline{X}$ is smooth, and that $U$ is a smooth divisor there.
Unlike (i), conditions (ii) and (iii) do not make any reference to the theory of Lojasiewicz.
It follows from (iii) that, if $\codim(\overline{X}\setminus X)\geq2$, then a function of finite determination is automatically in the Nilsson class.

For $X$ of dimension~$1$, the following theorem is due to Plemelj \cite{23}.

\begin{itenv}{Theorem 1.4}
\label{III.1.4}
  Let $\cal{V}$ be an algebraic vector bundle on $X$.
  The ``evaluation at $w$'' function, that sends each (algebraic) $f\in\Hom(\scr{W},\cal{V})$ to the section $f(w)$ of $\cal{V}^\an$ gives a bijection between $\Hom(\scr{W},\cal{V})$ and the set of sections of $\cal{V}$ in the Nilsson class that are of monodromy subordinate to $(W_0,w_0)$.
\end{itenv}

\begin{rmenv}{1.5}
\label{III.1.5proof}
  Here we prove \hyperref[III.1.3]{(1.3)} and \hyperref[III.1.4]{(1.4)}.
  We have already seen (in \hyperref[I.6.11]{(I.6.11)}) that the function $E_w\colon f\mapsto f(w)$ identifies $\Hom(\scr{W}^\an,\cal{V}^\an)$ with the set of multivalued holomorphic sections of $\cal{V}^\an$ of finite determination with monodromy subordinate to $(W_0,w_0)$.
  It thus remains to prove that $f$ is algebraic if and only if $f(w)$ satisfies \hyperref[III.1.3]{(1.3.i)} (resp. \hyperref[III.1.3]{(1.3.ii)}, resp. \hyperref[III.1.3]{(1.3.iii)}).

  By \hyperref[II.4.1]{(II.4.1.iii)}, the ``section'' $w$ of $\scr{W}$ is in the Nilsson class, so that, if $f$ is algebraic, then $f(w)$ satisfies \hyperref[III.1.3]{(1.3.i)}.
  Trivially, \mbox{\hyperref[III.1.3]{(1.3.i)}$\implies$\hyperref[III.1.3]{(1.3.ii)}} and \mbox{\hyperref[III.1.3]{(1.3.i)}$\implies$\hyperref[III.1.3]{(1.3.iii)}}.

  Let $e\colon\cal{O}^d\to\scr{W}$ be a multivalued basis of $\scr{W}$ consisting of determinations of $w$.
  Since $\scr{W}$ is regular, $e^{-1}$ is of moderate growth at infinity.
  For $f\colon\scr{W}^\an\to\cal{V}^\an$, the $f(e_i)$ are determinations of $f(w)$.
  From this, and from the equation $f=fee^{-1}$, we deduce that
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  \begin{enumerate}[a)]
    \item if $f(w)$ satisfies \hyperref[III.1.3]{(1.3.ii)}, then the restriction of $f\in\HH^0(\shHom(\scr{W},\cal{V})^\an)$ to any curve is of moderate growth; and
    \item if $f(w)$ satisfies \hyperref[III.1.3]{(1.3.iii)}, then $f$ is of moderate growth near a non-empty open subset of each irreducible component of $\overline{X}\setminus X$ of codimension~$1$.
  \end{enumerate}
\end{rmenv}

By \hyperref[II.4.1.1]{(II.4.1.1)}, under each of these hypotheses, $f$ is algebraic.

\begin{itenv}{Corollary 1.5}
\label{III.1.5}
  Under the hypotheses of \hyperref[III.1.4]{(1.4)}, if $X$ is affine, with coordinate ring $A$, and if $\cal{V}$ is of rank~$m$, then the set of sections of $\cal{V}$ in the Nilsson class that are of monodromy subordinate to $(W_0,w_0)$ is a \emph{projective} $A$-module of rank~$dm$.
\end{itenv}

\begin{rmenv}{Remark 1.6}
\label{III.1.6}
  A \emph{meromorphic function in the Nilsson class} is, by definition, a section of some sheaf $\cal{O}(D)$, for $D$ a sufficiently positive divisor, in the Nilsson class (where $\cal{O}(D)$ is the sheaf of meromorphic functions $f$ such that $\operatorname{div}(f)\geq-D$).
  It follows from \hyperref[III.1.5]{(1.5)} that the set of meromorphic functions in the Nilsson class that are of monodromy subordinate to $(W_0,w_0)$ is a vector space of dimension~$d$ over the field of rational functions on $X$.
\end{rmenv}

\begin{rmenv}{1.7}
\label{III.1.7}
  Let $f\colon X\to S$ be a smooth morphism, with $S$ smooth.
  By \hyperref[III.1.4]{(1.4)}, the set of relative differential $p$-forms on $X$ that are in the Nilsson class and of monodromy subordinate to $(W_0,w_0)$ can be identified with the space
  \[
    \HH^0\Big(
      S,\Ker\big(
      \dd\colon f_*\Omega_{X/S}^p(\scr{W}^\vee)\to f_*\Omega_{X/S}^{p+1}(\scr{W}^\vee)
      \big)
    \Big).
  \]

  Let $U'$ be a dense Zariski open subset of $S$ such that, over $U'$, $f$ is locally $C^\infty$-trivial.
  The \emph{homology} groups $\HH_p(X_S^\an,W)$ then form a local system $\scr{H}$ on $U'$.

  We denote by $\langle-,-\rangle$ the pairing of sheaves on a small enough dense Zariski open subset $U\subset U'$ \hyperref[II.6.13]{(II.6.13)}
  \[
    \begin{aligned}
      \scr{H} \otimes \Ker\big(\dd\colon f_*\Omega_{X/S}^p(\scr{W}^\vee)\to f_*\Omega_{X/S}^{p+1}(\scr{W}^\vee)\big)
      &\to \scr{H} \otimes \RR^p f_* \Omega_{X/S}^\bullet(\scr{W}^\vee)
    \\&\to \scr{H} \otimes \RR^p f_*^\an \scr{W}^\vee \otimes \cal{O}_S^\an
    \\&\to \cal{O}_S^\an.
    \end{aligned}
  \]
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  We define a \emph{period} of a closed relative $p$-form $\alpha$ in the Nilsson class of the type considered above to be any multivalued function on $U$ of the form $\langle h,\alpha\rangle$, with $h$ a multivalued (horizontal) section of $\scr{H}$.
  A period is thus a multivalued function of finite determination that is of monodromy subordinate to $\scr{H}$.
  \hyperref[III.1.4]{Theorem~1.4} and \hyperref[II.6.13]{Theorem~II.6.13} thus give us the theorem essentially equivalent to that of \hyperref[II.7.4]{(II.7.4)}.
\end{rmenv}

\begin{itenv}{Theorem 1.8}
\label{III.1.8}
  Under the hypotheses of \hyperref[III.1.7]{(1.7)}, the periods of a closed relative differential $p$-form on $X$ in the Nilsson class are functions in the Nilsson class on a suitable dense Zariski open subset of $S$.
\end{itenv}


\section{The monodromy theorem (by Brieskorn)}
\label{III.2}

The proof of the monodromy theorem given in this section is due to Brieskorn \cite{5}.

\begin{rmenv}{2.1}
\label{III.2.1}
  Let $S$ be a smooth algebraic curve over $\CC$, induced by a smooth projective curve $\overline{S}$ by removing a finite set $T$ of points.
  For $t\in T$, the \emph{local monodromy group at $t$}, or the \emph{local fundamental group of $S$ at $t$}, is the fundamental group of $D\setminus\{t\}$, where $D$ is a small disc centred at $t$.
  This group is canonically isomorphic to $\ZZ$, and we call its canonical generator the \emph{monodromy transformation}.

  If $\cal{V}$ is a local system of $\CC$-vector spaces on $S$, then the local monodromy group at $t$ acts on $V|(D\setminus\{t\})$.
  If $\cal{V}$ is the complexification of a local system of $\ZZ$-modules of finite type, then the characteristic polynomial of the monodromy transformation has integer coefficients.

  Recall that a linear substitution is said to be quasi-unipotent if one of its powers is unipotent.
  A local system of $\CC$-vector spaces on $S$ is said to be \emph{quasi-unipotent} (resp. \emph{unipotent}) \emph{at infinity} if, for all $t\in T$, the corresponding monodromy transformation is quasi-unipotent (resp. unipotent).
\end{rmenv}
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\begin{rmenv}{Example 2.2}
\label{III.2.2}
  Let $X=\SL_2(\mathbb{R})/\SO_2(\mathbb{R})$ be the Poincar\'{e} half plane, and $\Gamma$ a torsion-free discrete subgroup of $\SL_2(\mathbb{R})$ such that $\Gamma\backslash\SL_2(\mathbb{R})$ is of finite volume.
  We then know that $\Gamma\backslash X$ is an algebraic curve, with fundamental group $\Gamma$.
  Each finite-dimensional complex representation $\rho$ of $\Gamma$ thus defines a local system $V_\rho$ on $\Gamma\backslash X$ (and conversely).
  For $V_\rho$ to be unipotent at infinity, it is necessary and sufficiently for $\rho(\gamma)$ to be unipotent for every element $\gamma$ of $\Gamma$ that is unipotent in $\SL_2(\mathbb{R})$.
\end{rmenv}

\begin{itenv}{Theorem 2.3}
\label{III.2.3}
  Let $S$ be as in \hyperref[III.2.1]{(2.1)}, let $i$ be an integer, and let $f\colon X\to S$ be a smooth morphism.
  Suppose that $\RR^if_*\CC$ is a local system (i.e. that it is locally constant) \hyperref[II.6.13]{(II.6.13)}.
  Then $\RR^if_*\CC$ is quasi-unipotent at infinity.
\end{itenv}

The proof relies on \hyperref[II.7.4]{(II.7.4)} and on the following theorem of Gelfond (\cite{6} or \cite{2}):

\begin{itenv*}
\label{III.2.3.*}
  {\rm\textbf{($*$)}}
  If $\alpha$ and $\exp(2\pi i\alpha)$ are algebraic numbers, then $\alpha$ is rational.
\end{itenv*}

An immediate corollary of \hyperref[III.2.3.*]{($*$)} is:

\begin{itenv*}
\label{III.2.3.**}
  {\rm\textbf{($**$)}}
  If $N$ is a matrix with entries in a subfield $K$ of $\CC$, and if, for every embedding $\sigma K\to\CC$, the characteristic polynomial of $\exp(2\pi i\sigma(N))$ has integer coefficients, then $\exp(2\pi iN)$ is quasi-unipotent.
\end{itenv*}

Indeed, let $\alpha$ be an eigenvalue of $N$ in an extension $K'$ of $K$.
For every embedding $\sigma$ of $K'$ into $\CC$, $\exp(2\pi i\sigma(\alpha))$ is algebraic.
We thus deduce first of all that $\alpha$ is algebraic, since otherwise $\sigma(\alpha)$ could take any non-algebraic value.
Then \hyperref[III.2.3.*]{($*$)} implies that $\alpha$ is rational, so that the eigenvalues $\exp(2\pi i\alpha)$ of $\exp(2\pi iN)$ are roots of unity.

\begin{proof}[Proof of {\hyperref[III.2.3]{Theorem 2.3}}]
  By shrinking $S$ if necessary, we can assume that $\scr{H}=\RR^if_*\Omega_{X/S}^\bullet$ is locally free.

  Let $K$ be a subfield of $\CC$ such that $f$, $X$, $S$, $\overline{S}$, and the points of $T$ are all definable over $K$, i.e. all come from extension of scalars $\sigma_0\colon K\to\CC$ of
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  \[
    f_0\colon X_0\to S_0
    \quad\mbox{and}\quad
    T_0\subset\overline{S}_0(K).
  \]

  The Gauss--Manin connection on $\scr{H}_0=\RR^if_*\Omega_{X_0/S_0}^\bullet$ is regular \hyperref[II.7.4]{(II.7.4)}.
  There thus exists an extension of $\scr{H}'_0$ to a vector bundle on $\overline{S}_0$ such that the connection has at worst a simple pole at each $t\in T_0$.
  Let $N_t$ be the matrix of the residue of the connection at $t\in T_0$ in a basis of $(\scr{H}'_0)_t$.

  For every embedding $\sigma\colon K\to\CC$, $f_0$ defines, by extension of scalars,
  \[
    f_{(\sigma)}\colon X_{(\sigma)}\to S_{(\sigma)}
  \]
  and $\scr{H}_{(\sigma)}=\RR^i(f_{(\sigma)})_*\Omega_{X_{(\sigma)}/S_{(\sigma)}}^\bullet$ is induced by extension of scalars from $\scr{H}_0$.
  By \hyperref[II.1.17.1]{(II.1.17.1)}, $\exp(2\pi i\sigma/N_t)$ has the same characteristic polynomial as the local monodromy transformation at $t$ acting on $\RR^i(f_{(\sigma)})_*\CC$.
  Thus $\exp(2\pi i\sigma/N_t)$ has a characteristic polynomial with integer coefficients, and, by \hyperref[III.2.3.**]{($**$)}, $\exp(2\pi iN_t)$ is quasi-unipotent, whence \hyperref[III.2.3]{Theorem~2.3}.
\end{proof}
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